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ABSTRACT
Automatic segmentation of logs for creativity tools such as
image editing systems could improve their usability and learn-
ability by supporting such interaction use cases as smart his-
tory navigation or recommending alternative design choices.
We propose a multi-level segmentation model that works for
many image editing tasks including poster creation, portrait re-
touching, and special effect creation. The lowest-level chunks
of logged events are computed using a support vector machine
model and higher-level chunks are built on top of these, at a
level of granularity that can be customized for specific use
cases. Our model takes into account features derived from
four event attributes collected in realistically complex Photo-
shop sessions with expert users: command, timestamp, image
content, and artwork layer. We present a detailed analysis of
the relevance of each feature and evaluate the model using
both quantitative performance metrics and qualitative analysis
of sample sessions.

Author Keywords
Log segmentation; image editing logs; interaction history;
multi-level hierarchy

CCS Concepts
•Human-centered computing → User models; Graphical
user interfaces;

INTRODUCTION
Analyzing and modeling user interaction logs can address 
challenges posed by complex user interfaces in professional
creativity tools. In particular, segmenting logs into semanti-
cally meaningful pieces would benefit many downstream use
cases. A primary use case is smart undo [4]: if we can auto-
matically segment the log into low-level tasks, users will be
able to navigate editing history more easily by undoing or re-
doing a group of related actions instead of one action at a time.
Other use cases that also reply on accurate identification of 
key decision or transition points in the log data include smart
version control [3], automatic generation of tutorials from in-
teraction logs, and recommendation of alternative design ideas
or workflows [6].
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Figure 1. Concrete example of session segmentation. High-level chunks
consist of low-level chunks, which consist of logged events, which have
attributes. The single expanded chunk shows the non-balanced nature
of the hierarchy.

In this paper, we investigate the segmentation of image editing
logs from Adobe Photoshop (PS). Figure 1 shows a concrete
example of a segmented image log, introducing key terms
used in this paper. Designers and artists use PS for a variety
of tasks, such as composing a poster, retouching a photo, and
applying special effects to an image. A task is accomplished
in a number of steps or subtasks, for example positioning
images and tuning colors during poster creation. A subtask
may be further decomposed into smaller subtasks, for example
adding text involves making text content and applying text
color. The hierarchy of subtasks in a complex PS task is not
balanced; they may have different granularities. At the lowest
level, a subtask is accomplished by a group of events, namely
individual operations triggered through key strokes or mouse
clicks. Each event has a number of attributes, including the
command invoked, such as Move, and timestamp. The entire
sequence of events logged in the process of accomplishing a
PS task comprises a session.

We define segmentation as grouping consecutive events
within a session into a hierarchy of semantically meaningful
chunks. A perfect segmentation method will produce chunks
that correspond to the subtasks. The desired subtask granular-
ity depends on the downstream use cases: for example, smart
undo and redo will require finer granularity, while creating an
overview of the whole session can be more coarse-grained.

Despite the wide range of potential applications, many ques-
tions about segmenting image editing logs remain unanswered.

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 25 Page 1



First, image editing tools support diverse tasks such as photo
retouching, image composition, special effects creation and
user interface design. These different tasks result in very dif-
ferent workflows. However, existing segmentation methods
usually are limited to one type of editing task [4, 37], and
provide no evidence on whether segmentation models can
generalize across task types.

Secondly, many segmentation approaches (e.g. hierarchical
clustering [27], sequence progression models [35], infinite hi-
erarchical hidden Markov models [16]) assume that command
name and timestamp are the only two relevant event attributes.
Other event attributes such as image content and editing area
overlap have been included in segmentation models [3, 4].
The relevance of these event attributes for segmentation has
not been thoroughly analyzed, and the suitability of other
potentially relevant attributes has been ignored.

Finally, real-world user behaviors are complex due to individ-
ual differences. Collecting realistic workflow datasets with
rich event attributes and labelling them as ground truth is ex-
pensive and time-consuming. As a result, the log datasets
collected in previous work either enforce homogeneous work-
flows with predefined subtasks [4], or are unrealistically clean
without user mistakes or digressions [3]. It is unclear if cer-
tain kinds of user behavior may pose challenges in creating
unambiguous labels and building robust segmentation models.

In this paper, we take a first step in addressing these problems,
targeting smart undo [4] as a primary use case. Our goal is
three-fold: build a reasonable model, understand the relevance
of features, and investigate the performance of the model in the
context of user interface applications given the complexity of
heterogeneous tasks and individual variation in user behavior.

We collect ecologically valid log data of PS expert users’ work-
flows for different types of image editing tasks. For each
session, we record four event attributes (commands, layers,
image contents, and timestamps) that are potentially relevant
for model building, and label chunk boundaries in all collected
sessions as ground truth. We derive five features from these
for use in machine learning (ML) models: command similar-
ity, layer similarity, image diff, working region overlap, and
duration. We then develop a two-stage segmentation model: a
supervised machine learning model to predict the boundaries
for low-level chunks, and two alternative approaches to con-
struct high-level chunks from the low-level ones – multi-tier
thresholds or agglomerative clustering. This two-stage scheme
allows for the flexible choice of levels to support various down-
stream use cases.

Our primary contributions are: 1) a simple and interpretable
low-level segmentation model that works reasonably well for
smart undo, and 2) an analysis of feature relevance to segmen-
tation, where we find that command, timestamp, and layer are
relevant event attributes, but image content is not as useful. We
are the first to use layers for segmentation and confirm their
relevance. We validate the model with quantitative evidence
showing that our model generalizes across three image editing
tasks for low-level chunks. Our secondary contribution is an
adjustable high-level segmentation model built on top of the

low-level one. We conduct a preliminary qualitative analysis
of the suitability of higher-level chunks for these three tasks.
We also provide observations on the complexity of real-world
user behavior and note the challenges it raises for multi-level
segmentation.

RELATED WORK
We briefly introduce the related work on event sequence visu-
alization and graphical histories, then focus on computational
models of event logs.

Event Sequence Visualization
Event sequences have been frequently in the visualization com-
munity for application domains including e-commerce, pro-
gram execution traces, and medical records, where researchers
focus on visualizing large-scale collections of event sequences
to get data insights such as identifying common patterns or
outliers [9, 14, 20]. In contrast, with image editing logs we are
dealing with one sequence (session) at a time, so visualizing
many sessions at once does not help with segmentation.

Workflows and Graphical Histories
Researchers have proposed graphical histories of workflows in
domains ranging from general scientific analysis [2] to specific
biological experiments [22] to the standalone visualization
application Tableau [15, 21]. However, these domain-specific
approaches do not adequately address the interface problems
of creativity tools such as image editing.

Work targeted at creativity tools addressed the question of how
to represent and manipulate application state to undo and redo
in single-user [10] and multi-user collaborative settings [28].
Other approaches used annotations on the graphical interface
to inform user interaction history [24, 30], or supported the
capture, exploration, and playback of creative document work-
flow histories [13]. The Delta system visually represented and
compared a small amount of short workflows [17]. Grabler et
al. [12] and Chi et al. [5] proposed an automatic generation
of multimedia tutorials from logged sessions in GIMP (an
alternative to Photoshop). The focus of these papers are either
on data models or visualization of interaction history. Some
of them tried to group interactions into chunks, as we do, but
their goal was to support selective undo on the canvas, whereas
our goal is to group events into subtasks that might or might
not relate to spatial proximity on the canvas.

Event Log Models
The previous work on segmentation models for general event
logs using approaches such as dynamic programming [31],
hidden Markov models [16], and probabilistic generative mod-
els [35] does not perform well in our setting of image editing
logs with rich attributes. Moreover, some of them require
large-scale data which we do not have. The work on non-
segmentation models for general logs, such as bias detection
in visual analytics logs [32], is more distant from our own;
models targeted at creativity tool logs are more relevant.

Creativity Tool Logs
We take inspiration from many non-segmentation models of
logs. Lafreniere et al. studied and characterized large-scale
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real-world image editing command logs [18], providing us
with interesting patterns of command usage in image edit-
ing tools. Adar et al. proposed CommandSpace to model
the relationships between commands, subtasks, and text de-
scriptions of subtasks [1], using machine learning models for
natural language. Our command similarity feature is com-
puted in a similar way. Two other approaches to learning
usage semantics from command logs solidified our interest in
ML approaches: Yang et al. proposed a deep learning model
for representation of PS users using command logs [36], and
Wang et al. proposed a two-step log classifier to recommend
frequent patterns [33]. Causality, a conceptual model by Nan-
cel and Cockburn [25], models causal relationships between
events, which helps us think about structure within a session.

The few papers on segmentation models of creativity tool logs
are most relevant to our work. Denning et al. proposed to use
regular expressions to retrieve a multi-level segmentation in-
teraction logs in a mesh construction application [7, 8], which
does not apply in image editing case as there is more variation
in our tasks. Chen et al. proposed a non-linear revision con-
trol system to model, aggregate, and visualize image editing
logs [3]. However, the non-linear model is not intuitive for PS
users, who can already achieve such non-linear edits with non-
destructive editing techniques [26]. Moreover, their dataset
seems unrealistically short and clean. Chen et al. later pro-
posed to use a support vector machine to predict a single-level
segmentation for portrait retouching logs [4], which specifi-
cally targets at one task with predefined subtasks. They also
compared to a baseline from Li et al. that uses duration for
segmentation [19], and argued that duration is not effective.
We were inspired by this approach to use support vector ma-
chines ourselves. Zhao et al. developed Sketcholution system
to get a high-level segmentation of sketching logs using an ag-
glomerative algorithm [37], but it is not clear that the specific
solution generalizes to other tasks. However, we were inspired
to try agglomerative approaches as well. In this paper, we are
dealing with multiple common PS tasks instead of one, and
we collect more realistic sessions than previous work. The use
of layer as a feature is absent from all of this previous work, as
is the systematic investigation of the relevance of each feature.

APPROACH
We provide an overview of our approach and its rationale for
data generation, model selection and evaluation methods.

Data Generation
Based on literature review and our interaction with Photoshop
users, we identify four potentially relevant event attributes:
command, timestamp, image content, and layer. Command,
timestamp and image content have been used in previous work
[3, 4, 37]. Layer has not been considered in previous work,
but we introduce it as a potentially important attribute because
of our observation that layers are essential in any realistically
complex PS tasks.

No existing logs captured all four of these attributes, so we
created a logging PS plugin to record this information for each
event during normal usage sessions. We conducted user stud-
ies to collect data from experts carrying out multiple tasks,

capturing these logs and also think-aloud recordings. We used
these records to manually create labels for chunks at multiple
levels of granularity. For low-level chunks, we found good
inter-coder agreement between two independent coders. How-
ever, for high-level chunks there was little agreement even
between human coders. We decided that only the low-level
chunk labels were reasonable to consider as ground truth, a
decision that in turn affected our choices of models and evalu-
ation strategies. We also concluded that deeper investigation
of the relevance of segmentation attributes was merited.

Model and Feature Selection
The goal of the segmentation model is to predict whether an
event e is the starting point of a new chunk (similar to Chen et
al. [4]). Considering that applications such as smart undo oper-
ate on streaming data during interactive sessions, we ruled out
building models that required knowledge of both the events
that precede and those that succeed e. Instead, our model
makes predictions based on only the events that precede e.
We further choose to build on similarity (or distance) mea-
sures between events according to their attributes, under the
assumption that similar events are likely to be in the same
chunk.

Our finding that only the low-level chunk labels are reliable
led us to develop a two-stage segmentation model. For the low-
level chunks, we use a supervised approach built on the human
labels as ground truth; we apply an unsupervised approach
for segmenting higher-level chunks. We frame the low-level
segmentation problem as an instance of binary classification in
machine learning (ML), where the classes are 1 for the bound-
ary and -1 for the non-boundary. We also conducted early
experiments with multiple hand-designed rule-based models
for low-level segmentation (e.g. segment when a user switches
to a different layer), which we documented in Supp. Sec. 5,
but found that they were substantially outperformed by a sim-
ple and popular ML model, a support vector machine (SVM).
Since our focus is to gain a deeper understanding of the seg-
mentation problem and we do not have large-scale data for
training, we prioritize the interpretability of a simple model
over more complex and powerful ones like random forests or
neural networks. We use a linear kernel, again for simplic-
ity. During development, we also tried SVM with a quadratic
(RBF) kernel, but since it did not improve performance we
stayed with the simpler approach.

The simple SVM model achieves good performance, as we
show below in Results, with a small number of features (five)
that we derive from the four logged attributes: command
similarity, layer similarity, image diff, working region overlap,
and duration.

Evaluation Methods
With reliable labels on low-level chunks, we are able to per-
form quantitative evaluation on the SVM model by analyzing
feature relevance and the model’s performance on low-level
segmentation. The lack of ground truth for the high-level
segmentation led us to a qualitative-only evaluation: we con-
structed visualizations compact enough to show entire sessions
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with event-level detail, so that we could inspect the relation-
ship between feature values and compare the predictions with
human labels.

DATA COLLECTION AND CHARACTERIZATION
We report our data collection procedure and characterize event
attributes.

Data Collection
Our study with expert users was conducted in two rounds of
data collection, early and late in the project timeline. The
data collected from the first round was used for exploratory
analysis and model building, while data from the second round
was mainly used for model validation and testing.

We compiled a pool of PS tasks (9 in round one and 11 in round
two) from popular PS tutorial websites to use in the studies,
falling into three types: poster creation, portrait retouching
and special effects creation. We recruited 13 PS expert users
with many years of in-depth professional experience (ranging
from 2 to over 10 years), with 7 participants in each round; one
person participated in both rounds. The study was run for each
participant via online video conference, lasting around one
hour in total. We first introduced the participant to the goal of
the study, and helped them install the PS plugin. We showed
them the pool of PS tasks, and asked them to choose one (or
two) tasks that they felt most comfortable and competent work-
ing on. We provided all the required source images for the task,
and a final image for reference (except for portrait retouching
task). We asked the participants to think aloud throughout the
session, and recorded the entire video conference with screen
and audio information.

We collected a total of 16 sessions, 8 from each round, where
one participant in each round did two sessions. Broken down
by task type, there were 8 sessions for poster creation, 6 for
portrait retouching, and 2 for special effect creation. There
were 5718 events logged in total across all sessions, with an
average of 357 per session (min: 29, max: 1064), and each
session lasted an average of 33 minutes (min: 8, max: 53).
Our PS recording plugin saved command names, timestamps,
and layer names & IDs in a text file, and the image content
was saved as JPEG screenshots.

We manually segmented each session into multi-level chunks
by labelling the starting and ending events of each chunk. We
built an interface showing all the event attributes in a table and
used it in conjunction with the video recordings to perform
the labelling, as shown in Supp. Fig. 7.

The labelling process involved subjective judgements about
which events should be grouped as a chunk at the lowest
level, and whether low-level chunks should be grouped into
a higher-level chunks; for example, whether to group “Make
title” and “Make subtitle” together in Figure 1. To assess
inter-coder reliability, two coders independently labelled the
starting events of lowest-level chunks in two sessions (a total
of 351 events) and compared their results. We found that the
two coders mostly agreed with each other (Cohen’s kappa κ =
0.77), which suggests that the low-level chunks are reliable.
However, among the 14 incongruent events, 11 were caused

by disagreement on granularity (e.g. one coder labeled a
chunk of events 23-44, while the other labeled two chunks
23-39 and 40-44), indicating that there would be large inter-
coder differences on high-level chunks. We thus chose not to
compare human-generated high-level chunks between coders.
This observation led to our decision to only treat the lowest-
level labeled chunks as ground truth. One coder then continued
to label all the remaining sessions.

Data Characterization
Commands are directives from users. The number of unique
commands in PS is large: there are about 1400 menu items
in Photoshop 2019, each corresponding to a command. Each
command is associated with a meaningful and interpretable
name, and is considered highly relevant to segmentation in
previous work [3, 4].

Layers are essential for managing visual objects, achieving
complex visual effects, and performing non-destructive editing.
They are created, ordered, and possibly placed into groups
within a hierarchy explicitly by the PS user; three examples
are shown in Supp. Fig. 4. During a session, users activate
different layers at different points of time to work on, and
the layer hierarchy evolves over time. The final count of
layers in each session ranged from 3 to 16; the layer hierarchy
was always shallow, with final depth ranging from 1 to 3. We
consider layer a potentially relevant signal because a change in
active layer could indicate a shift in subtask, and the changes in
layer hierarchy reflect the user’s mental models of the artwork
composition.

The image content of an event refers to the pixel state of the
artwork after the operation has been carried out. The changes
in image content after an event could be a useful indicator of
the active working area, and may be relevant to segmentation.

The timestamp is used to derive duration. Duration between
consecutive events could be relevant to segmentation, if rapid-
fire events are more likely to occur within a chunk, whereas
a long pause between two events might signal a boundary
between chunks.

FEATURE COMPUTATION
We derive features for our segmentation model from the four
event attributes collected in the expert user sessions: command,
layer, image, and timestamp. The five features that we derived
are specific instances of a similarity (or distance) measure
between events: command similarity, layer similarity, image
diff, working region overlap, and duration.

Command Similarity
A conventional approach to quantify command similarity is
to group commands according to the menu hierarchy in the
Photoshop interface [4]. This approach fails to differentiate
commands within the same cluster, and might not capture how
commands are used in reality. An alternative approach, vali-
dated in the CommandSpace previous work [1], is to learn the
semantics of the words using machine learning tools for large
natural language datasets. The rationale is that commands
are analogous to words and a PS session is equivalent to a
document, where the proximity of logged commands within
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a session expresses meaningful semantics that capture typi-
cal usage patterns. Inspired by this idea, we obtained access
to a command log database internal to Adobe, which only
recorded commands for PS events from opt-in non-enterprise
users. We extracted 100 million commands from this database
and reconstructed 169,387 sessions by grouping according to
associated session identifiers. We ran word2vec [23] to obtain
a vector representation with 100 dimensions for each unique
command. We then computed the similarity score between
two commands as the cosine similarity between their corre-
sponding vector representations. We conducted a sanity check
of the learned command vectors using the Google Embed-
ding Projector [29] and found the results to be plausible, as
discussed in Supp. Sec. 1.

Layer Similarity
We compute layer similarity using rules that we manually
generated based on the combination of observations of partic-
ipant sessions and additional conversations with PS experts
about their use of layers. We classify the strength of the re-
lationship between two active event layers A and B, into five
ranked categories and assign heuristic values accordingly, as
shown in Table 1. Users frequently operate on the same layer
consecutively for a while before switching to a different one,
and we assign the maximum similarity value of 1 between
these identical layers. The user often copies a layer to a new
one to make repeating objects, edit repetitively, or back up a
layer, so we assign an 0.8 similarity value between a dupli-
cate and its source layer. An adjustment layer applies color
and tonal adjustments to one or more main layers without
permanently changing pixel values, a common technique for
non-destructive image editing. Layers stack up on each other
in pixel space, and although technically all layers below an-
other could be affected we determined that users often consider
only directly above/below pairs, so we assign a measure of
0.5 similarity between the two. For layers in the same group,
We assign a value ranging from 0 (infinitely distant layers)
to 0.5 (direct sibling layers) depending on layer proximity
in the hierarchy: layers separated by d hops have similarity
1/2d−1. Finally, all other layers that differ are assigned with
the minimum similarity 0. We summarize this description
with detailed formulae in Supp. Sec. 1 and provide annotated
examples of layer hierarchies in Supp. Fig. 4.

Relationship Description Similarity

Same layer A = B 1.0

Duplicate layer A is a copy of B 0.8

Adjustment layer A is an adjustment
layer of B

0.5

Grouped layer A and B are located
in the same layer group

<=0.5

Other diff. layer none of the above 0.0

Table 1. The five kinds of relationships between two layers A and B and
their assigned similarity values. Each relationship is commutative.

Image Diff
The image difference (diff) of two events is the percentage
of different pixels between the two corresponding images out

of the total number of pixels in an image. The implied con-
jecture in previous work is that in an image editing session
the amount of change, as quantified using image diff, is rele-
vant to segmentation where a larger image diff implies greater
difference between two events. Although there exist more
advanced image diff scores such as the structural similarity
index (SSIM) [34], we do not choose them because they are
potentially biased to a particular type of image edits: for ex-
ample, SSIM is sensitive to structural changes but not color
tone changes.

Working Region Overlap
We also compute a second potentially relevant image-related
feature, to assess which of the two is a better indicator. The
working region overlap measures the degree of continuance
in pixels between two events. It is defined as the percentage
of overlapping changed pixels between two events out of the
total number of pixels of an image. We conjecture that two
events are similar if they operate on a similar pixel area, and
thus that they would be likely to belong to the same chunk.
We compute it as a “diff of a diff”: count the different pixels
between the diff image of two events down-sampled by a
factor of 32, where a diff image of an event is the difference
image between itself and the previous one. We down-sample
to check for overlap in coarser regions rather than individual
pixels.

Duration
The duration is simply the time between consecutive events.

SEGMENTATION MODEL
Our two-stage model predicts low-level chunk boundaries with
an SVM classifier, and has two alternatives for computing
higher-level chunks from those results.

Low-level Segmentation
To classify events as boundary or non-boundary with an SVM,
we must construct a feature vector, partition the data, consider
the appropriate point in the precision-recall trade-off space,
and tune the hyperparameters.

Feature Vector Construction
To determine whether an event is the starting point of a chunk,
a reasonable way is to compare it against its previous events in
terms of the computed similarity features. If the difference is
big enough, it is likely to belong to a new chunk. We consider
a window of k previous events for comparison, where the
window size k as a hyperparameter that will be tuned. For
each previous event in the window, we use the five similarity
(or distance) measures, described in the previous section. We
then concatenate all measures of comparison to all previous
events in the window into a feature vector, whose size is k×5.

Data Partition
We split our collected dataset (5718 events in 16 sessions) into
training, validation, and test sets. By the second round of data
collection we had finalized what features and model to use;
we set aside 5 of the 8 sessions that second round as the test
set, and used the other 11 sessions for training and validation
(3 from the second round, and all 8 from the first round). The
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5 test set sessions are randomly drawn with stratified sampling
for task type: 2 for poster creation, 2 for portrait retouching,
and 1 for special effect creation. This procedure results in
a total of 1842 events (about 30% of grand total) in the test
set. The remaining 3860 events are further split randomly into
training (75%) and validation (25%) set.

Precision Recall Trade-off
Our dataset is unbalanced, with many more non-boundary
events than boundary events. We consider the trade-off be-
tween precision and recall in model training and validation,
and deliberately trade precision for higher recall. It is impor-
tant to correctly identify as many boundaries as possible, and
false negatives (boundaries predicted as non-boundaries) are
undesirable as it is not easy for end users to identify these
missed boundaries. On the other hand, false positives (pre-
dicting non-boundaries as boundaries) are less detrimental:
although these errors lead to over-segmentation of the logs,
users can quickly dismiss them through an interactive inter-
face.

Hyperparameter Tuning
We train the model on the training set, and measure perfor-
mance on the validation set to tune these hyperparameters,
following common practice in machine learning. Supplemen-
tal Sec. 3 covers the procedure and results in detail. In brief,
the first hyperparameter, window size k, is the number of previ-
ous events used in the feature vector. Using receiver operating
characteristic (ROC) curves, we find that window size has
little influence on the model performance, and thus we choose
k = 1 to reduce the size of feature vectors. The second one,
threshold t, determines the probability value where an event is
predicted to be a boundary. We select t = 0.24 in consideration
of the trade-off between precision and recall.

High-level Segmentation
The higher-level chunks are built based on the predicted lowest-
level chunks.The higher-level segmentation should be flex-
ible in granularity, to accommodate different downstream
use cases. We describe two methods to construct high-level
chunks: multi-tier thresholds in SVM and agglomerative clus-
tering.

Method 1: Multi-tier Thresholds
In the SVM model for lowest-level segmentation, the threshold
t can be interpreted as the granularity of segmentation: as
t increases, the granularity gets coarser and there are fewer
predicted boundaries (chunks). In that case, we use a threshold
that achieves the optimal performance on a labeled dataset (the
validation set). Intuitively, we can simply use a series of higher
thresholds to obtain multiple higher levels of chunks despite
the lack of ground truth. Every higher-level boundary will
necessarily fall along a lower-level boundary, since the same
probability scores are in use.

Method 2: Agglomerative Clustering
Higher-level chunks can also be generated from lowest-level
ones using the bottom-up approach of agglomerative cluster-
ing [37]. This algorithm uses a predefined similarity metric
to iteratively find the most similar pair of adjacent chunks
and merges them together, until a single remaining chunk

contains the whole session. We define the similarity between
two chunks as the average similarity of all pairs of events
across the chunks. We compute a weighted sum of the five
feature values, where the weights are the linear coefficients
of the kernel function in the learned SVM model, since the
coefficients indicate feature importance. The output of the
agglomerative algorithm is a binary tree, where each node rep-
resents a chunk and the distance to root can be considered as
its granularity. Therefore, we can make a cut through this tree
to obtain chunks of the desired granularity, either a straight
cut with uniform distance to the root or a more complex shape
to capture subtrees of different resolution.

Comparison
Both methods reuse some parts of the low-level SVM model:
the multi-tier threshold method reuses the probability score di-
rectly, whereas the agglomerative method leverages the linear
coefficients in the kernel function.

We compare the two methods in terms of computational com-
plexity, potential limitations, and usage pattern. For compu-
tational complexity, the multi-tier threshold method does not
need extra computation: it is O(n), where n is the number
of events. The agglomerative method has to compute event
and chunk similarity iteratively. Its computational complexity
is O(n2), an acceptable cost since a session contains a few
hundred events.

A potential limitation of the multi-tier threshold method is
that the SVM model for low-level segmentation only lever-
ages minimal context information (one previous event), which
has not been validated for the high-level one. In contrast,
the agglomerative clustering computes average values over
many event pairs as the chunk similarities, making it more
robust against single-event outliers. However, the agglomera-
tive method may yield sub-optimal results due to the greedy
merging mechanism [11].

Thresholds in the multi-tier method are straightforward to
specify but less flexible as one value is used across all levels
of the hierarchy. The cluster hierarchy resulting from the
agglomerative clustering method provides the flexibility for
an adaptive criterion that can vary within a session to select
nodes according to the specific use case needs.

RESULTS: FEATURE RELEVANCE
The performance of segmentation model highly depends on the
effectiveness of the selected features, and moreover one of our
goals is to understand feature relevance for its own sake. We
analyze relevance to low-level segmentation quantitatively and
qualitatively, and the results are consistent. Then we discuss
the reason of their (ir)relevance and limitations.

Quantitative Analysis
The linear coefficients in the SVM model, listed in Table 2, are
usually interpreted as feature importance. The sign of a coeffi-
cient indicates whether correlation between the feature value
and probability of being a boundary is positive or negative:
only duration has a positive correlation, e.g., longer duration
indicates higher probability that the event is at a chunk bound-
ary. The absolute value of the coefficient indicates the degree
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Figure 2. Distributions of the five feature values of non-boundary (top) and boundary (bottom) events. The X axis represents the value of each feature
(bin size = 0.05), and the Y axis the counts. Note that the Y scales are 10x different between top and bottom because there are significantly more
non-boundary events. We annotate the differences or similarities between the two distributions for each feature.

of importance, and we bin these quantities into three cate-
gories: commands as most important, layers and duration as
important, and the two image-related features have almost no
effect.

Feature Coefficient Relevance category

Command similarity -2.57 Most important

Layer similarity -1.74 ImportantDuration 1.55

Working region overlap -0.18 No effectImage diff -0.07

Table 2. Corresponding coefficients to features in SVM model.

Qualitative Analysis
We also conduct a qualitative analysis of feature relevance. We
visualize the distributions of feature values using histograms
and compare the distributions between non-boundary events
and boundary events to see if the difference is salient. Figure 2
shows these distributions, with annotations including our as-
sessment of when they differ and thus the feature is relevant.
We can see clearly that layer similarity, command similarity,
and duration are relevant, while image diff and working region
overlap are not.

Result Interpretation and Limitations
Below we discuss the potential causes for feature (ir)relevance
and the limitations of our feature choices.

Command Similarity
It has been shown in the CommandSpace system [1] that the
command usage semantics can be learned from large-scale
of command logs, analogous to text data, and that the usage
semantics are relevant to user goals and subtasks.

However, we see that except for the maximum similarity when
commands are identical, the variance in the remaining values
is small; most of the range between 0 and 1 is not exploited.
A second problem is that a single command in PS such as
BrushTool can support multiple different functions, which
is analogous to the polysemy problem in natural language.
Future work could experiment with a context-aware learning
model instead of word2vec, or augment the computation by
considering the command parameters (such as brush size) that
are not captured by our current PS instrumentation plugin. The
third potential problem is the information loss in the computa-
tion of cosine similarity between the command vectors.

Layer Similarity
Our observations during data collection were that participants
keep the layer panel visible at almost all times as they refer
to layers frequently, and are able to explain the semantics of
each layer explicitly. Different subtasks in a task are often
performed on different layers, particularly when the artwork
consists of objects from different source images.

However, we heuristically assigned discrete values as layer
similarity for our 5 chosen cases, and these values have not
been strictly verified. Also, our current approach does not
fully exploit all information available in the layer hierarchy.
We have not found a good way to use the logged information
about layer order, which might have further distinguishing
power. Also, some layer attributes are not logged, such as
layer mask, blending options, and transparency. Exploration
of these issues is an important direction of future work.

Duration
We observed during the data collection study that pauses do
indicate thinking time when switching to a new subtask and
when comparing current results to a reference image. We
also saw clear evidence of short duration values indicating
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continuous operations when they are actively involved with a
subtask, especially when they have a mental map of how the
subtasks should be fulfilled.

However, we think that the duration from our data collection
in a lab setting may be artificially clean, since participants are
doing an assigned task under observation. We conjecture that
in real-world usage, pauses may often arise from external inter-
ruption rather than an internal switch of subtasks. Therefore,
we conclude that the relevance of duration is debatable.

Working Region Overlap
Our results contradict previous work from Chen et al. [4]
that uses working region overlap. We conjecture that the
signal from pixels of image content is dominated by the one
from layers, which serve as an abstraction of visual object
structure, for identifying subtasks. Another possible reason
for our opposite finding could be the information loss with
pixel counts: we use a single number instead of a vector
representation in Chen’s paper.

Image Diff
We conclude that the image diff is too noisy for segmentation.
A subtask switch (boundary event) does not always come with
large change in pixels; for example, adding text in a small
font only changes a small number of pixels. Similarly, large
changes in pixels sometimes can happen within a chunk, for
example moving a large object. We see from the distributions
that most events change very few pixels.

RESULTS: LOW-LEVEL SEGMENTATION
With reliable ground-truth labels for the low-level segmenta-
tion, we measure model performance on the test set, conduct
an preliminary analysis on the variance across different tasks,
and compare our performance metrics with a previous paper.

Performance Metrics
We train the SVM model on the training set, tune hyperpa-
rameters on the validation set (window size k = 1, threshold
t = 0.24), and measure performance on the test set, which
contains 1842 events. The F2 score, which weighs recall twice
as much as precision, is 0.76, with a decent recall 0.87 but
modest precision 0.51. The numbers are almost identical to
the performance metrics on the validation set (provided in
Supp. Sec. 3), suggesting that the model does not overfit.

Task Variance
We analyze the variance of model performance across different
types of task (poster creation, portrait retouching, and special
effect creation) to verify our claim that our model generalizes.

We categorize all 16 collected sessions by task type, and con-
duct two analyses to measure model performance. In Analysis
1, we use the chosen threshold t = 0.24 for all three tasks, and
compute the F2, recall and precision scores for each task. In
Analysis 2, we tune the threshold hyperparameter for each
task. We observed that different participants organize their
sessions at different levels of granularity, which is particularly
obvious across different task types, so we need to understand
how the threshold affects performance for different task types.

We present the performance metrics in Table 3. For both
analyses, the difference of F2 scores between any two task
types is low (±0.08). Within each task type, the difference of
F2 scores across analysis is also low (±0.03). In Analysis 2,
where the threshold is optimized for each task type, we notice
that the threshold for portrait retouching (0.17) is different
than the other two (0.27,0.25), confirming our observation
about the influence of task type on granularity. In conclusion,
the SVM model can generalize to the three task types, while
further research is needed to address the nuances in granularity.

Task type
Poster
creation

Portrait
retouching

Special effect
creation

Data scale #sessions 8 6 2
#events 3156 1876 670

Analysis 1

F2 0.71 0.77 0.79
recall 0.85 0.82 0.97
precision 0.43 0.63 0.45
threshold 0.24

Analysis 2

F2 0.73 0.80 0.79
recall 0.82 0.92 0.96
precision 0.49 0.52 0.47
threshold 0.27 0.17 0.25

Table 3. The performance metrics of sessions in the three task types.

Comparison to Previous Work
The closest work to our model is Chen et al.’s method [4].
They also trained an SVM model, targeting smart undo as a
primary use case. We deemed it infeasible to directly compare
with their model fairly. It does not make sense to apply their
trained model on our dataset, because their training dataset
(and hence their model) only has portrait retouching data,
whereas we covered three tasks in total. Also, a difference in
data collection (they have data on brushing area but we do not)
induces technical difficulties in re-implementing their model
for retraining on our dataset.

Chen et al. chose window size k = 5 for their model and
achieved a similar F2 score (0.74) with a lower recall (about
0.7) but much higher precision (0.96) on their dataset with
portrait editing task only. That outcome is surprising, since
they did make similar arguments to our own for valuing recall
over precision. We also note that our segmentation problem is
considerably harder: we deal with three types of tasks instead
of portrait retouching only, and we did not prescribe a set of
pre-defined subtasks for the participants like they did. We
argue that our results are reasonable, since we tackle a harder
problem. In conclusion, we have achieved reasonable results
for a more difficult problem than theirs.

RESULTS: MULTI-LEVEL SEGMENTATION
We present the visualizations of two exemplar sessions to
show how our computed low and high-level segmentation
aligns with human labels, which are subjective judgements
from the authors. Here we show two from five sessions from
the test set: one portrait retouching session (S10), and one
poster creation session (S15). They are representative ses-
sions in terms of both general model performance and failure
cases; Supp. Sec. 4 contains the analysis of the other three
test sessions. We also provide high-resolution screenshots for
all sessions in Supp. Sec. 4, page 13-17. We first provide
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Figure 3. Session visualizations. (a) Retouching. (b) Poster. From bottom to top in each session: a scatterplot showing the probability score of events in
sequential order computed by the SVM model; a multi-level computed chunks using multi-tier thresholds (red); the multi-level computed chunks using
the agglomerative algorithm (blue); the multi-level human labels (grey); text description of high-level chunks with human-assigned labels. Examples
of over-segmentation and missing boundaries are highlighted with dotted rectangles. Thresholds (corresponding to red chunks from low to high) are
0.24,0.29 for retouching and 0.24,0.64 for poster. Distances to root, corresponding to high-level blue chunks from low to high, are 8,5,3 for retouching
and 6 for poster. Figure 1 illustrates an expansion of the “add text” chunk in Poster.

an overview of participant’s workflow (high-level segmenta-
tion in the human labels), and then inspect how our computed
results align with human labels.

Exemplar Retouching Session
The goal of the first exemplar session (Figure 3(a)), with
180 events, is to restore an old photo (a child’s portrait) with
cracks and stains on it. At the bottom of the figure there is
a scatterplot showing the probability scores of events being
predicted as a boundary in time order, with red dotted lines
to show threshold values. Above the scatterplot are three
versions of segmentation (computed chunks by the multi-tier
thresholds SVM in red, computed chunks by the agglomerative
algorithm in blue, and human labels in gray). Each colored
rectangle represents a chunk, and a white space (gap) between
two rectangles represents a chunk boundary.

From the grey human labels, we can see that the participant
is working on different regions in the image roughly one at
a time: forehead and right eye, right face and ear, teeth and
lips, and finally the background. Note that the regions (face,
eye, background, etc) are only meaningful for a human user.
However, there are also outliers subtasks that do not follow this
order: e.g, trying out a different command Healing Brush
to fix the photo. In the last step to fix the left background,
they used a more complicated procedure than previous chunks,
resulting in a two-level segmentation.

To compare different versions of segmentation, we can inspect
the alignment of gaps (boundaries) vertically. In general, the
gaps in human labels and those in the computed results align
well. One obvious missing boundary happens around the
middle between “fix right face and ear” and “fix teeth and
lips” (highlighted with a dotted rectangle), due to the high

similarities between these events (same layer and command,
duration small, and little changes in image content).

Exemplar Poster Session
The goal of the second exemplar session (Figure 3(b)), which
is longer with 378 events, is to create a poster featuring two
football players. From the human labels in the figure, we
can see that the chunks consist of variant numbers of events,
and the hierarchy of chunks is unbalanced; that is, different
high-level chunks have different subtree depths below them.
From the high-level human labels and an expanded part in
Figure 1, we can see that the participant did multiple trials for
some subtasks, making some mistakes and corrections.

For the low-level chunks between human labels and com-
puted results, most gaps are aligned, indicating a good match
between the two. There are very few missed boundaries
(highlighted): one example happens when the participant fin-
ished making a layer mask and then started adjusting opacity,
where they stayed at the same layer and used commands that
are semantically close (Brush Tool vs. Master Opacity
Change). There is some but not excessive over-segmentation:
the consecutive gaps that separates individual events into
chunks. For example, it happens in a human-labeled chunk
“tune colors of front player”: he actually performed two scaling
operations of the image in between color tuning operations,
resulting in low similarity between consecutive commands
(Free Transform vs. Camera Raw Filter) and thus over-
segmentation in the computed results. We will discuss this
particular user behaviour in the next section.

For the high-level chunks, although both computed results
aggregate most of the single-event over-segmentation, neither
has a good match with the human labels: about half of all
high-level boundaries are missed. As we have already noted,
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we do not consider that data to represent ground truth; the
ambiguity about what granularity to code for led to the two
human coders had even higher levels of discrepancies with
each other in the sessions they both coded, so that data was not
used in the development of the high-level model. Nevertheless,
we inspect the probability scores of the missing boundaries
in the scatterplot, and find that many of them have a high
probability score, but it is hard to draw a horizontal straight
line that could serve as a threshold to separate most of them
out. This finding indicates that there is some value in reusing
the results of SVM model in the high-level segmentation, but
it needs further research to improve the performance.

DISCUSSION
We discuss the strengths and weaknesses of our segmentation
model, of the dataset we collected compared to previously
reported ones, and the nuanced characteristics of real-world
user behaviour in image editing revealed by our study.

Strengths and Limitations of Model
Our multi-level segmentation model achieves fast computa-
tion, due to its simplicity and the small number of parameters.
The low-level SVM model takes less than 1 second to train
and validate, and prediction is immediate. The high-level seg-
mentation takes at most a few seconds to handle an 1K-event
session with a JavaScript implementation. This speed makes
the model suitable for streaming log data, the hallmark of the
downstream interactive application use cases.

It is hard to thoroughly evaluate our approach to higher-level
segmentation since we do not have appropriate labelled data
for it, due to the subjectivity of the granularity assessment.
Ground truth labels and a more rigorous evaluation would
allow further progress. The complex user behaviours described
below do leave considerable room for improvement in model
performance. Our precision is currently only 0.5; although we
did prioritize recall, both measures need to be improved.

Dataset Comparison
We now compare our dataset to two other datasets from pre-
vious work in more depth. In the nonlinear revision control
paper by Chen et al. [3], most of their sessions are less realistic
than ours, where there is little complex user behaviour such as
continuous refinement, mistakes and corrections, and experi-
mentation. The scale of their data is also smaller in terms of
number of sessions and number of events per session: a few
sessions with less than a dozen events, and a few sessions of
sketching with hundreds of events.

The adaptive history paper by Chen et al. [4] targets only the
portrait retouching task, with predefined subtasks chosen from
a list. The restricted variance in subtasks makes their model
hard to generalize to other task types, or even retouching that
does not follow the predefined subtasks.

A major difference between our dataset and previous ones is
that we capture layer information. However, there is still some
available data that our plugin architecture does not capture,
such as command parameters (e.g., brush size) and layer at-
tributes (e.g., transparency). Future work could investigate
whether it contains useful signal to exploit for segmentation.

Real-world User Behaviour
Our data collection study documented that the real-world us-
age patterns of creativity support tools are usually messy and
complex: users rarely perform precise and effective actions
from the beginning of a session to the end. We characterize
several of the complex user behaviours that we observed.

First, users make mistakes. Common examples of mistakes
are misuse of commands, undesired command parameters, or
operations on a wrong layer. The user may or may not correct
the mistakes, and corrections may happen immediately after
a mistake or later. This situation is challenging as the user
usually does not consider these corrective actions as a change
of subtask, but the model would only see the a sudden change
of events and thus predict them as boundaries. Second, users
interleave different subtasks together. This situation may hap-
pen when the user has no clue of how to perform a subtask,
when the user realizes there is another subtask that is more
urgent than the current one, or when the user finds a previ-
ously done subtask unsatisfying. This situation is challenging
for segmentation as the user’s mental model is less organized.
Third, users experiment with the tool to achieve a desired
outcome through trial and error. This situation is common in
users with lower levels of expertise, and the resulting session
usually contains many undo actions and layer deletions. The
challenge in automatically segmenting this kind of user be-
haviour is that the difference between trials can be subtle and
hard to detect. Fourth, the boundaries between subtasks could
be intrinsically fuzzy. Before switching to a new subtask, users
often check if results are satisfactory by toggling layer visibil-
ity, or make small adjustments of different components in the
artwork while thinking about what to do next. These actions
result in fuzzy boundaries between subtasks that span multiple
events, but our model assumes single-event boundaries.

Our data collection study succeeded in revealing a picture of
user behaviour that is far more complex than what previous
work had captured, where less attention was paid to ecological
validity. Our model makes a significant step towards address-
ing this complexity, but there are many interesting problems
to address in future work.

CONCLUSION
We developed a multi-level segmentation model for real-world
image editing logs that works for three image editing tasks.
We present evidence for what features are relevant and irrel-
evant for the segmentation. Results show that command and
layer similarity are highly relevant, image-related features are
not useful despite claims in previous work, and duration is
debatable due to the limitation in data collection. We also
present quantitative and qualitative evaluation of our segmen-
tation model, and show that it performs reasonably well for the
challenging problem of segmenting realistic logs that capture
mistakes, experiments, and subtask switching.
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