The Sprawlter Graph Readability Metric: Combining Sprawl and Area-aware Clutter

Zipeng Liu
University of British Columbia

Takayuki Itoh
Ochanomizu University

Jessica Q. Dawson
University of British Columbia

Tamara Munzner
University of British Columbia

Node-link graph readability metrics

- Measure ability of a human to read a graph
 - Synonym: aesthetic criteria
 - Example: # edge-edge crossing
- Why care about metric?
 - Evaluate layout
 - Make good layout

Readability problems

- Integer crossing counts
 - Lack precision

Readability problems

- Integer crossing counts
 - Lack precision
- Single-level structure
 - Metanodes ignored but more salient

Readability problems

- Integer crossing counts
 - Lack precision
- Single-level structure
 - Metanodes ignored but more salient
- Clutter-only metrics
 - Sprawl (geometric sparseness) ignored

Solutions for

More precise clutter

Account for metanodes

Combine clutter and sprawl

Readability problems

Integer crossing counts

Single-level structure

Clutter-only metrics

Contributions

- Propose new **area-aware clutter** metric
 - Area / angles of overlap → penalty
 - Penalty mapping function
 - Implemented for node-node, node-edge, edge-edge
- Propose new sprawlter (sprawl clutter) metric
 - Trade off sprawl & area-aware clutter with geometric mean
- Evaluate both metrics against baselines
 - 56 graph layouts
 - 13 datasets
 - 7 layout approaches: 6 algorithms + manual

Readability problems

- Integer crossing counts
- Single-level structure

Clutter-only metrics

Related work: readability metrics

- Single-purpose metrics
 - Single-level clutter:
 - Edge-edge / node-edge crossings [Purchase 03]

Does not account for geometric overlap

Edge crossing angles [Dunne 15]

Does not account for just-touching cases

- Multi-level clutter: much less work
 - Group overlap [Dunne 15]

Does not account for clutter between metanodes

- Sprawl
 - Compactness [Kieffer 15],
 visualization coverage [Dunne 15]

Does not integrate sprawl and clutter

- Compound metrics
 - Implicitly used by layout algorithms (e.g. GEM [Frick 94], LinLog [Noack 27], NEATO [Gansner 04])
 - Physics quantity (e.g. force, energy, stress)

Does not provide explicit quantity

- Explicitly combined
 - Weighted sum of single-purpose metrics [Huang 16]

Does not say what weights to use

Our **sprawlter** metric uses geometric mean

Sprawlter metric computational pipeline

1. Measure geometric overlaps

 χ

2. Map measurements to penalties

f(x)

3. Sum up penalties

 $AreaMetric = \sum f(x)$

4. Combine clutter with sprawl

 $Sprawlter = \sqrt{Sprawl * AreaMetric}$

1. Measure geometric overlaps

Amount of geometric	overlap x	None	Near-min	Some	Near-max
Node-node	Area				
Node-edge	Length				
Edge-edge	Angle		X	X	

2. Map measurements to penalties

Amount of geometric	overlap x	None	Near-min	Some	Near-max
Node-node	Area				
Node-edge	Length				
Edge-edge	Angle		X	X	
Count (baselin	ne)	0	1	1	1

2. Map measurements to penalties

Amount of geometric	overlap <i>x</i>	None	Near-min	Some	Near-max
Node-node	Area				
Node-edge	Length				
Edge-edge	Angle		X	X	
Count (baselin	ne)	0	1	1	1
Penalty $f(x)$)	0	?	?	?

Substantial touching penalty

Amount of geometric	overlap x	None	Near-min	Some	Near-max
Node-node	Area				
Count (baselin	ne)	0	1	1	1
Penalty $f(x)$)	0	0 < min		

- Substantial touching penalty
- Increasing penalty

Amount of geometric overlap $oldsymbol{x}$		None	Near-min	Some	Near-max
Node-node	Area				
Count (baseling	ne)	0	1	1	1
Penalty $f(x)$)	0	0 < min		min < max

- Substantial touching penalty
- Increasing penalty
- Count calibration: min < 1 < max

Amount of geometric overlap $oldsymbol{x}$		None	Near-min	Some	Near-max
Node-node	Area				
Count (baseling	ne)	0	1	1	1
Penalty $f(x)$)	0	0 < min < 1	1	1 < max

- Substantial touching penalty
- Increasing penalty
- Count calibration: min < 1 < max
- Local function:

 $f_{\bullet \bullet}(x) \neq f_{\bullet \bullet}(x)$

• Pairs of nodes with different sizes should have different f(x)

Amount of geometric overlap $oldsymbol{x}$		None	Near-min	Some	Near-max
Node-node	Area				
Count (baselir	ne)	0	1	1	1
Penalty $f(x)$)	0	0 < min < 1	1	1 < max

$$f(x) = (\beta - \alpha)x^{\gamma} + \alpha M^{\gamma} (0 \le x \le M)$$

$$f(x) = (\beta - \alpha)x^{\gamma} + \alpha M^{\gamma} (0 \le x \le M)$$

Constant M: max possible overlap

$$f(x) = (\beta - \alpha)x^{\gamma} + \alpha M^{\gamma}(0 \le x \le M)$$

- Constant M: max possible overlap
- Parameters:
 - γ : curve shape of the power function, $f(x) \sim x^{\gamma}$
 - Inspired by Stevens' psychophysical power law

$$f(x) = (\beta - \alpha)x^{\gamma} + \alpha M^{\gamma} \ (0 \le x \le M)$$

- Constant M: max possible overlap
- Parameters:
 - γ : curve shape of the power function, $f(x) \sim x^{\gamma}$
 - Inspired by Stevens' psychophysical power law
 - α and β : control factor of min and max penalty
- More in paper and supplemental

3. Sum up penalties

$$AreaMetric = \sum f(x)$$

4. Combine clutter with sprawl

Sprawl
$$S = \frac{Total \ drawing \ area}{Area \ of \ all \ nodes}$$

4. Combine clutter with sprawl

Sprawl
$$S = \frac{Total \ drawing \ area}{Area \ of \ all \ nodes}$$

Sprawlter metric properties

- High penalty for bad cases:
 - Increase sprawl to reduce clutter
 - Compact space usage but high clutter
- Low penalty for good case:
 - low sprawl and low clutter

Combine sprawl and clutter with geometric mean

$$Sprawlter = \sqrt{Sprawl \cdot max\{AreaMetric, 1\}}$$

- Normalize different ranges
- Clutter with floor of 1 to retain sprawl in no-clutter case

Evaluation

- Quantitative
 - Compare computed values: our metrics vs. previous
- Qualitative
 - Discuss matches and mismatches: layout pictures vs. metric values
 - Subjective judgement of authors

Evaluation procedure

- Generate 56 graph layouts
 - different datasets and layout algorithms
- Compute area, sprawl, sprawlter and baseline previous metrics
- Supplemental table
 - layout pictures and metrics for all
- Paper
 - detailed assessment of metrics w.r.t. layout characteristics
- Talk
 - selected examples

Graph	Image	Sprawl	Node-node	Node-edge	Edge-edge
four-clusters-ne0 #leaf-nodes = 40 #meta-nodes = 4 #edges = 123 #levels = 2		S=8.56 b-box area=268.40	A=14.81+0.00=14.81 Sprawlter=11.26 C=2+0=2 A/C=7.40 Dunne's ratio=1.00	A=56.95+20.18=77.14 Sprawlter=25.69 C=8+13=21 A/C=3.67	A=57.49 Sprawlter=22.18 C=62 A/C=0.93 avg. angle=57.14 Dunne's ratio=0.69
four-clusters-ne1 #leaf-nodes = 40		S=10.84 b-box area=340.10	A=7.62+0.00=7.62 Sprawlter=9.09	A=101.01+40.58=141.60 Sprawlter=39.18	A=115.67 Sprawlter=35.41

Graph layouts

- 56 graph layouts = 38 synthetic + 18 real-world
 - #nodes: 50 5K
 - #edges: 150 10K
 - Layout algorithm:
 - Manual position
 - Single-level: GEM [Frick 94], FME [Gronemann 09], Davidson-Harel [Davidson 96], Stress Majorization [Gansner 04]
 - Multi-level: Koala [Itoh 15], GrouseFlocks [Archambault 08]

	Near-min	Some	Near-max	
Layout				
Area-aware clutter	4.3	14.4	30.6	

	Near-min	Some	Near-max
Layout			
Area-aware clutter	4.3	14.4	30.6
Count (baseline)	1	1	12

	Near-min	Some	Near-max
Layout			
Area-aware clutter	4.3 + 0 = 4.3	14.4 + 0 = 14.4	22.1 + 8.6 = 30.6
Count (baseline)	1 + 0 = 1	1+0=1	1 + 11 = 12

	Some clutter; less sprawl	No clutter; high sprawl
Layout		
Area-aware clutter	16.3	0
Count (baseline)	6	0

	Some clutter; less sprawl	No clutter; high sprawl	
Layout			
Area-aware clutter	16.3	0	
Sprawl	6.1	1605.3	
Count (baseline)	6	0	

	Some clutter; low sprawl	No clutter; high sprawl	
Layout			
Area-aware clutter	16.3	0	
Sprawl	6.1	1605.3	
Sprawlter	10.0	40.1	
Count (baseline)	6	0	

	Near-min	Some	Near-max
Layout			
Area-aware clutter	12.1	54.5	136.7
Count (baseline)	6	15	36

	Near-min	Some	Near-max
Layout			
Area-aware clutter	5.4 + 6.7 = 12.1	39.8 + 14.7 = 54.5	97.5 + 39.2 = 136.7
Count (baseline)	1 + 5 = 6	5 + 10 = 15	8 + 28 = 36

Future work

- Incorporate sprawlter metric into layout algorithms
- Incorporate more families of readability metrics beyond clutter and sprawl
- Incorporate meta-edges with 2D area beyond 1D length

Conclusions

Propose area-aware sprawlter metric

- Account for geometric overlaps, beyond integer crossing counts
- Deal with multi-level layouts by design
- Handle the tradeoff between sprawl (geometric sparseness) and clutter

The Sprawlter Graph Readability Metric:
Combining Sprawl and Area-aware Clutter
Zipeng Liu, Takayuki Itoh, Jessica Q. Dawson, Tamara Munzner.
PacificVis 2020.

Invited to appear at Trans. Visualization and Computer Graphics 2020. http://www.cs.ubc.ca/labs/imager/tr/2020/sprawlter/

