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Introduction: E-commerce




E-commerce

e Build mobile apps for large e-
commerce companies

e Understand the importance of good
websites for revenue



E-commerce

Build mobile apps for large e-
commerce companies

Understand the importance of good
websites for revenue

Goals

Increase traffic

o number of users on a site
Reduce abandonment

o number of users leaving the site
Increase consumer engagement

o time users spend on the site

o chances that a user returns to the site
Increase conversion rate

o odds a user purchases



Process

Followed Design Study Methodology [Sedlmair 2012]:

e Precondition Phase (5 months) : interviews with 12 employees
e Core Phase (11 months): Iterative design and implementation
e Analysis Phase (3 months): Reflect and write
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PRECONDITION CORE ANALYSIS

personal validation inward-facing validation outward-facing validation



Research Contributions

> Thorough characterization of task and data abstraction for clickstream data analysis

o High-Level Segmentifier Analysis Model abstracts iterative process
m View, Refine, Record, Export, Abandon, Conclude

> Segmentifier: novel analytics interface for refining data segments and viewing

characteristics before downstream fine-grained analysis
o Rich set of views showing both derived attributes and raw sequence details
o  Filtering and Partitioning through visual queries
m  Quantitative attributes
m Custom sequences of events aggregated according to a novel three-level hierarchy
o Detailed glyph based visual history of the automatically recorded refinement process showing the provenance
of each segment in terms of its analysis path

> Preliminary evidence of utility from:
o Usage Scenario with real world data
o  Case Study with industry analyst



What are the Data and Task Abstractions for
Clickstream Data Analysis?

Clickstream Data
Clickstream Analysis Tasks

Segmentifier Analysis Model



What is Clickstream Data?



Data: Actions

Action




Data: Action Attributes
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Time

Action Type
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Data: Action Types

addToCart removeFromCart

© @

search purchase

© @

Action

Action Type

appStart appDisplayError

O @

offineModeUsed

pageview
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Action Hierarchy

pageview
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Action Hierarchy

Pageviews
pageview
Roll-up
account_group browse_group cart_group checkout_group info_group other_group
Mid-Level
. pv_account .pv_home . pv_cart . pv_checkout . pv_policy O pv_other
) . pv_login .pv_plp O pv_confirmation O pv_storelocator
Detailed @ pv_elitereward Opv_pdp (© pv_other_info
' pv_register . pv_specialoffers
' pv_explore
. pv_search




Data: Sequences
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Data: Sequences
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Data: Client Sequences
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Client Sequences: all actions performed by a single user
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Data: Session Sequences

Session Sequences: all actions performed by a single user within a defined amount of time (A)
from each other. A is usually 30 min.

I == I
3 ® — -- - - --- (XX
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Data: Session Sequences

— [ .
Multiple Sequences
N

Session Sequences: all actions performed by a single user within a defined amount of time (A)
from each other. A is usually 30 min.



Data: Sequence Attributes
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Data: Segments
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Segment: any set of sequences
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Data: Segment Attributes

Segment

HE N RS
NS
BN [SEEN
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Size

Sequence
Related

Action
Related

Counts of sequences:
Absolute, Relative

Sequence Distributions:
Start Time, Duration, Action
Counts

Action Distributions:
Action Transitions:
action before, action after
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Real-world Clickstream Data

Segment

Eai!uiiligiiailu
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Real-world Clickstream Data

Segment

Scale is huge
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Real-world Clickstream Data

Segment

Scale is huge

Variability is high

Eai!uiiligiiailu
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Real-world Clickstream Data

Segment

Eai!uiiligiiailu

Scale is huge

Variability is high

Most work fails when applied to real-world
data.

25



What are
Clickstream Data Analysis Tasks”
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Tasks: Segment Behavior

Segment

HE N S
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' Viewed 4 pages B
| Purchased W
' Between 9 - 10 am [ Starttime ||

Behavior: set of attribute constraints
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Tasks: Segment Behavior

Segment

HE N S
[ NENEE

HE [ SEEE
NN NEEN

' Viewed 4 pages B
| Purchased W
' Between 9 - 10 am [ Starttime ||

Behavior: set of attribute constraints

e Expected
Users add to cart before purchasing
e Unexpected
No purchases on a certain month
e Favorable
Purchased
e Unfavorable
Bounced
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Tasks: Task Abstraction

Segment

Eai!uiiligiiailu
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Tasks: Task Abstraction

Segment
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1.

Identify: Find some set of sequences that
constitutes interesting behavior
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Tasks: Task Abstraction

Segment

ai!uiiligiiﬁilu

Identify: Find some set of sequences that
constitutes interesting behavior

Drilldown: Distinguish more specific behaviors
to further partition a segment previously defined
by looser constraints
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Tasks: Task Abstraction

Segment

ai!uiiligiiﬁilu

Identify: Find some set of sequences that
constitutes interesting behavior

Drilldown: Distinguish more specific behaviors
to further partition a segment previously defined
by looser constraints

Frequency: Determine how many sequences
are in the segment defined by a behavior
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Tasks: Task Abstraction

Segment

ai!uiiligiiﬁilu

Identify: Find some set of sequences that
constitutes interesting behavior

Drilldown: Distinguish more specific behaviors
to further partition a segment previously defined
by looser constraints

Frequency: Determine how many sequences
are in the segment defined by behavior

Ordering within sequence: Match if one action

subsequence occurs before (or after) another
action subsequence in a sequence

33



High-Level Segmentifier Analysis Model



High-Level Segmentifier Analysis Model

General idea:

Combine domain knowledge with computational
support to iteratively view and refine large, noisy
clickstream segments into segments that lead to
actionable insights or more effective
downstream analysis

N
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Record

View

Segment

Sequences

Actions

Refine

Filter

Partition

Transform

N

—> Conclude ]
Abandon ]
Export ]

35



t\.—|>

High-Level Segmentifier Analysis Model [

View ,
Segment )
Seguences 4
Actions )

[ View |
Size . . . .
e Gives Insight into underlying data of segment
o Action Attributes
Sequence o Sequence Attributes
Related o  Segment Attributes
e Leads to:
Action o Insights
Related o New ways on how to refine
L o  Whether segment should be abandoned
o

Whether segment should be exported
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High-Level Segmentifier Analysis Model
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Refine Operation

o >| Partition
:

v

; Refine
Filter

Partition
Transform

——

[ Refine ]

™
{

Apply operation to create new segments
Type of Refinements

o Filter

o  Partition

o  Transform
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High-Level Segmentifier Analysis Model

| Refine Operation |

| Refine Operation |

| Refine Operation

\ 4

¥~ N\

/2 Refine

Filter
Recor Partition
Transform

———

[ Refine ]——»5}

e d

Record

a
A\

Record all refinement steps automatically
Keep track of questions asked and
hypotheses tested

Ability to create and view multiple segments
from the same segment
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High-Level Segmentifier Analysis Model /=

3 Ex;ort

[ Export ]

e Export refined segments for further

downstream analysis, to more specific tools:
o Pattern mining

o  Clustering

| Technique |
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High-Level Segmentifier Analysis Model (=

Conclude

4 D

[ Conclude ]

Discover actionable insight by viewing
segment

A

| Conélude |
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High-Level Segmentifier Analysis Model [+

Abandon

4 P

[ Abandon ]

By viewing the segment, analyst abandons if:
o No actionable insights

o  No further ways to refine

o  Not suitable for export

| Abandon |
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High-Level Segmentifier Analysis Model

e Take a giant, noisy dataset and refine it
into small, clean segments appropriate for
each task

e Bridge the gap between real-world data
and other techniques

e Encapsulates the design rationale of
Segmentifier
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Sequences
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Export ]
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How to solve these goals with
Visual Analytics?

Visual Analytics
Other Related Work

Our Framework
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Why Visual Analytics?

.

Automation would be nice...
o Putdata in, actionable results appear
... but it is not realistic
o Many possible questions, data-driven
interplay between finding answers and
generating new questions
Human-in-the-loop visual data analysis
o Integrate computing power of machine with
intuition of domain experts
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What Visual Analytics Systems
exist for Clickstream Data Analysis?
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Related Work

¥~ N\

d
N

/

>

Refine

Filter

View

Segment
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Actions

[ Recor

Partition

Transform

Conclude
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Refine

/ =/ Filter
Partition
Recor Transform .
elatle or View )
Segment )
| Sequences | \
Actions Export )

Post-Export: Specific Techniques

[ Export ] - Clustering: [Wei 2012]. Pattern Mining: CoreFlow [Liu 2017], Frequence [Perer 2014]
- Require small, clean datasets

View Sequences: Event Sequence Visual Overviews

- CareFlow [Perer 2013]
[ View ] - Limited ability to refine segments or view segment attributes

Refine: Visual Query Systems
- COQUITO [Krause 16], (s|qu)eries [Zgraggen 2015]

[ Refine ] - No ability to view attributes
Record: Graphical Histories
:' - Graphical histories help remember analysis path [Heer 2008]
o/
Record
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Refine

/ F/ Filter
Partition
Recor Transform X
e a e Or View |
Segment )
Seguences 4
Actions )

View and Refine: Filtering Sequences To Segments

View
— SessionViewer [Lam 2007], EventFlow [Munroe 2013] , EventPad [Cappers 2018]
— Lack of segment attributes

Refine — Lack of ability to record analysis path
— Focus is on looking at the level of detail of the sequences which is unscalable
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Our Solution



The Segmentifier Interface

Segmentifier
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The Segmentifier Interface

https://www.youtube.com/watch?v=TobYDFelSOg&t=20s
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https://www.youtube.com/watch?v=TobYDFeISOg&t=20s

Results
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Case Study #1

2 hour chauffeured analysis
With industry data analyst
Purpose:

o One month post launch report

o Discover actionable insights and
improvements for customer

Data

o Session sequences
o 200K sequences
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Case Study #1

Analysis Paths
for D2_sample_200K

200,000
o] [ — [ | N ] [e [ ]
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pv_cart ()

acdToCart
purchase .
pv_checkout ()
pv_pdp
pv_confirmation
appStart

pv_pip @
pv_home
removef remCart :
ov_explore ()
pv_search .
pv_signin .
pv_account
appDisplayError z
search
pv_eliterewards ()
pv_polcy @9
pv_register .
pv_speciaiotiers ()
pv_other
pv_storeLocator
offlineModeUsed ()
pv_otner_into (@
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Case Study #1: Analysis A

A Analyze Purchasing Behavior

e 12% of sessions contain
more checkout pages than
necessary

o 30% of users actually exit
the site and return later to
complete their purchase

Analysis Paths
for D2_sample_200K

200,000

[ - [ | I ] e 1 | ]
20,041 30,968 19,699 4,788 104,211
[Ceeeq] [ | [Feeeq] [ [ ]
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] [ee]
508 1,955 1,589 9,428
0w [feev]
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E=eee] DIEE
4,002 2,363
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Case Study #1: Analysis B

Analysis Paths
for D2_sample_200K

200,000

B Compare Morning vs Night

4,788 104,211

e No significant difference for

percentage of sessions that =]
contain full purchasing funnel 195628
e No significant difference for e
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Case Study #1: Analysis C

C Analyze add and remove from
cart behavior

e No insight for add to cart
behavior

e 30% of users who removed
from cart exited the session
and most likely did not come
back

Analysis Paths
for D2_sample_200K
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Case Study #1: Analysis D

Analysis Paths
for D2_sample_200K
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Case Study #2

2 hour chauffeured analysis
With industry data analyst

Purpose:
o Revisit some questions from last
analysis using client sequences
Data
o Client sequences
m  Much longer
m  Capture longitudinal behavior
o 200K sequences
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Case Study #2

Summary of Insights

e 25% who remove from cart at checkout
stage, exit and never purchase
appStart action triggered before cart page
Awards page analysis:
o 1% signed up
o 27% purchased
o Longer sequences

13,316 9,743 190,257 2,244

o NN FSee9] o] e

9,404 3,912 9,400 612 1,632

e ] HENN e o]

604 104 508
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S [+ ° | nem

142 86 1|'|

O

1
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Discussion
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Discussion

Goal is Scalability

O

Initial iterative visual refinement of large segments into
useful ones

Attributes that align with analyst’s intuitions about
interesting behavior

Quick forming and testing of hypotheses

Result: more effective fine-grained downstream analysis

Segment

ai!uiiligiiﬁilu
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Conclusions

> Thorough characterization of
task and data abstraction for
clickstream data analysis

N
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[ =/
Record

View

Segment

Sequences

Actions

Refine

Filter

Partition

Transform

N

—> Conclude ]
Abandon ]
Export ]
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Conclusions

> Thorough characterization of —
task and data abstraction for -
clickstream data analysis L

> Segmentifier: novel analytics
interface for refining data
segments and viewing
characteristics before downstream
fine-grained analysis

‘I P I T )
L B B
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Conclusions

> Thorough characterization of
task and data abstraction for
clickstream data analysis

> Segmentifier: novel analytics
interface for refining data

segments and viewing

characteristics before downstream

fine-grained analysis

> Preliminary evidence of utility
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Segmentifier:

Interactive Refinement of Clickstream Data

Kimberly Dextras-Romagnino, k.dextras.romagnino@gmail.com
Tamara Munzner, tmm@cs.ubc.ca, @tamaramunzner

More info: http://www.cs.ubc.ca/labs/imager/tr/2019/segmentifier/
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Segmentifier:

Interactive Refinement of Clickstream Data

Kimberly Dextras-Romagnino, k.dextras.romagnino@gmail.com

Tamara Munzner, tmm@cs.ubc.ca, @tamaramunzner

More info; http://www.cs.ubc.ca/labs/imager/tr/2019/segmentifier/
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Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

Result = Action

Actionable Results

|dentify successful trends
Identify problems
Identify groups of common behavior

Identify site metrics/benchmarks

=

=

Optimize
Fix/Improve
Personalize experience

Keep track of state of website
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Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

Result = Action

Actionable Results

Identify successful trends
Identify problems
Identify groups of common behavior

Identify site metrics/benchmarks

=

=

Optimize
Fix/Improve
Personalize experience

Keep track of state of website

Domain-Specific Questions

How many users purchase? What
path did they choose?
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Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

Result = Action

Actionable Results

Identify successful trends
Identify problems
Identify groups of common behavior

Identify site metrics/benchmarks

=

=

Optimize
Fix/Improve
Personalize experience

Keep track of state of website

Domain-Specific Questions

How many bounce (exit after
viewing one page)?
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Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

Result = Action

Actionable Results

Identify successful trends
Identify problems
Identify groups of common behavior

Identify site metrics/benchmarks

=

=

Optimize
Fix/Improve
Personalize experience

Keep track of state of website

Domain-Specific Questions

Can you classify different types of
buying behaviors?
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Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

Result = Action

Actionable Results

Identify successful trends
Identify problems
Identify groups of common behavior

Identify site metrics/benchmarks

=

=

Optimize
Fix/Improve
Personalize experience

Keep track of state of website

Domain-Specific Questions

What is the average number of
sessions in a month? Was this
month abnormal?
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Discussion + Future Work

e Focus on agile and iterative development of design
o Modest engineering effort to achieve base level of
usability to test design concept

m Loading times
m Processing time

o Goal:
m  Proof of concept that design works for target tasks
m  Not (premature) engineering optimization

o  Future work:
m  Engineering optimization for this final design
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Extra Slides



The Segmentifier Interface

https://www.youtube.com/watch?v=TobYDFelSOg&t=24s



https://www.youtube.com/watch?v=TobYDFeISOg&t=24s

Research Method: Mobify

e Pre-condition Phase
o Period of 5 months
o Met with 12 employees
e Core Phase
o Data and Task Abstraction
o Design interface
o Implement interface
e Analysis Phase
o Formulate Framework
o Write Paper/Thesis

24 Mobify
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Real-world Clickstream Data

Segment

Scale is huge

Eai!uiiligiiailu
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Real-world Clickstream Data

Segment

Scale is huge

Variability is high

Eai!uiiligiiailu
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Real-world Clickstream Data

Segment
[0 :
ENEENEN | NEEEE B Scale is huge
INEEENEENE
T Variability is high
H EREEEN
BEECTETEEE : .
EREEREEE B Most work fails when applied to real-world data.
HEEEN
[ICT A0 :
:-:.:— Technique Exploratory
| | |
_:— Most techniques have data Most focus on analyzing
HEERRERRRR N requirements to work sequences.
:.:E.:_ effectively Too many to view at once.




Related Work: Problems

Technique

\

Exploratory

Evaluated using small,
clean datasets

Segment

HE N NEeS
B NN
HE NEE

EE N RS

/
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=y Refine
=/ Filter
==
Related Work |
Segment
e Export |
Post-Export: Specific Techniques
[ EXpOf‘t ] - Clustering [Wei et al.], Pattern Mining (CoreFlow [Liu et al.], Frequence [Perer et al.]
- Require small, clean datasets
View Sequences: Event Sequence Visual Overviews
_ - CareFlow [Perer et al.]
[ View ] - Can’t refine segments or view segment attributes
Refine: Visual Query Systems
_ - i.e. COQUITO [KPS16], (s|qu)eries [ZDFD15], DecisionFlow [GS14], PatternFinder [FKSS06], and
[ Refine ] Sparq|FilterFlow [HLBE14]

Record: Graphical Histories
i.e.

i

Record ”



Tasks: Task Abstraction

e T1) Identify: Find some set of sequences that constitutes interesting behavior
o consumers in loyalty program browse longer

e T2) Drilldown: Distinguish more specific behaviors to further partition a segment

previously defined by looser constraints
o check if purchasers fall into natural groups by time of day

e T3) Frequency: Determine how many sequences are in the segment defined by

behavior X
o check ratio of bouncers to non- bouncers

e T4) Ordering within sequence: Match if action subsequence X occurs before (or after)

action subsequence Y in a sequence
o  verify that all users add to cart before purchasing
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Discussion + Future Work

e Understandable segments: ==
o Each possible refinement operation F—
corresponds to one attribute constraint fee0
o In contrast to clustering, pattern mining e 1L
that have uninterpretable results for this 252445 300,808
scale of noisy data [
[Fee]
e Segmentifier explicitly supports refinement e
through both filtering and partitioning. oo
o  Encourages subsequent analysis —
o  Allows comparison oo
o  Future comparison work
] —

734 2,162 310

3,206

L m—

734 2162 310
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; Refine

/ =/ Filter
Recor o |
Related Work )
View ‘ View and Refine: Filtering Sequences To Segments
Segment
Sequences e SessionViewer [Lam 2007], EventFlow [Munroe 2013] , EventPad [Cappers
Actions 2018]

e Lack of segment attributes
e Lack of ability to record analysis path

Refine
Filter

Partition
Transform
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