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Fig. 1. Complex physically simulated fabric folds generated using FoldSketch: (left to right) Plain input flag with user sketched schematic folds, original
(green) and modified final (red) patterns; final post-simulation flag augmented with user-expected folds; real-life replica manufactured using the produced
patterns; zooming in highlights the complex and evolving output fold profile shapes.

While folds and pleats add interest to garments and cloth objects, incorporat-
ing them into an existing design manually or using existing software requires
expertise and time. We present FoldSketch, a new system that supports simple
and intuitive fold and pleat design. FoldSketch users specify the fold or pleat
configuration they seek using a simple schematic sketching interface; the
system then algorithmically generates both the fold-enhanced 3D garment
geometry that conforms to user specifications, and the corresponding 2D
patterns that reproduce this geometry within a simulation engine. While
previous work aspired to compute the desired patterns for a given target 3D
garment geometry, our main algorithmic challenge is that we do not have
target geometry to start with. Real-life garment folds have complex profile
shapes, and their exact geometry and location on a garment are intricately
linked to a range of physical factors such as fabric properties and the gar-
ment’s interaction with the wearer’s bodys; it is therefore virtually impossible
to predict the 3D shape of a fold-enhanced garment using purely geometric
means. At the same time, using physical simulation to model folds requires
appropriate 2D patterns and initial drape, neither of which can be easily
provided by the user. We obtain both the 3D fold-enhanced garment and its
corresponding patterns and initial drape via an alternating 2D-3D algorithm.
We first expand the input patterns by allocating excess material for the
expected fold formation; we then use these patterns to produce an estimated
fold-enhanced drape geometry that balances designer expectations against
physical reproducibility. We use the patterns and the estimated drape as
input to a simulation generating an initial reproducible output. We improve
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the output’s alignment with designer expectations by progressively refining
the patterns and the estimated drape, converging to a final fully physically
reproducible fold-enhanced garment. Our experiments confirm that FoldS-
ketch reliably converges to a desired garment geometry and corresponding
patterns and drape, and works well with different physical simulators. We
demonstrate the versatility of our approach by showcasing a collection of
garments augmented with diverse fold and pleat layouts specified via the
FoldSketch interface, and further validate our approach via comparisons to
alternative solutions and feedback from potential users.
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1 INTRODUCTION

Fashion designers frequently use strategically placed folds and pleats
to add interest to garments and other cloth objects to increase their
visual appeal. Pleats and folds are typically formed by gathering
fabric along a seamline and stitching the gathered fabric to hold it
in place. In both traditional garment design software and manual
workflows, these features are incorporated into an existing design
by first skillfully modifying the underlying 2D patterns, and then
draping the garment atop a mannequin or a dress form by meticu-
lously positioning it to achieve the desired fold look. This workflow
requires expertise and time, since it often takes multiple trial and
error iterations to successfully incorporate the envisioned folds or
pleats into an existing design [Arnold 1985; Kiisel 2013]. We pro-
pose FoldSketch, a new algorithmic framework for fold and pleat
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Fig. 2. Different types of folds and pleats supported by our framework: (top)

schematic user sketch; (bottom) output folds.

generation that enables users to directly generate their desired fold-
enhanced 3D garments without the need for manual pattern editing
or draping (Figure 1). Our output garments are physically repro-
ducible - they can be generated using physical simulation from a set
of patterns and an initial drape we compute. Our method applies to
the design of both virtual and real cloth objects, and enables experts
and amateurs alike to quickly generate sophisticated fold and pleat
configurations.

Garment design literature distinguishes between folds and pleats
based on how they are formed (Figure 2). While folds are formed
by uniformly gathering fabric along a seam or a hemline, pleats are
formed by doubling fabric back on itself and securing it in place.
We will use the term folds in this paper to describe both folds and
pleats, for simplicity’s sake, and we will only refer to pleats when
addressing pleat specific processing.

Real-life folds have complex and smoothly changing cross-section
geometry (Figure 1) that depends on a range of physical factors such
as fabric stretchiness, thickness, and bending flexibility (Figure 3).
While designers have an overall sense of how the folds they envi-
sion will look, they do not mentally account for all these factors.
It is therefore unreasonable to expect designers to communicate
an exact, detailed description of the folds they envision. Instead,
using FoldSketch, designers schematically provide their anticipated
fold configuration, namely their paths, magnitudes, and stitching
patterns (Figures 1a, 2). Our underlying algorithm then generates
a detailed fold-augmented garment consistent with this schematic
input, and a set of corresponding 2D patterns and initial drape that
reproduce this garment under physical simulation (Figure 1d).

Translating the user’s input into detailed folds is a challenging
task. Fold geometry is highly dependent on physical factors such
as fabric properties and external forces, thus it is impossible to
predict physically achievable fold shapes without a physical sim-
ulation context. At the same time, applying a physical simulation
to generate a fold-enhanced garment requires correctly extended
patterns capable of supporting the desired folds and an initial drape
configuration, neither of which is available. Previous frameworks
that attempted to generate garment folds in 3D space used highly
simplified, groove-like fold shapes [Robson et al. 2011; Rohmer et al.
2010; Turquin et al. 2004, 2007] (Figure 4,a) which do not reflect the
complexity of real-life folds. More importantly, the grooves they
create are purely geometric and have no basis in real-world physics;
they are not physically realizable, and any attempt to resimulate
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these geometric folds using state-of-the-art physics-aware pattern
computation [Bartle et al. 2016] is likely to fail ((Figure 4,b).

Instead, we focus on computing patterns and the initial target
drape, and obtain the output garment geometry via actual simula-
tion that uses these as input. Our computation employs two key
observations. First, we note that while we have no exact 3D fold
geometry to begin with, we can use the designer-specified schematic
input to estimate the changes in 2D patterns necessary to accom-
modate their intended folds. We also observe that while we do not a
priori know the shape of the final fold-augmented garment, we can
distinguish between changes to the 3D garment which are consis-
tent with the designer’s intended fold formation, and those which
are not: when editing existing garments, designers attempt to in-
troduce the modifications they envision locally while maintaining
the garment shape elsewhere [Arnold 1985; Bartle et al. 2016]. In
the context of fold generation, designers expect to see no garment
geometry changes in areas away from the folds, while in the region
of interest near the folds, they expect the fabric to bend along the
specified fold direction.

We use these two observations to compute the target drape and
patterns, and use those to obtain the output garment. Starting
with an input simulated garment, its corresponding patterns, and a
schematic indicating the user’s desired fold placement, we compute
an initial new set of 2D patterns which have sufficient material to in-
corporate these folds (Section 5). These new patterns are optimized
by extending the original patterns orthogonally to the fold paths to
facilitate fold formation, while minimizing any secondary changes
in pattern shape away from the user specified folds. We use the new
patterns to obtain a target 3D drape that balances physical repro-
ducibility and designer intent; this is achieved by using a simulation
framework which augments standard physical forces that reflect
real-life phenomena with new synthetic forces that reflect our style
preservation and fold alignment constraints (Section 6). While the
resulting drape conforms to designer expectations, using it as start-
ing point for simulation without these synthetic forces may produce
undesirable artifacts in the output garment, such as local sagging
and bulging that violates our expectation of style preservation (Fig-
ure 5). We minimize these artifacts by progressively updating both
the patterns and the target drape, reducing the difference between
augmented and unconstrained simulation outputs (Section 7).

We demonstrate our method’s capabilities by applying a range
of diverse fold and pleat patterns to different input garments and
other cloth-made objects with varying material properties. In all
cases, the resimulated outputs reflect the designer’s intended fold
configurations while preserving the original style of the input, and
are accompanied by corresponding 2D patterns. Our framework
is not specific to a particular simulation engine; it works equally
well with two distinctly different simulation engines: Sensitive Cou-
ture [Umetani et al. 2011] and ARCSim [Narain et al. 2013, 2012], one
of which is optimized for speed while the other is optimized for ac-
curacy (Figures 14, 16). We validate our approach via expert critique,
and by comparisons to alternative solutions. Finally, we generate
two real cloth objects using the patterns produced by our system,
confirming its applicability to real-life fashion design (Figures 1, 13).

Our overall contribution is a novel framework that allows ex-
pert and amateur fashion designers to enhance existing cloth-made
objects with complex fold and pleat patterns via a simple to use
interface that successfully replaces the currently used cumbersome,
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Fig. 3. Given the same schematic fold notations and visually identical input
garments with different fabric properties (a) our framework produces repro-
ducible fold-augmented garments (b,c) that reflect the different bending
parameters of the inputs and the corresponding sets of patterns (d) - red for
the thicker fabric (b) and blue for the thinner one (c).

and time consuming, iterative workflow for adding folds to gar-
ments. Key to our method are the pattern extension and target
drape computation procedures that incorporate cues provided by
physical simulation into the geometry optimization process.

2 RELATED WORK

Our work builds upon traditional fashion design methodologies for
fold creation, algorithms for fold generation, and modern computa-
tional fashion design tools.

Garment Construction and Traditional Fold Design. Garments and
other cloth objects are traditionally constructed by first cutting 2D
fabric panels following a given pattern and stitching these panels
together along shared seams. To incorporate folds into an existing
design, tailors add additional material to panels along a hemline
(open boundary) or a seam. While hemline folds form due to gravity,
seam folds are formed by gathering the excess material to match
a shorter opposite panel boundary and stitching the two. Pleats
are added by folding the material sideways and stitching it in place
(Figure 2); commonly pleats are then ironed to keep them in position.

Designers employ a mixture of 2D and 3D fabric manipulation
to form their desired fold arrangements [Arnold 1985; Kiisel 2013].
They typically start with approximate 2D patterns, then drape them
around a mannequin, using pins to gather and hold the desired fold
configuration in place. Designers then trim the patterns, eliminating
redundant material, or alternatively repeat the cycle with wider
initial patterns when the original are insufficient to achieve the
desired fold magnitude. They subsequently adjust and repin the
drape, and iterate. Successful fold design requires significant time
and skill; design courses and tutorials dedicate multiple lectures and
chapters to fold design techniques [Kiisel 2013].

Commercial garment design software, such as [Browzwear 2017;
CLO 2017; EFI 2017; Fontana et al. 2005; Volino et al. 2005], employs
a 2D-to-3D design framework where users manually specify both
2D pattern geometry and an initial draping configuration. These
systems then use physics-based simulation to generate the resulting
3D garment shapes. To add folds to a garment using such systems
users need to employ the knowledge intensive and time consuming
workflow described above - they need to manually edit the patterns,
specify the initial drape, and then use the simulation output to
iterate on both.

Computational Garment Design. Recent algorithms enable proce-
dural modeling of static virtual garments that have the appearance
of clothing [De Paoli and Singh 2015; Decaudin et al. 2006; Kwok
et al. 2016; Li and Lu 2014; Robson et al. 2011; Turquin et al. 2004,

(a) (b) (c) (@

Fig. 4. Existing fold modeling methods (here [Rohmer et al. 2010]) gener-
ate simplistic fold shapes (a); which cannot be reproduced via subsequent
pattern computation and resimulation (b); given similar input fold-paths (c)
we compute complex reproducible folds (d).

2007; Wang et al. 2003]. Some of these methods use sketching in-
terfaces to produce low frequency garments [De Paoli and Singh
2015; Decaudin et al. 2006; Robson et al. 2011; Turquin et al. 2004,
2007; Wang et al. 2003]. Others support mixing of existing garment
elements in 3D space [Kwok et al. 2016; Li and Lu 2014]. The gar-
ments they produce have no patterns, no physical parameters, and
are often not physically reproducible; they are thus unsuitable for
cloth simulation or manufacturing.

Grading methods algorithmicaly resize garments to fit a man-
nequin different from the one they were originally designed for
[Brouet et al. 2012; Cordier et al. 2003; Meng et al. 2010; Wang et al.
2005]. These methods can potentially transfer the location and 3D
shape of existing folds to a new garment, but are not designed for
forming new folds.

Sensitive Couture [Umetani et al. 2011] supports a limited set
of 3D to 2D edits where simple 3D changes, such as elongating or
widening a garment, are propagated to 2D space. It does not provide
the fine control necessary for detailed edits such as fold addition.
Bartle et al. [2016] enable coarse scale 3D garment edits, such as
garment mixing, length and fit changes. They use a geometric ap-
proach to produce a target 3D shape encapsulating both the original
design and user-specified changes, and then reverse-engineer 2D
patterns whose draped result is isometric to the target. Our focus on
3D fold design requires a target shape computation that, as opposed
to being purely geometric, is closely linked to garment material’s
constitutive laws (Figure 3) and external forces.

Fold and Wrinkle Modeling. Computer animation frameworks pro-
duce dynamic folds whose location and shape are determined by the
physical forces rather than the user [Bridson et al. 2003]. The com-
putation they employ relies on input patterns and draped geometry
to guide fold formation. In our setting we have neither. Sketch-based
static garment modeling tools such as [Robson et al. 2011; Turquin
et al. 2007] model folds by sweeping a cylindrical profile along a
user sketched path. Cylindrical arc profiles, smoothly blended with
the surrounding surface, are similarly used to procedurally model
dynamic folds to augment low-quality animations [Popa et al. 2009;
Rohmer et al. 2010]. Real-life folds have complex profile shapes that
can significantly differ at different points along the path; thus the
results produced by such methods provide only a coarse unrealistic-
looking approximation (Figure 4a). Purely geometric sketch-based
surface bending methods such as BendSketch [Li et al. 2017] trans-
late user input into surface detail geometry but cannot guarantee
that the resulting folds are physically plausible. More importantly,
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Fig. 5. FoldSketch Algorithm: (left to right) The input consists of a garment pattern, a corresponding drape on a mannequin, and designer-sketched folds.
Folds require additional fabric material, which is obtained by extending the pattern. Draping depends heavily on the initial drape of the simulation; a poor
initial drape does not lead to the desired fold arrangement. We add fictitious style constraining forces to induce the fold arrangement, obtaining a target drape.
We iterate, seeking an initial drape that yields a similar fold arrangement without fictitious forces. Starting from the target drape, an unadulterated draping
simulation produces a candidate output drape. The candidate is acceptable if we cannot improve upon it. We attempt to improve the garment pattern to reduce
differences between the target and output drapes. If we make a substantial update to the pattern, we iterate, using our output candidate as the new initial

drape.

fold-enhanced garments generated using all these approaches have
no corresponding patterns, and often are not physically reproducible.
Figure 4b shows the result of attempting to reproduce the geome-
try in Figure 4a by computing physics-aware patterns [Bartle et al.
2016] that match this geometry and using those patterns and the
fold-enhanced geometry as input to an actual simulator. Our frame-
work successfully generates complex reproducible fold geometries
and their corresponding patterns using sketched paths as guidance
(Figure 4,cd).

3 ALGORITHM

The input to our algorithm is a simulated 3D garment, draped around
a character or mannequin, and its corresponding set of 2D patterns
(Figure 5,a). Using FoldSketch, designers specify their desired fold
configuration by sketching on top of this input. They draw path
strokes (Figure 2, blue) to indicate the direction and length of their
desired folds, and schematic gathering strokes (Figure 2, red), whose
label indicates the type of fold they want to form (e.g. "knife pleats"
or "gathered folds") and whose geometry encodes fold properties
such as the pattern boundary location where new material should be
added, the stitching scheme, and the amount of extra material that
should be added (Section 4, Figure 2). Given this input, our goal is
to generate a new garment that has both the desired fold geometry
within the region of interest surrounding the input strokes and the
input garment geometry away from the strokes, and to produce a
corresponding set of 2D patterns (Figure 5,f).

We approach this problem using an alternating 2D-3D process,
inspired by traditional garment design practices (Figure 5). We first
create an initial set of extended patterns. We then create an initial,
synthetic, target drape that utilizes these patterns and conforms to
designer expectations. We use the patterns and this drape as input
to a standard simulator to obtain a reproducible output, which may
or may not align with designer expectations. We optimize output
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Fig. 6. Input garment and strokes (a) and unconstrained simulation outputs
produced using different initial drapes: (b) from flat panels; (c) from initial
3D garment (augmented with pleat sewing scheme); (d) from our initial 3D
target drape. (e) Final result (using iteratively updated patterns and target
drape). The horizontal lines highlight the garment proportions.

alignment with designer expectations by alternatingly refining the
patterns and the target drape, and generate the final output (Figure
5, right) by performing one more round of unconstrained simulation
using those.

Pattern Extension. Adding folds to an existing garment requires
extending the patterns in the region of interest, in the direction
orthogonal to the fold paths direction, to allow for buckling. We
compute the extension direction and the amount of extension neces-
sary to accommodate the user anticipated fold magnitudes for each
triangle contained in the region of interest. We extend the input
patterns by scaling these triangles using the specified directions and
scaling factors, while retaining triangle shape and scale everywhere
else (Section 5, Figure 5,b). In our pattern extension computation,
we explicitly account for sewing and pattern making constraints.
We enforce seam compatibility, ensuring that shared boundaries be-
tween panels that had the same length in the original garment retain
this property after extension. We also minimize changes in pattern
boundary shape in order to prevent high curvature oscillations,
which complicate pattern cutting and sewing.
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3D Target Drape Estimation. FoldSketch’s desired output is a 3D
garment that is physically reproducible from an input set of patterns,
and which conforms to the designer’s expectations as expressed in
the sketched input. The shape of a fold-enhanced garment is highly
dependent on an initial drape (Figure 6), as loose fabric can be
easily arranged to have different forms. One of our core challenges
is to obtain a suitable initial drape that, when combined with the
patterns, will produce the desired simulation output. We would
like a drape that reflects designer expectations and is also close to
the final output, in order to minimize the changes induced by the
simulation. We generate a target drape geometry that balances these
two considerations by employing a constrained garment simulation.
We augment the standard physical forces with synthetic forces that
serve two roles: they explicitly enforce designer expectations of
preserving input garment geometry outside the region of interest,
and of purely fold-aligned buckling inside it (Figure 5c, Section 6).
We initialize this simulation using the extended patterns and an
initial 3D garment drape which is based on the original garment
geometry, but which adds the additional synthetic constraints that
are necessary to form the designer’s envisioned folds (Section 6.1).

Update. Using the obtained estimated patterns and drape as inputs
to a simulation is unlikely to produce a garment that fully aligns with
designer expectations. We optimize the resulting garment using an
alternating 2D-3D process that updates the patterns and the drape
(Section 7). The output of this final stage consists of a set of patterns,
an initial drape, and a final output garment produced via simulation
that uses the patterns and the drape as input.

4 SKETCH INTERFACE

We illustrate FoldSketch’s UI with a worked example. Starting with
a draped garment on a mannequin (Figure 7, a) a designer adds one
or more path strokes (blue); the path strokes describe the locations,
length and direction of the folds that they wish to add. As explained
earlier designers typically form folds by elongating one or more
garment panel boundaries. While the choice of the boundary can be
deduced from the path strokes end-points, designers need the means
to define the stitching pattern and the expected amount of boundary
elongation. The designer provides this information by specifying
a fold type via a dropdown button; in this case, we are adding
uniformly gathered folds. They then add a gathering stroke (Figure
7, b) atop of the corresponding gathered boundary. This stroke
indicates the amount of extra material that must be incorporated into
the folds; for pleats it also encodes the pleat stitching pattern. Our
system then synthesizes a new garment (Figure 7, c)), incorporating
the designer’s desired folds. The designer may then add other folds
as desired, or revert their folds and experiment with new designs.
The design tool provides four types of folds (Figure 2): hemline
folds, uniformly gathered folds, pinched pleats, and knife pleats.
In all cases, the process is the same: the designer chooses a fold
type from a dropdown menu, draws multiple path strokes which
define the direction and length of the folds, and concludes with
a single gathering stroke which defines the amount of boundary
elongation and the stitching pattern for pleats. FoldSketch asks
users to specify the gathering configuration, and not the fold profile
cross section elsewhere along the fold paths, because designers know
the gathering configuration they want to use, whereas the fold cross
section varies in shape based on fabric physics. This interface allows

(@) ) T

Fig. 7. Ul walkthrough example: (a) fold path strokes (blue) traced over
input garment in 3D view; (b) gathering stroke; (c) output garment.

us to naturally employ schematic input to augment garments with
different fabric properties.

The amount of extra material needed to form the folds is then
computed by comparing the length of this stroke to the portion
of the corresponding, gathering, boundary in-between the stroke
end-points. To form pleats, we need to fold fabric onto itself and
stitch the overlapping portions together. We use the sharp corners
in the gathering stroke to dictate the location and magnitude of
the pleats (See Figure 8, e and f). For knife pleats, the user can also
choose between right or left foldovers (See Figure 8, f). Designers
can specify folds that extend between two gathering boundaries
(Figure 4). To communicate their intent rather than drawing two
gathering strokes, they simply need to draw path strokes that start
and end at two boundaries, and provide a gathering stroke on one
of these boundaries. We interpret such strokes as two-sided and
mirror the gathering pattern along the gathering boundary onto its
opposite boundary.

For hemline and uniformly gathered folds the frequency and
magnitude of the formed folds directly depend on the properties
of the fabric used [Rohmer et al. 2010]. We therefore only expect
designers to encode the amount of the extra material, rather than
the fold magnitude, when drawing the gathering stroke, and to use
the path strokes to dictate fold direction rather than frequency or
exact locations. For pleats we use the stroke geometry to dictate
the fabric folding and stitching pattern, determining their location,
magnitude, and orientation (Figure 8). Additionally, many input
garments contain pairs of symmetric panels. To support convenient
symmetric fold design, FoldSketch allows the user to reflect strokes
from one panel to its symmetric counterpart. Examples are shown
in Figure 8.

5 PATTERN EXTENSION

After the designer has marked up their desired changes in FoldS-
ketch, we estimate the shape of new garment patterns that are
appropriately extended to allow the designer’s target folds to form.
We have as inputs the garment patterns, draped on the mannequin;
the extended gathering seam length, computed from the user anno-
tation; and the designer specified fold paths.

We observe that, in order to facilitate the desired behavior, our
extended patterns have to satisfy the following conditions. Inside
the folds’ region of influence we expect each triangle to be elongated
orthogonally to the fold paths direction to facilitate subsequent
buckling. We expect the elongation to be maximal next to the gath-
ering seam, and to smoothly decrease further away from it; we
also expect these triangles to retain their original length along the
direction of the fold paths. Conversely, we expect pattern triangles

ACM Trans. Graph., Vol. 37, No. 4, Article 133. Publication date: August 2018.
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Fig. 8. Impact of different gathering strokes on output folds: (a,b) hemline
folds with different magnitude, (c,d) gathered folds with different magnitude,
(e) pinched pleats with different width (left and right shoulders), (f) knife
pleats with different orientation (left and right panels). The strokes on the
right side of the garment mirror those on the left.

(d

Fig. 9. Pattern extension: (a) input garment and strokes; (b) visualized 3D
space scaling field; (c) scaling field on 2D patterns; (d) extended patterns
(blue) and input patterns (green).

away from the folds to retain their original shape and size. To avoid

sewing artifacts, we must pay special attention to panel boundaries:

we need to strictly preserve the lengths of all panel boundaries
except the gathering seam. We also need to avoid high curvature
oscillations along them, as those make sewing and cutting panels
more challenging.

We solve for our initial extended patterns using a two step process.

We first compute the direction and amount of extension for each
garment pattern triangle (Section 5.1). We then deform the existing
2D patterns to incorporate this desired expansion (Section 5.2).
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5.1 Tensor Field Computation

We express the problem of finding expansion magnitudes and di-
rections for patterns as the computation of an appropriate field of
stretch tensors. In computing the field we face a chicken-and-egg
problem, where we must know the folds’ region of influence in order
to compute where scale should be preserved, while at the same time
we cannot determine the exact boundaries of this region of influence
without knowing the amount of scaling required to accommodate
the folds. We compute expansion directions first and use them to
compute preliminary region of influence boundaries; we then use
this set of boundaries to compute expansion magnitudes and finalize
the region of influence.

We compute target pattern expansion directions and magnitudes
in 3D space first as this is where the user input is provided. We then
project them to the actual patterns accounting for the deformation
these patterns undergo during the garment simulation. To define
our tensor we use a 2-Rotational Symmetry tensor field [Zhang et al.
2007], as stretch should be invariant under 180° rotation. We express
each tensor Tl.t as a 2x2 matrix using the singular value decompo-
sition Tit = R(0;)S;R(0;)T, where R(6;) = [Z;ﬁgg;)) czlsrz(e?g)] isa
si 0
0 1
where s; > 1. Both Tit and 0; are defined on the 2D local frame
of triangle i. This allows us to decompose the problem of finding
the tensor field into separately finding the per-triangle expansion
directions 0; and the per-triangle expansion amounts s;, facilitating
the two stage region-of-influence computation.

5

rotation matrix, and S; is the diagonal skew matrix S; = [

5.1.1 Computation of 3D
Expansion Direction. For com-
puting the expansion direc-
tions 6 of the tensor field,
we follow the framework and
nomenclature of Ray et al. [2009].
Rather than computing direc-
tional angles 6;, we employ
their method and instead com-
pute the representative vec- Fig. 10. e; x is the k-th edge of #;, q; is
tors V; = (cos(2-6;), sin(2-6;)), the vector defined in the local frame of
and extract 6; from them. To is t'he discrete Levi-Civita connection is
compute V;, we minimize an defined as ri; = f; — f;
energy function that balances smoothness of the tensor directions
against the requirements for these tensors to be orthogonal to the
fold paths:

E = Egmooth + Efit
Esmooth = Z Wz,l(Vt _R(27'ij)vj)2
ije&*
Ege = (/6D ) 6V - vimity? (1)
i

where &% is the set of all adjacent triangle pairs, sharing a common
edge.

The term Eg; is evaluated over all triangles i crossed by fold
paths. Here w;; are the standard cotangent weights [Pinkall and
Polthier 1993]; r;; € R is the discrete Levi-Civita connection [Crane
et al. 2010], which is necessary as 6; and 0; exist in different local
tangent spaces; Vl.init is the orthogonal direction of the path strokes
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on the triangle i; |t;| is the area of triangle i; and [¢;| is the average
triangle area. Since V; must be unit length, we use an iterative
minimization: we first minimize Egp,o0th +Eft Without normalization
constraints, then normalize the computed V; and proceed to iterate
renormalizing them after every iteration. We then compute 0; =
atan(V; - (0,1)/V; - (1,0))/2.

5.1.2  Preliminary Region of Influence. We use the computed di-
rections to extract an approximate set of boundaries for the folds’
region of influence. We trace the approximate boundaries by start-
ing from the end points of the gathering seam, and following the
direction orthogonal to our computed extension direction. Tracing
terminates when the boundary of the current pattern is reached.
We use the Runge-Kutta method [Ascher and Greif 2011] to per-
form the tracing. We solve an initial value problem for the ordinary
differential equation dby/dt = f(by(t)), bp(0) = pe, i, where by
is the boundary to be traced, t is the integration parameter, f is
the vector field orthogonal to the extension directions 6, and pe,;
is the i-th end point of the gathering seam. Starting from each
Pe,i> we apply the midpoint RK2 scheme to evaluate by (tn+1) <

by (tn) + At f(bp(tn) + %Atf(bp(tn))) in each step n.

5.1.3 Computation of Expansion Magnitudes. To obtain the ex-
pansion magnitudes s;, we compute a smoothly varying scalar field
that propagates the anticipated expansion along the fold paths
throughout the triangles in the region of influence on the 3D gar-
ment mesh. Our formulation accounts for four considerations: mag-
nitude smoothness, accommodation of the anticipated scaling along
fold paths, preservation of original scale outside the region of in-
fluence, and preservation of the lengths of all pattern boundaries
except the gathering seam:

minE = Z wi_jl(si —sj)% + A Efen
N
ije&*
———
Smoothness Boundary length preservation
o MWET o+ Auflul Y Il - 1.0)7 )

ieB

———
Fold path scaling  Scale preservation outside region of interest

We empirically set A; = 100, A, = 10.

Fold-Driven Scaling. To scale garment material around fold paths,
we first smoothly interpolate the scale terms along each fold path.
We use the ratio between the lengths of the gathering stroke and its
corresponding pattern boundary segment as the scale at the start
of the path, and set the value to 1 at the end of the path furthest
from the gathering boundary. We then constrain the scales within
triangles intersecting the fold path to scale by the average scale
factor s] along the intersected fold path segment:

EFE = 1/16] ) 1til(si - 5))° 3)
ief
where ¥ contains triangles intersecting fold paths.

Pattern Boundary Length Preservation. We seek to strictly pre-
serve the lengths of non gathering seam panel boundaries. We can
explicitly express triangle edge length as a function of the stretch s;
in a given direction:

li(s;) = ll{‘/s? cos2 aj + sin® a;. 4)

Here [] and [; are the lengths of the boundary edge before and after
expansion, and ¢; is the angle between the stretch direction and the
boundary edge. This function is nonlinear and thus hard to optimize;
we therefore linearly approximate Eq.4 around s; = 1 instead:

al;
(1) = 1 + (5 p)st=a(si = 1) (5)
We express boundary length preservation as:
Elem = 1)1 )" (1fGsi) - 1} ©)
ie&()j)

Here [/ is the average boundary edge length, and &(j) are the partic-
ipating boundary edges. This expression is equivalent to enforcing
the constraint that s; = 1.0, i € &(j) weighted by I] cos® a;. Note
that if the extension direction is orthogonal to the edge segment,
this constraint vanishes as desired.

Final Region of Influence. At this point, we can now trivially define
the final region of influence: a triangle ¢; is contained in the region
of influence if its scalar component s; > 1.0 + ¢.

5.1.4 Tensor Field Projection onto 2D Patterns. To actually ex-
pand the patterns, we must transfer the expansion tensor field,
computed on and expressed with respect to the 3D draped input
garment, onto the set of 2D patterns. Since fabric often stretches
under simulation this stretch must be factored into our computa-
tions: failing to account for stretch incurred by the draping process
would cause a naive algorithm to assume sufficient material already
exists to form folds, and hence the amount of required 2D pattern
extension may be underestimated (Figure 11). We employ a trans-
formation scaling approach to correctly account for stretch during
2D pattern extension.

Recall that we have constructed the per-triangle symmetric ten-
sors Tl.t = R(0;)S;R(0;)", which specify how much each triangle
must expand and in what direction. However, this deformation is
computed with respect to the simulated 3D garment. To obtain the
corresponding change for garment patterns, we need to compute
a transformation for each of the 2D pattern triangles ¢; that, after
simulation, will extend their corresponding 3D triangle ¢/ in the
direction and by the amount specified by the tensor field. We first
compute a common coordinate frame for the 2D pattern and 3D
garment triangles by rotating them to the xy plane and co-aligning
them, so that both triangles are placed at the origin and have a desig-
nated common edge u that is aligned with the x-axis. We refer to the
transformed replica of the triangle ¢’ as . The 2D intrinsic action of
the garment simulation per triangle is then described by the 2 x 2
matrix T4, = Tdot,-. Assuming the impact of the simulation on
the deformed triangle is the same as on the undeformed one, we
must find a transformation T, such that Tl.t = TitTdOt,- = TdOTi’ ti.
We can consequently compute T as

_ (7d0\-17t1d0
T/ = (171} T (7)
Fold Pre-Conditions. In order for the designer’s specified folds to
form, we must take into account that the original simulation may

have stretched the fabric when draping it on the mannequin, and
that this stretch is not explicitly accounted for in the computation

ACM Trans. Graph., Vol. 37, No. 4, Article 133. Publication date: August 2018.
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Fig. 11. Impact of fold pre-conditions: (top) result without and with or-
thogonal stretch cancellation; (bottom) result without and with fold path
stretching. Note the impact on fold length and shape.

of the per-triangle stretch tensors T} If the extension that we have
computed is of similar or smaller magnitude to the stretch of the
draped garment, then adding the amount of material specified by
T/ to the garment pattern is sufficient to release the stretched fabric,
but may not be sufficient to form folds (Figure 11 top).To actually
add visible folds, the extension needs to be increased to fully cancel
out the stretch and to locally extend the 3D garment to reflect the
designer’s expected fold magnitude.

In addition to accounting for stretch orthogonal to the fold direc-
tion in the original drape, we also consider fold feasibility. While ver-
tical folds are consistent with gravity, horizontal and near-horizontal
folds can only form if the fabric is either very stiff or is stretched
along the fold path (Figure 11 bottom). If the user placed folds are on
a loose part of the garment, there is no way to guarantee that they
show up without major changes to the garment style. However if
the garment is locally tightly fitting, we can improve fold feasibility
by ensuring that the garment is, at least, weakly stretched along the
fold direction.

We therefore account for draped garment stretching and fold
feasibility by simultaneously canceling the stretch in the original
deformation gradient of the draping on the left-hand side of Eq.7
to approximate the deformation gradient when draping the new
patterns, and weakly shrinking each input triangle ¢; when Tid0 has
no stretch along the fold path:

(T} )_leOT-O =TT ®)
Here T = R(6;) max(l U i,(2, 2)) 0 R(9;)T is the tensor with
k

the part of stretch and compression to be cancelled in T.d 0 where

d0,R do,R dOR
k=1ifT; (11)>mandk—095 T(11)

R(@i)TTidOR(@,). The final transformation Tl.0 is then:

otherwise, and T;

0 _ (1d0y—-1 td0
T = (T2 T3 T! T

5.2 Pattern Deformation

The collection of transformations T describes the intrinsic change
that each triangle on the input 2D pattern P is expected to undergo.
These can be applied to the patterns using standard local-global
deformation approaches [Liu et al. 2008; Sorkine and Alexa 2007].
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However, as previously mentioned, the shape of the resulting pattern
boundaries affects both cutting and sewing - more curved bound-
aries, especially those with high curvature variation are harder to
process. We thus augment our formulation with a boundary-shape
preserving term, and minimize:

DSt~ RAPS]IE + 4y Y By

ieT jeB
Here R; is a per-triangle rotation matrix; S; = [v;,1 — vi,0,vi,2 —
vi0] € R%X2 5 the local coordinate frame of the deformed triangles,
and S € R?*2 js the local coordinate frame of the original triangles.

boundary

Ej
We minimize this energy using a standard local-global approach,
[Sorkine and Alexa 2007]. We optimize R; in the local step using
singular value decomposition, and optimize S; in the global step
using the Sparse Cholesky implementation in the Eigen library
[Guennebaud et al. 2010].

encodes boundary shape. We empirically set A, = 10.

Boundary Shape Preservation. When preserving boundary shape,
we differentiate between vertices that are located on straight bound-
ary sections and those that are located on curved boundary sections.
Let e]f be the vector between the two original vertices v}f and v;_l
on a boundary; that is: e}’ = vj’. - v}_,. We distinguish between
straight and curved vertices by thresholdmg |W’+lll — 1| with
the threshold set to 1073, For each curved boundary vertex vJ’. we

express its curvature normal
I (o ’ ’
n-—( €y = €, y,ej’x+ej+1’x)

as a linear combination of e and e/, {E

n] = aje; +a]+1 ]+1

We then define
Eboundary
j
where ej = vj — vj_1. For straight boundaries, we use the line
Laplacian as the respective energy:

= ||" - (a]e] + 0‘]+13]+1)”

boundar 2
E; Y = lloj = (wjm1vj-1 + (1 = wj—)vj)l
where wj_1 = |e] 1 |/(|ej’.| + |ej’.+1|).
To avoid 51mulat10n artifacts due to poor triangulations, we remesh
the obtained 2D patterns Pe, and resample the tensor fields defined
on them for later use.

6 TARGET DRAPE COMPUTATION

Our final goal is a garment which can be reproduced via an uncon-
strained simulation from a set of appropriate patterns and a suitable
initial drape. However, draping a garment to achieve a desired fold
look often requires careful initial placement. As Figure 6 demon-
strates, simulation using the extended patterns alone and a range
of standard initial drape configurations can result in unappealing
outputs that do not conform to the expected garment look. We thus
require a principled way to compute an initial drape that, under
simulation, will produce the designer’s expected output. Our drape
computation is based on two observations that follow traditional
fold design practices. We note the shape of the output garment is
more strongly correlated with the shape of the input drape if this
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drape itself is reproducible - that is, if the drape is, by itself, an output
of a simulation using the current patterns. While we have no direct
control on the shape of the output garment, we note that we can in-
directly control its shape by computing a new target drape that is as
close as possible to reproducible, but that also aligns with designer
expectations. We balance reproducibility and design preservation
by computing the drape via a constrained simulation that augments
the cloth simulation energy with synthetic design preserving forces.
We can use the resulting drape and current patterns as an input to
an unconstrained simulation that computes a reproducible garment
(Figure 6¢). To improve this garment’s adherence to designer expec-
tations, we update the patterns and recompute the drape (Section 7,
6d).

We introduce synthetic design-preserving forces by augmenting
the energy formulation used by the cloth simulator of interest E.jop,
with an additional design term Eqesig,. We integrate the synthetic
term into the formulation, augmenting the energy gradients and
Hessians, and optimize

Epas = Ecloth + Edesign
using the standard time-stepping process. We tested our framework
with Sensitive Couture [Umetani et al. 2011] and ArcSim [Narain
et al. 2013], as discussed in Section 8.

Design Preservation Energy. Our design preserving energy con-
sists of two terms, one applied within the region of interest and one
applied outside it. Outside the region of influence, we preserve the
original garment shape by aligning every vertex to its positions on
the original 3D garment G, using spring forces:

1 2
Egesign = Eku Z [loi = ‘U;H
i

Here ky, is the stiffness coefficient of the energy, and v; and v] are
vertex coordinates on the target garment G; and original garment
G, respectively.

Within the region of influence, we expect the garment shape to
significantly change compared to the original. We expect the fabric
to bend while forming the desired folds; we therefore anticipate
changes in surface normals, as well as some tangential and normal
vertex displacement. Consequently, the main phenomenon that
we seek to penalize is buckling or bending along an undesirable
direction. This requirement can be cast as a restriction that any
change in the normal should be orthogonal to the path direction:

f 1 S A
Eresign = 7kr 21T = RITY |17 ©
13

Here kg is the stiffness coefficient of the energy, T; and Tl‘.D are the
local coordinate frames [Sumner and Popovi¢ 2004] of the corre-
sponding triangles on the target garment G; and the 2D patterns Pe,
and RJl is a 33 rotation matrix recomputed at every simulation time
step j. We compute RJl as the product of the two matrices R;.’Rf’J ,
where RY is the rotation extracted from the deformation gradient of
theloriginal garment T} using singular value decomposition, and
Rf’] is the projection of the transformation between the original
and current time step drapes to the valid space of rotations around
the fold line direction. We compute R;’j at each simulator time step
as follows. We first project the current triangle normal nJl in sim-
ulation step j onto the plane orthogonal to the fold path to obtain

i = i

! [} =(fi-n)fil

Then we compute the angle Hf’] = acos(nf J . n?) between nf ") and

, where f; is the path direction on triangle i.

the normal on the input garment n{. Rf’] is then given by the matrix

that rotates n? to n‘f ") around f; with Hl.e .

In addition to undesired buckling, we seek to minimize tangen-
tal displacements of garment boundaries with respect to the body
within the region of interest. This constraint is enforced implicitly
for all seam between panels inside and outside the region of influ-
ence. For hemlines, we enforce this constraint by augmenting the
energy with a term that penalizes tangential shifts:

f 1 - pirPy2, L N LONZ L 182
Epesign = 355 2 WTRITP IR+ Sku ) ((=0p)- 6P +((0j-0))1])
i J
Here j iterates over the hemline vertices inside the region of
interest, and t}) and t} are two orthogonal tangential vectors at
vertex j.
To incorporate this term into the cloth simulator, we apply damp-

ing to Egesign and Egesign
simulator when minimizing Ejo,, and adjust the magnitudes ky,
and ky of the staging “forces” to bring them to the same scale with
the cloth forces. Section 8 provides the specific numbers used for

the simulators we tested.

that is similar to the one employed by the

6.1 Initial Drape

When running the augmented

simulation for the first time, we =

need a suitable initial drape that A t Jmesh

can accommodate our target i dedges
stitches

folds. While the initial garment
provides a reasonable starting W Y.\ [
. \K
point for most fold types, pleats pi::b N

require special processing. In -» ’ »
particular, we want fabric to fold ]

sharply along pleats, and we want the folding order along them to be
preserved (Figure 2). To allow crisp pleats, we refine the mesh along
the expected pleat paths starting at the sharp corners of each pleat,
and following the fold-path directions (see inset, top). We introduce
the correct folding order by stitching the pleat boundary segments
in an in-to-out order, instead of all at once, starting from the layer
closest to the mannequin. To further penalize interpenetrations, we
apply weak spring forces to pull the segments in the outer layer
along their normal direction away from the mannequin. This term
helps separate the layers, guiding the fabric towards the desired
folding order that we want while simultaneously avoiding collisions.
The stiffness of these springs is set to be proportional to the gap
between the inner stitch pairs, so that they won’t pull the outer
layered fabrics after the inner layer has been stitched. We emphasize
pinched pleats by introducing short 2cm seams orthogonal to the
gathering seam at the pinching point (see inset, bottom).

7 2D AND 3D UPDATE

At this stage in the process we have extended patterns and an initial
drape that we can use to compute a simulated garment, via simple
unconstrained simulation. While clearly reproducible, this garment
may exhibit undesirable artifacts (Figure 12). We minimize such
artifacts by using a two pronged approach that modifies our patterns

ACM Trans. Graph., Vol. 37, No. 4, Article 133. Publication date: August 2018.
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Fig. 12. Pattern and garment update: (a) user input garment and strokes; (b)
extended patterns (blue) superimposed on original (green) and initial target
drape; (c) unconstrained simulation output using these patterns and drape;
(d) updated patterns (purple) superimposed on extended ones (b,blue) and
unconstrained simulation output using these new patterns and initial drape;
(e) final patterns (red) superimposed on updated (purple) and extended
(blue) and final unconstrained drape.

and target drape. First, we modify the 2D patterns to construct
new patterns that, under unconstrained simulation, result in an
output that is closer to the initial drape. Second, if the result is not
sufficiently close, we repeat the constrained simulation with the
new patterns generating a new drape, which we can expect to be
more physically reproducible. We then iterate until the two steps
converge.

Pattern Update. We first look for a new set of 2D patterns that, in
an unconstrained simulator without synthetic forces, will produce
an output garment as similar as possible to the target drape. We
achieve this goal by following the pattern update framework of
Bartle et al. [2016]. Specifically, we measure the intrinsic difference
between the target drape and the current simulated garment and
update the patterns in a manner designed to minimize this difference;
we repeat the simulation and update steps until convergence. The
output of this stage is a set of patterns and a new simulated garment.

Garment Update. The obtained simulated garments are close to,
but not necessarily identical to, the target drape generated using
synthetic forces. In particular they may exhibit fine-level deviations
such as secondary folds, local sagging, or bulging (Figure 12c). These
artifacts are typically due to the fact that the constrained simulation
result is not fully physically reproducible, and has material held in
place by the synthetic draping forces; without these synthetic forces,
this material sags or slides due to gravity. We rectify this problem by
computing a new target drape that is more reproducible. We repeat
the constrained simulation (Section 6.1) using the new patterns
and the simulated garment as the initial drape. The input to this
constrained simulation consists of a set of more accurate patterns,
and an initial drape (simulated garment) that is both reproducible
and better aligned with the synthetic design energy we use. We
thus expect the resulting target drape to be much closer to the
simulated one, and thus more reproducible. We repeat the pattern
and target drape update steps until the simulated garment geometry
no longer changes. Each iteration simultaneously improves the
physical feasibility of the target garment and the visual similarity
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between the target and simulated garments by reducing undesirable
artifacts on the latter.

Convergence. While there is no the-
oretical guarantee that the final, un- Average triangle area

constrained simulation output garment ¢ — 10°
- . Q| [ oproducible 31 garment
fully conforms to designer expectations, s T 2Dpatiems

in our experience this is the case for all
inputs where the user specified folds
can be feasibly achieved; see Figure 19 I
for some examples where they cannot. s %"
In our experiments, five update itera- patter update iterations
tions were sufficient for convergence.
While we similarly have no theoretical
guarantees of algorithm convergence, %%
we note that, starting from the initial oo%:
extended patterns, each pattern update
step we perform reduces the area of pat-
tern triangles [Bartle et al. 2016], and
each constrained simulation reduces
the difference between the target drape
and the prior unconstrained simulation output. Consequently, one
can see our framework as an example of a fixed-point iteration
scheme [Bertsekas 1999]. We validate our convergence claim empir-
ically by measuring the evolution of areas of the triangles on the
patterns and the simulated garment, as well as the percentage of pat-
tern triangles that at each iteration either shrink or remain the same
with with respect to the previous iteration (see inset). The graphs
show consistent and convergent shrinkage behavior consistent with
that of a fixed-point scheme.

Non-expanding triangles
100%

— 2D patterns

85%

80%
10 20 30
pattern update iterations

8 RESULTS AND VALIDATION

We used FoldSketch to generate the multiple examples showcased
throughout the paper, created from a range of diverse initial gar-
ments including shirts, dresses, pants, shorts, and overalls. We also
tested our input on non-garment cloth objects, including a flag and a
tissue box cover. Our outputs contain the designer’s expected folds,
and preserve the input look in regions away from the folds.

The inputs we tested on are representative of a large spectrum of
cloth objects, including both tight fitting (e.g. the shirt in Figure 4,
and the skirts in Figures 6, 7) and loose garments (e.g dresses in
Figure 15). We showcase all four types of folds handled by our UI:
hemline folds (e.g. Figures 1 and 13), gathered folds (e.g. skirt in 3,
and shirt in 4), knife pleats (e.g. short sides of the tissue box in 13,
and blue pants in Figure 14d), and pinched pleats (e.g. orange dress
in 16 and yellow dress in 14). We showcase a range of fold-path
orientations including vertical (Figure 1, pants in 14), diagonal (skirt
in Figure 7, green T-shirt in Figure 14), and horizontal (e.g Figure
13, 12, and shirt in Figure 11).

We generated our examples with four different material settings:
a thinner material (e.g. purple skirts in Figure 8, green dress in
Figure 15) and a thicker material (e.g. yellow skirt in Figure 17,
yellow and purple dresses in Figure 15) in our Sensitive Couture
examples; a Sensitive Couture material matching our real-world
flag and cover; and the default shirt material supplied by ARCSim.

We further validate the performance of FoldSketch on different
materials, by showing examples of the same schematic input ap-
plied to garments created from the same initial patterns, but with
different, more extreme materials such as silk and leather (Figures 3
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Fig. 13. Manufactured example: (left to right) Plain input tissue box cover
with user sketched schematic folds and final post-simulation result aug-
mented with user-expected folds; original (green) and modified final (red)
patterns; real-life replica manufactured using the produced patterns, with
zooming in highlights the complex and evolving output fold profile shapes.

and 18). While the resulting folds are distinctly different, they still
clearly reflect designer intent. This shows our ability to support
multiple materials with the same schematic input, provided that the
schematic input is reasonable for the chosen material supported by
the simulator. The flag and tissue-box examples also show progres-
sive application of multiple fold types and orientations to the same
input.

Simulators. We tested our method with two simulation engines,
Sensitive Couture [Umetani et al. 2011] and ARCSim [Narain et al.
2013]. Sensitive Couture is optimized for speed over accuracy, whereas
ARCSim is optimized for precision at the expense of slower com-
putation times. We show results created with ARCSim in Figure
16; the remainder of the results in the paper were generated using
Sensitive Couture, which is faster and provides sufficient accuracy
for our needs. To implement multi-component garment meshes in
ArcSim, we reimplemented the stitching scheme used by Sensitive
Couture. In order to avoid numerical instability, stitches are only
defined per vertex of the shorter seam, which allows small holes
between seams if the two sides have very different lengths; this
occurs when our system produces gathered folds. After simulation
concludes, we postprocess these seams for rendering purposes by
moving vertices on the longer seam towards their corresponding
positions on the shorter seam.

Timing And Parameters. Our input meshes range in size from
10K to 20K triangles. This number is consistent with those used in
commercial garment design softwares such as Marvelous Designer,
and was chosen to provide a reasonable trade-off between speed and
accuracy. Our runtimes using Sensitive Couture Simulator [Umetani
et al. 2011] range from 8 to 20 minutes, with the vast majority of
the time spent inside the simulation engine. For Sensitive Couture,
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we set ky = 0.08 and ky = 0.1 for Egesign, and apply damping
with coefficient 0.01. For ARCSim, we set k;, = 2.0 and kf = 2.5
for Egesign With damping coefficient 0.25. These design-preserving
energy parameters remain constant for all examples generated with
a specific simulator. As different simulators have different scales for
their cloth energies, we must scale our parameters to ensure that
they have enough force to allow FoldSketch to modify the garment
shape and override other simulation elements.

To test our algorithm’s scalability, we subdivided the input mesh
in Figure 7, creating a new mesh with 54K triangles. Running this
model throughout the system took significantly longer - 110 minutes
total - but required the same number of iterations to achieve the
same error bound and converged to a visually similar result.

Algorithmic Choices. We consider three different alternatives to
our algorithm, and show their failure modes. Figure 4, left shows the
effect of producing a 3D target garment using purely geometric folds
created by folding circular grooves around the designer specified
strokes, and then using the physics-aware pattern computation of
Bartle et al [2016] to create the patterns. As this figure shows, the
intended folds simply collapse during subsequent simulation.

We compare our pattern extension technique to one which scales
patterns along the gathering seam and fold paths using standard
ARAP deformation, where scales for along the gathering seam and
paths are computed using the same process as ours (Section 5.1.3).
As Figure 17 shows, the results generated by this approach fail to
capture the designer folds while introducing additional unwanted
folds and changing the garment style.

Finally, we show the effects of sidestepping the 3D target compu-
tation stage and using the initial extended patterns directly within
a simulation engine (Figure 6). As shown, simulating a new gar-
ment using the extended patterns and a range of standard initial
drape configurations results in unappealing garments that do not
correspond to the expected garment look. Our final combination
of patterns and drape produces a garment that satisfies both our
physical reproducibility requirement and design constraints with
no unwanted artifacts (Figure 6e).

Designer Validation. Three of our input fold designs (Figure 15)
were traced by a professional designer who found our tracing in-
terface easy to use. He commented that the results were “exactly
what I expected!”, and that “the software you are working on really
delivers” and would be very helpful for experts and amateurs alike.

Manufacturing. We manufactured two cloth objects using pat-
terns generated by FoldSketch - a flag (Figure 1) and a tissue-box
cover (Figure 13). The resulting manufactured objects clearly con-
tain the designer’s expected folds, and were manufactured directly
from our generated patterns without further modifications. To eval-
uate the efficiency of FoldSketch, we asked a professional designer
to modify the initial patterns for the tissue-box cover to contain our
desired folds. The designer produced an initial set of extended pat-
terns for a fold-enhanced tissue box that would still require several
stages of revision in order to be acceptable; this first set of patterns
took five hours to complete. The designer was very impressed to
note that our complete set of patterns was created in under half an
hour, including both design and computation time.

Perceptual Validation. We validate the outputs of our method via
feedback from ten non-experts. To collect their input, we presented
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(b)

© Gl

)

Fig. 14. Additional results created using Sensitive Couture.

(b)

Fig. 15. Folds created from designer annotations.

(2) (b)
Fig. 16. Examples created using ARCSim.
them with a series of pictures of garments, consisting of an input
garment with FoldSketch annotations, and two outputs: one of
which was generated by FoldSketch, and one of which was generated
by one of our design alternatives. We asked the question: "Which of
the garments below “B” or “C” is more reflective of the user input
“A” above?" Survey participants selected our results as being more

representative of the input annotations 95% of the time; please see
the supplemental material for more information.

9 CONCLUSIONS

We presented FoldSketch, the first framework that allows designers
of both virtual and real garments to create physically reproducible
folds and pleats via a simple 3D sketching interface, eliminating
the need for tedious and unintuitive 2D pattern manipulation. We
demonstrated the applicability of our framework on a large range
of fold and pleat configurations, and confirmed its ability to operate
in conjunction with different simulation engines. The key novel
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Fig. 17. Comparison with deformation based pattern extension: (left) input,
(center) garments simulated using deformation-based extended patterns,
(right) our results. The naive approach results in multiple artifacts.

technical components of FoldSketch are a 3D to 2D pattern exten-
sion algorithm that translates user sketched schematic folds into
per-triangle deformation gradients applied to the triangles of the
original patterns, a constrained simulation framework that incor-
porates design constraints into off-the shelf garment simulators,
and an update mechanism that enables the correction of secondary
simulation artifacts.

Limitations and Future Work. Our system follows user specifi-
cations in an effort to generate the folds they desire. While we
do pre-process the garments to better accommodate folds in tight-
fitting regions (Section 5.1.4) we cannot guarantee that folds that
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Fig. 18. Extreme material experiment: user input garment and strokes (a),

final unconstrained drape with thinner textiles (b), stretchy knits (c), silk
(d), and thick leather (e).
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Fig. 19. Our method fails to detect infeasible inputs such as long horizontal
fold-paths in loose garment regions (a), or highly curved independent fold-
path that would need more stitches along the path, or special fabrics to
support (b).

require more significant pattern edits will be generated. For future
work, it would be interesting to explore detection of infeasible in-
puts, something our current system does not do, and to provide
feedback to the designer. This would be particularly useful for am-
ateur designers who have no sense of what folds are feasible. Our
system is designed for creating folds achievable through changes
in pattern shape alone. Future work on incorporating topological
changes, such as the introduction of darts and gussets, can extend
the range of achievable designs. Future work on material modeling,
such as searching for a space of reasonable material parameters for
a specific design, or applying adaptive stitching to achieve consis-
tent design across different materials, would benefit many practical
applications.
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