# **Uncovering Spatiotemporal Dynamics** from Non-Trajectory Data

Urban Data Visualization Workshop, IEEE VIS 2018

### Michael Oppermann

michaeloppermann.com 5 @oppermann\_m



Slides: michaeloppermann.com/slides/cityvis2018.pdf



THE UNIVERSITY OF BRITISH COLUMBIA





#### **Global Heatmap**

Heatmap Color

| Hot | Blue | Gray | Red |
|-----|------|------|-----|
|     |      |      |     |

| All | đđ    | $\mathcal{D}$ | ÷                                       | ** |
|-----|-------|---------------|-----------------------------------------|----|
|     | 11122 |               | 1 - C - C - C - C - C - C - C - C - C - |    |

Heat Opacity

| 0%   | 40% | 60% | 80% | 100% |
|------|-----|-----|-----|------|
| yers |     |     |     |      |
|      |     |     |     |      |

Discover how the heatmap was built. Learn how Strava Metro can help your community

Learn about heatmap

# Fit Leaking: "fitness activities, and confidential information"

- John Scott-Railton



recorded for personal benefit emit into signals that reveal sensitive



## **Bike Sharing**



## **Building Occupancy**







# Spatiotemporal data



**Origin-destination data** 





# Spatial events / location-based counts







- Analyzed bike sharing in Vienna (bike sharing operator as collaborator)
- Traditional station-based networks
- Expanded from one to many cities
- Recorded station fill levels from >400 networks (21,500 stations)
- 15 min interval over 1.5 years
- Additional user groups: politicians, city planners, general public, etc.

[Bike Sharing Atlas: Visual Analysis of Bike-Sharing Networks. Oppermann, Möller, SedImair. International Journal of Transportation (IJT), 6(1): 1-14, 2018]





46/467 NETWORKS



#### Ø Distance to nearest station [m]



Population (urban area)









| tworks. |  |
|---------|--|
| LWUIKS  |  |





SANTANDER CYCLES (774 STATIONS)









#### SANTANDER CYCLES (774 STATIONS)



#### Similar Networks

- 9 Paris, FR
- ♥ New York, NY, US
- ♀ Chicago, IL, US















#### Average utilization







WEEK



WEEKEND

ALL







# **Ocupado**: Visual analytics for occupancy applications

- Visual and predictive decision-support tools for facilities management
- Stakeholders:
  - Custodial services
  - Building manager
  - Facilities planner
  - Energy manager



# Which regions are busy/quiet now?

# Which regions were heavily used and are empty now?



# What is the typical usage pattern of this region?

according to (custodial) shifts?



# **Data acquisition & processing**

- Estimate building occupancy by using Wi-Fi connections (in collaboration with start-up: Sensible Building Science)
- No movements or individual devices are recorded
- Only zone-based counts every 5 min → spatial time series
- Rough proxy depends on Wi-Fi coverage; good spatial precision if zone large enough















#### Floor 4















÷















#### Floor 4

















#### OCUPADO custodial services









#### Floor 4















#### Mean

÷

# Implications of using non-trajectory data

- Location-based counts are often easily accessible (especially live data)
- Many analysis questions can be answered without trajectories (privacy & ethics)
- Flexible aggregation and normalization
- Use similar techniques that have been proposed for time-oriented data + new types of visual encodings



# Implications of using non-trajectory data

- Location-based counts are often easily accessible (especially live data)
- Many analysis questions can be answered without trajectories (privacy & ethics, analysis goal)
- Flexible aggregation and normalization
- Use similar techniques that have been proposed for time-oriented data + new types of visual encodings

## Michael Oppermann

Slides: michaeloppermann.com/slides/cityvis2018.pdf

**S** @oppermann\_m



THE UNIVERSITY OF BRITISH COLUMBIA







# Commuting behaviours worldwide



# Commuting behaviours worldwide



