Segmentifier: Interactive Refinement of Clickstream Data

Kimberly Dextras-Romagnino†, Tamara Munzner*

* University of British Columbia
† Kabam
Introduction: E-commerce
E-commerce

- Build mobile apps for large e-commerce companies
- Understand the importance of good websites for revenue
E-commerce

- Build mobile apps for large e-commerce companies
- Understand the importance of good websites for revenue

Goals

- Increase traffic
 - number of users on a site
- Reduce abandonment
 - number of users leaving the site
- Increase consumer engagement
 - time users spend on the site
 - chances that a user returns to the site
- Increase conversion rate
 - odds a user purchases
Process

Followed Design Study Methodology [Sedlmair 2012]:

- **Precondition Phase** (5 months): interviews with 12 employees
- **Core Phase** (11 months): Iterative design and implementation
- **Analysis Phase** (3 months): Reflect and write
Research Contributions

➢ Thorough **characterization of task and data abstraction** for clickstream data analysis
 ○ **High-Level Segmentifier Analysis Model** abstracts iterative process
 ■ View, Refine, Record, Export, Abandon, Conclude

➢ **Segmentifier: novel analytics interface** for refining data segments and viewing characteristics before downstream fine-grained analysis
 ○ Rich set of views showing both **derived attributes** and **raw sequence details**
 ○ **Filtering and Partitioning** through visual queries
 ■ Quantitative attributes
 ■ Custom sequences of events aggregated according to a novel three-level hierarchy
 ○ Detailed glyph based **visual history** of the automatically recorded refinement process showing the provenance of each segment in terms of its analysis path

➢ **Preliminary evidence of utility** from:
 ○ **Usage Scenario** with real world data
 ○ **Case Study** with industry analyst
What are the **Data and Task Abstractions** for *Clickstream Data Analysis*?
What is *Clickstream Data*?
Data: Actions
Data: Action Attributes
Data: Action Types

E-commerce
- addToCart
- removeFromCart
- search
- purchase

Site Functionality
- appStart
- appDisplayError
- offlineModeUsed

Pageviews
- pageview
Action Hierarchy
Action Hierarchy

Pageviews

Roll-up

Mid-Level

Detailed

- pv_account
- pv_login
- pv_elitereward
- pv_register
- pv_home
- pv_plp
- pv_pdp
- pv_specialoffers
- pv_search
- pv_cart
- pv_checkout
- pv_confirmation
- pv_policy
- pv_storelocator
- pv_other_info
- pv_other

Pageviews: 13
Data: Sequences

![Diagram showing a sequence with an appStart event]
Data: Sequences
Data: Client Sequences

Client Sequences: all actions performed by a single user
Data: Session Sequences

Session Sequences: all actions performed by a single user within a defined amount of time (Δ) from each other. Δ is usually 30 min.
Data: Session Sequences

Session Sequences: all actions performed by a single user within a defined amount of time (Δ) from each other. Δ is usually 30 min.
Data: Sequence Attributes

Start time

End time

Duration

Action Counts:
- Yellow: 1
- Green: 1
- Blue: 5
- Gray: 1
- Black: 1
Data: Segments

Segment: any set of sequences
Data: Segment Attributes

Counts of sequences: Absolute, Relative

Sequence Distributions: Start Time, Duration, Action Counts

Action Distributions: Action Transitions: action before, action after
Real-world Clickstream Data
Real-world Clickstream Data

Scale is huge
Real-world Clickstream Data

Scale is huge

Variability is high
Real-world Clickstream Data

Scale is huge

Variability is high

Most work fails when applied to real-world data.
What are Clickstream Data Analysis Tasks?
Tasks: Segment Behavior

Segment

Behavior: set of attribute constraints

Viewed 4 pages
Purchased
Between 9 - 10 am

Start time
Tasks: Segment Behavior

Segment

Behavior: set of attribute constraints

- **Expected**
 Users add to cart before purchasing

- **Unexpected**
 No purchases on a certain month

- **Favorable**
 Purchased

- **Unfavorable**
 Bounced
Tasks: Task Abstraction
Tasks: Task Abstraction

1. **Identify**: Find some set of sequences that constitutes interesting *behavior*
Tasks: Task Abstraction

1. **Identify**: Find some set of sequences that constitutes interesting *behavior*

2. **Drilldown**: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

\[\text{Segment}\]
Tasks: Task Abstraction

1. **Identify**: Find some set of sequences that constitutes interesting *behavior*

2. **Drilldown**: Distinguish more specific *behaviors* to further partition a segment previously defined by looser constraints

3. **Frequency**: Determine how many sequences are in the segment defined by a *behavior*
Tasks: Task Abstraction

1. **Identify**: Find some set of sequences that constitutes interesting behavior

2. **Drilldown**: Distinguish more specific behaviors to further partition a segment previously defined by looser constraints

3. **Frequency**: Determine how many sequences are in the segment defined by behavior

4. **Ordering** within sequence: Match if one action subsequence occurs before (or after) another action subsequence in a sequence
High-Level Segmentifier Analysis Model
General idea:

Combine domain knowledge with computational support to iteratively view and refine large, noisy clickstream segments into segments that lead to actionable insights or more effective downstream analysis.
High-Level Segmentifier Analysis Model

- Gives Insight into underlying data of segment
 - Action Attributes
 - Sequence Attributes
 - Segment Attributes
- Leads to:
 - Insights
 - New ways on how to refine
 - Whether segment should be abandoned
 - Whether segment should be exported
High-Level Segmentifier Analysis Model

- Apply operation to create new segments
- Type of Refinements
 - Filter
 - Partition
 - Transform
High-Level Segmentifier Analysis Model

- Record all refinement steps automatically
- Keep track of questions asked and hypotheses tested
- Ability to create and view multiple segments from the same segment
High-Level Segmentifier Analysis Model

- Export refined segments for further downstream analysis, to more specific tools:
 - Pattern mining
 - Clustering
High-Level Segmentifier Analysis Model

- Discover actionable insight by viewing segment

Refine Operation

Conclude

View
Segment
Sequences
Actions

Recor
Refine
Filter
Partition
Transform

Conclude
Abandon
Export
High-Level Segmentifier Analysis Model

By viewing the segment, analyst *abandons* if:
- No actionable insights
- No further ways to refine
- Not suitable for export
High-Level Segmentifier Analysis Model

- Take a giant, noisy dataset and refine it into small, clean segments appropriate for each task
- Bridge the gap between real-world data and other techniques
- Encapsulates the design rationale of Segmentifier
How to solve these goals with **Visual Analytics**?

- Visual Analytics
- Other Related Work
- Our Framework
Why Visual Analytics?

- Automation would be nice...
 - Put data in, actionable results appear
- … but it is not realistic
 - Many possible questions, data-driven interplay between finding answers and generating new questions
- Human-in-the-loop visual data analysis
 - Integrate computing power of machine with intuition of domain experts
What Visual Analytics Systems exist for Clickstream Data Analysis?
Related Work
Related Work

Post-Export: Specific Techniques
- Require small, clean datasets

View Sequences: Event Sequence Visual Overviews
- CareFlow [Perer 2013]
- Limited ability to refine segments or view segment attributes

Refine: Visual Query Systems
- COQUITO [Krause 16], (s|qu)eries [Zgraggen 2015]
- No ability to view attributes

Record: Graphical Histories
- Graphical histories help remember analysis path [Heer 2008]
Related Work

View and Refine: Filtering Sequences To Segments

- SessionViewer [Lam 2007], EventFlow [Munroe 2013], EventPad [Cappers 2018]
- Lack of segment attributes
- Lack of ability to record analysis path
- Focus is on looking at the level of detail of the sequences which is unscalable
Our Solution
The Segmentifier Interface
The Segmentifier Interface

https://www.youtube.com/watch?v=TobYDFeIS0g&t=20s
Results
Case Study #1

- 2 hour chauffeured analysis
- With industry data analyst
- Purpose:
 - One month post launch report
 - Discover actionable insights and improvements for customer
- Data
 - Session sequences
 - 200K sequences
Case Study #1: Analysis A

Analyze Purchasing Behavior

- 12% of sessions contain more checkout pages than necessary
- 30% of users actually exit the site and return later to complete their purchase
Case Study #1: *Analysis B*

B Compare Morning vs Night

- No significant difference for percentage of sessions that contain full purchasing funnel
- No significant difference for number of actions
Case Study #1: Analysis C

- No insight for add to cart behavior
- 30% of users who removed from cart exited the session and most likely did not come back
Case Study #1: *Analysis D*

D Analyze purchasing funnel

- 20% of people who get to checkout will not end up purchasing
Case Study #2

- 2 hour chauffeured analysis
- With industry data analyst
- Purpose:
 - Revisit some questions from last analysis using client sequences
- Data
 - Client sequences
 - Much longer
 - Capture longitudinal behavior
 - 200K sequences
Case Study #2

Summary of Insights

- 25% who remove from cart at checkout stage, exit and never purchase
- appStart action triggered before cart page
- Awards page analysis:
 - 1% signed up
 - 27% purchased
 - Longer sequences
Discussion
Discussion

- Goal is **Scalability**
 - Initial iterative visual refinement of large segments into useful ones
 - Attributes that align with analyst’s intuitions about interesting behavior
 - Quick forming and testing of hypotheses
 - **Result:** more effective fine-grained downstream analysis
Conclusions

➢ Thorough characterization of task and data abstraction for clickstream data analysis
Conclusions

➢ Thorough **characterization of task and data abstraction** for clickstream data analysis

➢ **Segmentifier: novel analytics interface** for refining data segments and viewing characteristics before downstream fine-grained analysis
Conclusions

➢ Thorough characterization of task and data abstraction for clickstream data analysis

➢ Segmentifier: novel analytics interface for refining data segments and viewing characteristics before downstream fine-grained analysis

➢ Preliminary evidence of utility
Segmentifier: Interactive Refinement of Clickstream Data
Kimberly Dextras-Romagnino, k.dextras.romagnino@gmail.com
Tamara Munzner, tmm@cs.ubc.ca, @tamaramunzner

Segmentifier: Interactive Refinement of Clickstream Data
Kimberly Dextras-Romagnino, k.dextras.romagnino@gmail.com
Tamara Munzner, tmm@cs.ubc.ca, @tamaramunzner

Backup Slides
Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

Result ⇒ *Action*

Actionable Results

- Identify successful trends ⇒ Optimize
- Identify problems ⇒ Fix/Improve
- Identify groups of common behavior ⇒ Personalize experience
- Identify site metrics/benchmarks ⇒ Keep track of state of website
Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

\[\text{Result} \Rightarrow \text{Action} \]

Actionable Results

- Identify successful trends ⇒ Optimize
 - Identify problems ⇒ Fix/Improve
 - Identify groups of common behavior ⇒ Personalize experience
 - Identify site metrics/benchmarks ⇒ Keep track of state of website

Domain-Specific Questions

- How many users purchase? What path did they choose?
Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

\[\text{Result} \Rightarrow \text{Action} \]

Actionable Results

- Identify successful trends \Rightarrow Optimize
- **Identify problems** \Rightarrow Fix/Improve
- Identify groups of common behavior \Rightarrow Personalize experience
- Identify site metrics/benchmarks \Rightarrow Keep track of state of website

Domain-Specific Questions

How many bounce (exit after viewing one page)?
Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

\[\text{Result} \Rightarrow \text{Action} \]

Domain-Specific Questions

Can you classify different types of buying behaviors?

Actionable Results

- Identify successful trends ⇒ Optimize
- Identify problems ⇒ Fix/Improve
- Identify groups of common behavior ⇒ Personalize experience
- Identify site metrics/benchmarks ⇒ Keep track of state of website
Tasks: Actionable Results

Actionable Result: result or insight found through analysis that can be acted on

\[\text{Result} \Rightarrow \text{Action} \]

Actionable Results

- Identify successful trends ⇒ Optimize
- Identify problems ⇒ Fix/Improve
- Identify groups of common behavior ⇒ Personalize experience
- Identify site metrics/benchmarks ⇒ Keep track of state of website

Domain-Specific Questions

What is the average number of sessions in a month? Was this month abnormal?
Discussion + Future Work

- Focus on agile and iterative development of design
 - Modest engineering effort to achieve base level of usability to test design concept
 - Loading times
 - Processing time
 - Goal:
 - Proof of concept that design works for target tasks
 - Not (premature) engineering optimization
 - Future work:
 - Engineering optimization for this final design
Extra Slides
The Segmentifier Interface

https://www.youtube.com/watch?v=TobYDFeISOg&t=24s
Research Method: Mobify

- **Pre-condition** Phase
 - Period of 5 months
 - Met with 12 employees

- **Core** Phase
 - Data and Task Abstraction
 - Design interface
 - Implement interface

- **Analysis** Phase
 - Formulate Framework
 - Write Paper/Thesis
Real-world Clickstream Data

Scale is huge
Real-world Clickstream Data

Scale is huge

Variability is high
Real-world Clickstream Data

Scale is huge

Variability is high

Most work **fails** when applied to real-world data.

- **Technique**
 - Most techniques have data requirements to work effectively

- **Exploratory**
 - Most focus on analyzing sequences.
 - Too many to view at once.
Related Work: Problems

Technique

Exploratory

Evaluated using small, clean datasets

Segment
Related Work

Post-Export: Specific Techniques
- Clustering [Wei et al.], Pattern Mining (CoreFlow [Liu et al.], Frequence [Perer et al.])
- Require small, clean datasets

View Sequences: Event Sequence Visual Overviews
- CareFlow [Perer et al.]
- Can't refine segments or view segment attributes

Refine: Visual Query Systems
- i.e. COQUITO [KPS16], (s|qu)eries [ZDFD15], DecisionFlow [GS14], PatternFinder [FKSS06], and SparqlFilterFlow [HLBE14]

Record: Graphical Histories
- i.e.
Tasks: Task Abstraction

- **T1) Identify**: Find some set of sequences that constitutes interesting behavior
 - consumers in loyalty program browse longer
- **T2) Drilldown**: Distinguish more specific behaviors to further partition a segment previously defined by looser constraints
 - check if purchasers fall into natural groups by time of day
- **T3) Frequency**: Determine how many sequences are in the segment defined by behavior X
 - check ratio of bouncers to non-bouncers
- **T4) Ordering** within sequence: Match if action subsequence X occurs before (or after) action subsequence Y in a sequence
 - verify that all users add to cart before purchasing
Discussion + Future Work

- Understandable segments:
 - Each possible refinement operation corresponds to one attribute constraint
 - In contrast to clustering, pattern mining that have uninterpretable results for this scale of noisy data

- Segmentifier explicitly supports refinement through both filtering and partitioning.
 - Encourages subsequent analysis
 - Allows comparison
 - Future comparison work
Related Work

View and Refine: Filtering Sequences To Segments

- SessionViewer [Lam 2007], EventFlow [Munroe 2013], EventPad [Cappers 2018]
- Lack of segment attributes
- Lack of ability to record analysis path