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S1 Parameter analysis
We present the analysis for two parameters in the penalty mapping functions that are defined in the paper:

f NN
v1,v2(x) = (1−α)(2x)0.7 +αM0.7

v1,v2 (0≤ x≤Mv1,v2) (1)

f NE
v,e (x) = 2(1−α)x+αMv,e (0≤ x≤Mv,e) (2)

f EE
G (x) = (

16
π2 −4α)x2 +α

π2

4
(0≤ x≤ π

2
) (3)

S1.1 Minimum penalty fraction: α

In Sect 4.4 of the main paper, we describe the semantics of the minimum penalty fraction, α , that appears in
Equation 4. The minimum penalty fraction is a trade-off between the ability to distinguish no overlap from
touching overlap and the ability to distinguish the different amount of overlap.

(NN) β = (1− 1
.5.7

)α +
1
.5.7
≈ 1.625−0.625α (0 < α < 1)

(NE) β = 2−α (0 < α < 1) (4)

(EE) β =
16
π2 −3α (0 < α <

16−2π

3π2 ≈ 0.328)

S1.1.1 Theoretical analysis

We show the function plot for NN overlap between bigger nodes, as mentioned in Sect.4.4 in the main paper.
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Figure S1: The NN penalty mapping function of a big metanode pair that is 10x the size of the smallest node
(M = 10), with different minimum penalty fraction (α) values.

S1.1.2 Computational analysis

We validate the theoretical analysis and generate practical suggestions with our implementation and three groups
of synthetic small graph layouts, namely, progression-NN, progression-NE, and progression-EE.

We tested the influence of α for NN, NE, and EE separately as it is not necessary to use the same α for all
three cases. We used six different α values within its valid range defined in Equation 4: a near-minimum, a
near-maximum, and four evenly-spaced values in between.

The progression-NN has a series of graph layouts with minimum, some, and near-max node-node overlap for
either leaf nodes only, metanodes only, or both, as shown in Table S1. For each α , we can compare the area-
aware metrics between different layouts to obtain a practical sense of whether the differences in penalties are too
little, too much, or just enough to distinguish the layouts. The same analysis also apply to NE (Table S2) and EE
(Table S3).
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With the extremely small α value 0.01, the near-minimum penalty for the touching overlap between leaf nodes
are only 0.5 (average penalty is P/C = 0.50/4 = 0.125), which is too little to distinguish it from no overlap at all.
With α values that are larger than 0.8, the differences between penalties for touching, some, and near-max overlap
of leaf nodes are too tiny (3.29→ 3.91→ 4.24 when α = 0.80), and differences for metanodes are also too tiny
(12.40→ 15.34). Note that the last difference seems sufficient (15.34→ 27.24) only because the last layout has
overlaps of both leaf node pairs and metanode pairs. With α values in between, the differences between penalties
are generally sufficient to tell these layouts apart.

The choice of α is subjective to user preference, and they can have different α values for NN, NE, and EE, as
long as it is within the range specified by Equation 4. For simplicity, we use α = 0.20 for all three cases.

Table S1: Influence of minimum penalty fraction (α) tested on a small 2-level synthetic layout with increasing
node-node overlap of leaf node pairs and metanode pairs.

Overlap amount Near-min Some Near-max
Leaf node pairs

or metanode pairs Leaf nodes Metanodes Leaf nodes Metanodes Leaf nodes Both

Layout
Count 4 1 4 1 4 12

Area-aware
metrics

(variable: α)

0.01 0.50 1.69 3.57 14.05 5.17 31.69
0.20 1.17 4.27 3.66 14.36 4.95 30.62
0.40 1.88 6.98 3.74 14.69 4.71 29.49
0.60 2.59 9.69 3.83 15.01 4.47 28.37
0.80 3.29 12.40 3.91 15.34 4.24 27.24
0.99 3.96 14.97 4.00 15.65 4.01 26.17

Table S2: Influence of minimum penalty fraction (α) tested on a small 2-level synthetic layout with increasing
node-edge overlap of leaf node-edge pairs and metanode-edge pairs.

Overlap amount Near-min Some Near-max
Leaf node pairs

or metanode pairs Leaf nodes Metanodes Leaf nodes Metanodes Leaf nodes Both

Layout
Count 4 6 5 15 5 36

Area-aware
metrics

(variable: α)

0.01 3.38 12.15 7.27 56.76 9.27 149.33
0.2 3.50 12.11 6.83 54.46 8.45 136.72
0.4 3.62 12.07 6.37 52.04 7.59 123.45
0.6 3.75 12.03 5.92 49.62 6.72 110.18
0.8 3.87 11.99 5.46 47.20 5.86 96.91

0.99 3.99 11.96 5.02 44.90 5.04 84.30
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Table S3: Influence of minimum penalty fraction (α) tested on a small single-level synthetic layout with decreasing
edge-edge crossing angles.

Overlap amount Near-min Some Small angle Near-max

Layout
Count 2 2 2 2

Area-aware
metrics

(variable: α)

0.01 0.05 0.97 4.79 6.67
0.07 0.35 1.12 4.37 5.96
0.13 0.64 1.28 3.94 5.25
0.20 0.99 1.46 3.45 4.42
0.26 1.28 1.62 3.03 3.72

0.328 1.62 1.80 2.55 2.91

S1.2 EE curve shape: γ

For the EE case, we compare the quadratic function (Equation 3) against a linear function, stated as follows.

f EE
G (x) = (

4
π
−2α)x+α

π

2
(0≤ x≤ π

2
), where 0 < α <

2
π
≈ 0.637 (5)

S1.2.1 Theoretical analysis

To separate the influence of α and γ , we compare the EE linear function with the quadratic one using the same
α , but repeat the comparison for multiple different α values, as shown in Figure S2. Since the domain of α is
different for linear function, (0,0.637), and quadratic function, (0,0.328), we only compare the functions with
valid α values for both, i.e., 0.01, 0.1, 0.2, 0.3.

We observe that the basic shapes and relationships of the two functions stay the same across different α values,
despite that the touching penalty and range of penalty vary (in the way we described in the previous section).
The absolute difference between the two functions decreases as α increases, due to the decrease in the range of
penalty. The relative difference between two functions becomes large only when the complementary angle x is
nearly maximum, π/2, i.e., the glancing angle; otherwise, they are very close to each other.

Therefore, we can choose either the linear or quadratic function depending on how heavy the glancing angle
should be penalized.

S1.2.2 Computational analysis

We computed the area-aware metrics using both linear and quadratic penalty mapping functions on all 52 layouts
we collected. Figure S3 shows the penalties computed with the linear function (x-axis) compared to that with the
quadratic function (y-axis). Each dot represents a graph layout in our dataset. We used log scales for both axes to
de-clutter the dots as there are many small synthetic layouts. We can clearly see that the two penalties are linearly
correlated. The Pearson correlation between the two penalties is 0.9997, and the slope of the linear regression line
is 1.17, which indicates that penalties with the quadratic function are slightly bigger. In general, the difference
between the two functions are very small.

We also sorted the layouts by the difference between the penalties using the two functions, and manually
inspected a few layouts with the biggest difference. We found out that in these layouts, the angles between
crossing edges are smaller than those in other layouts, and there are many near-glancing angles. This discovery
also confirms our theoretical analysis: difference only becomes relatively large on small crossing angles (i.e., large
complementary angles).

We chose the quadratic function for our analysis in the main paper as Huang et al. found that the quadratic
trend is more relevant to user performance in their study [1].
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Figure S2: Two different curve shapes (linear and quadratic) of the EE penalty mapping function.
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Figure S3: EE area-aware metric with linear penalty mapping function against that with the quadratic function,
using log scale on both axes.
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S2 Pseudo-code for NE and EE area-aware metric

Algorithm 1: Computation of node-edge area-aware metrics.
Input : G = (V,E)
Output: total penalty PNE(G) and count CNE(G)

1 totalPenalty← 0
2 count← 0

3 for v ∈V do
4 for e ∈ E do
5 if v /∈ e.ends && !IsAncOrDesc(v, e.ends) then
6 if CheckIntersection(v, e) then
7 x← ComputeOverlapLength(v, e)
8 penalty← PenaltyMapFunc(x, v, e)
9 totalPenalty← totalPenalty + penalty

10 count← count + 1

11 return totalPenalty, count

Algorithm 2: Computation of edge-edge area-aware metrics.
Input : G = (V,E)
Output: total penalty PEE(G) and count CEE(G)

1 totalPenalty← 0
2 count← 0

3 for e1 ∈ E do
4 for e2 ∈ E do
5 if e1 6= e2 then
6 if CheckIntersection(v, e) then
7 x← ComputeCrossingAngle(e1, e2)
8 penalty← PenaltyMapFunc(x)
9 totalPenalty← totalPenalty + penalty

10 count← count + 1

11 return totalPenalty, count
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S3 List of graph layouts

Table S4: Full list of graph layouts

Type Name (source) #Nodes #Edge #Layouts
Layout
algorithm Purpose

Synthetic

four-clusters 40 123 10

Manual

debugging

proxy shape 19 40 2 exploration of proxy shapes

meta-edges 1 43 114 2 meta-edges overlap

meta-edges 2 42 82 1 meta-edge and node overlap

touching 12 18 2 minimum overlap

progression NN 40 123 7
analysis of minimum penalty
fraction (α) for NN

progression NE 40 123 6
analysis of minimum penalty
fraction (α) for NE

progression EE 8 8 4
analysis of minimum penalty
fraction (α) for EE

single-level
variable node-size 31 92 4

Davidson-harel,
FM3, Linlog,
stress marjorization

check metrics performance on
this widely-used type of graph

Real-world

coauthor-big [2] 1538 8040 5

GEM [3], FM3 [4],
Grouseflocks [5],
Koala [2]

various situation in large layout
coauthor-small [5] 103 505 4

email-eu-core [6] 986 15957 4

partition-add32 [7] 4960 9462 5

Total 13 56
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S4 Computational time

Table S5: Detailed running times on each layout for three metric families (NN, NE, and EE) and two approaches (AS vs. count),
averaged over 4 runs. The slowdown factor is the ratio between running time of AS and count, representing how much the AS metric
is slower than traditional count-based metrics. It is computed only if the running time is greater than 1 second, in order to reduce
timing errors of the operating system. The average slowdown at the last row is computed over the valid rows.

NN NE EE
Layout sprawlter count slowdown sprawlter count slowdown sprawlter count ratio

four-clusters-ne0 0.01 0.01 NA 0.06 0.04 NA 0.10 0.06 NA
four-clusters-ne1 0.01 0.01 NA 0.07 0.05 NA 0.12 0.07 NA
four-clusters-nn0 0.01 0.01 NA 0.06 0.04 NA 0.10 0.06 NA
four-clusters-nn1 0.01 0.01 NA 0.08 0.05 NA 0.10 0.06 NA
four-clusters-nn2 0.01 0.01 NA 0.09 0.06 NA 0.10 0.06 NA
four-clusters-nn3 0.01 0.01 NA 0.07 0.04 NA 0.09 0.06 NA
four-clusters-nn4 0.01 0.01 NA 0.08 0.05 NA 0.10 0.06 NA
four-clusters-sprawl 0.01 0.01 NA 0.06 0.04 NA 0.09 0.06 NA
four-clusters-ee0 0.01 0.01 NA 0.10 0.05 NA 0.18 0.07 NA
four-clusters-ee-glancing 0.01 0.01 NA 0.11 0.05 NA 0.18 0.08 NA
special-cases-1 0.00 0.00 NA 0.01 0.01 NA 0.01 0.01 NA
special-cases-2 0.00 0.00 NA 0.01 0.01 NA 0.01 0.01 NA
special-cases-3 0.01 0.01 NA 0.08 0.04 NA 0.10 0.05 NA
special-cases-4 0.01 0.01 NA 0.07 0.04 NA 0.09 0.05 NA
special-cases-5 0.01 0.01 NA 0.05 0.03 NA 0.05 0.03 NA
special-cases-6 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA
special-cases-7 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA
progression-nn-none 0.01 0.01 NA 0.06 0.04 NA 0.10 0.06 NA
progression-nn-touch-leaf 0.01 0.01 NA 0.07 0.06 NA 0.10 0.09 NA
progression-nn-touch-meta 0.01 0.01 NA 0.07 0.04 NA 0.10 0.10 NA
progression-nn-some-leaf 0.01 0.01 NA 0.06 0.07 NA 0.10 0.09 NA
progression-nn-some-meta 0.01 0.01 NA 0.08 0.06 NA 0.09 0.08 NA
progression-nn-near-max-leaf 0.01 0.01 NA 0.06 0.05 NA 0.09 0.07 NA
progression-nn-near-max-meta 0.01 0.01 NA 0.09 0.07 NA 0.11 0.10 NA
progression-ne-touch-leaf 0.01 0.01 NA 0.06 0.06 NA 0.09 0.06 NA
progression-ne-touch-meta 0.01 0.01 NA 0.06 0.04 NA 0.09 0.07 NA
progression-ne-some-leaf 0.01 0.01 NA 0.06 0.06 NA 0.09 0.08 NA
progression-ne-some-meta 0.01 0.01 NA 0.07 0.04 NA 0.11 0.06 NA
progression-ne-near-max-leaf 0.01 0.01 NA 0.06 0.04 NA 0.09 0.06 NA
progression-ne-near-max-meta 0.01 0.01 NA 0.08 0.05 NA 0.13 0.08 NA
progression-ee-ortho 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA
progression-ee-half 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA
progression-ee-near-glancing 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA
progression-ee-glancing 0.00 0.00 NA 0.00 0.00 NA 0.00 0.00 NA
varied-davidson-harel 0.01 0.01 NA 0.04 0.02 NA 0.05 0.03 NA
varied-fast-multipole-emb 0.01 0.00 NA 0.04 0.02 NA 0.06 0.03 NA
varied-linlog 0.01 0.00 NA 0.04 0.02 NA 0.05 0.03 NA
varied-stress-majorization 0.01 0.00 NA 0.03 0.02 NA 0.05 0.04 NA
coauthor-grouseflocks-0 0.01 0.01 NA 0.23 0.12 NA 0.45 0.24 NA
coauthor-grouseflocks-1 0.01 0.01 NA 0.28 0.12 NA 0.43 0.22 NA
coauthor-grouseflocks-2 0.02 0.01 NA 0.94 0.42 NA 2.22 1.19 1.87
coauthor-gem 13.83 9.46 1.46 139.26 97.92 1.42 420.14 293.56 1.43
coauthor-koala 12.02 8.85 1.36 197.67 144.26 1.37 966.99 531.41 1.82
snap-email-grouseflocks-1 0.02 0.01 NA 2.03 1.00 NA 43.93 20.65 2.13
snap-email-grouseflocks-2 0.03 0.02 NA 6.63 3.23 2.05 198.30 86.78 2.29
snap-email-gem 4.97 3.64 1.37 212.53 150.01 1.42 4147.91 2197.89 1.89
snap-email-koala 4.93 3.69 1.34 331.11 240.04 1.38 10252.12 4196.38 2.44
ivOrigins-grouseflocks-2 0.01 0.01 NA 0.25 0.12 NA 1.33 0.61 NA
ivOrigins-grouseflocks-4 0.00 0.00 NA 0.04 0.02 NA 0.03 0.02 NA
ivOrigins-gem 0.05 0.04 NA 0.63 0.48 NA 2.77 1.49 1.86
ivOrigins-koala 0.05 0.04 NA 1.09 0.73 NA 6.64 2.99 2.22
partition-add32-grouseflocks-0 0.21 0.16 NA 1.31 0.82 NA 1.08 0.78 NA
partition-add32-grouseflocks-1 0.25 0.18 NA 2.09 1.38 1.51 1.93 1.40 1.37
partition-add32-grouseflocks-5 0.64 0.40 NA 5.84 3.73 1.57 6.24 4.22 1.48
partition-add32-fm3 127.99 92.38 1.39 504.51 358.67 1.41 510.11 372.16 1.37
partition-add32-koala 130.81 94.17 1.39 773.12 560.11 1.38 1604.56 880.74 1.82

average 1.38 1.50 1.85
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S5 Computational pipeline
The full computational pipeline that we have implemented includes multiple data preparation steps in addition to the sprawlter
metrics themselves, plus other metrics for comparative analysis purposes.

1. Convert graph format (Python). We convert a variety of input graph formats into Tulip format, as Tulip [8] provides several
useful layout algorithms.

2. Apply layout algorithms. For the synthetic graphs, we manually position the nodes to create various degree of clutter
and sprawl, and also apply four different layout algorithms within the version 5.2.1 of Tulip [8] (fast multipole embedder,
Davidson-Harel, Linlog, stress majorization). For the real-world graphs, we apply two layout algorithms in Tulip (GEM,
FM3); we use the 2008 version of GrouseFlocks [5], and a version of Koala [2] modified to save in Tulip format. The output
in all cases is the geometric information of nodes and edges (position, area, shape, length) in Tulip format.

3. Extract geometries and node hierarchy (Python). We then parse the 56 layouts in Tulip format, extract the information of
geometry and node hierarchy, and store it in JSON format.

4. Compute metrics (Python). We implement the sprawlter metrics for the NN (Algorithm 1 in the main paper), NE, and
EE families and also their respective count-based metrics, and also the global readability metrics of node-node overlap and
crossing angle of Dunne et al [9]. We use the Shapely Python package [10] for manipulation of geometry.

5. Display and analyze results for comparison. We display the computed metrics of each layout in a table with HTML and
JavaScript, and we write Python scripts to analyze parameters and computational time.

GrouseFlocks was developed over ten years ago, and while it still functions as an interactive exploration tool for multi-level
graph layouts, the coloring of metanodes is no longer correct (possibly due to deprecated dependent libraries). In order to have
easy-to-understand results figures, we exported Tulip-format output files from GrouseFlocks into the current Tulip, saved them in
SVG format, and placed the metanodes with the correct colors back to their original positions in Adobe Illustrator.

In the supplemental materials, we include all input files (in JSON format after step 3), output files (results of step 4), implemen-
tation code, and Python scripts for results analysis.
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