
Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination

MAX LIMPER, Fraunhofer IGD / TU Darmstadt, Germany
NICHOLAS VINING, University of British Columbia, Canada
ALLA SHEFFER, University of British Columbia, Canada

Fig. 1. Traditional texture atlas generation frameworks, such as [Poranne et al. 2017] (a), produce results which can have low packing efficiency and are
not necessarily bijective (see inset). We produce an overlap-free atlas with the same parametric distortion and significantly higher packing efficiency by
strategically segmenting and repacking the original charts directly in 2D space (b). We use the same framework to efficiently pack 2D patterns for 3D
fabrication (c-e).

Packed atlases, consisting of 2D parameterized charts, are ubiquitously used
to store surface signals such as texture or normals. Tight packing is similarly
used to arrange and cut-out 2D panels for fabrication from sheet materials.
Packing efficiency, or the ratio between the areas of the packed atlas and its
bounding box, significantly impacts downstream applications.

We propose Box Cutter, a new method for optimizing packing efficiency
suitable for both settings. Our algorithm improves packing efficiency without
changing distortion by strategically cutting and repacking the atlas charts
or panels. It preserves the local mapping between the 3D surface and the
atlas charts and retains global mapping continuity across the newly formed
cuts. We balance packing efficiency improvement against increase in chart
boundary length and enable users to directly control the acceptable amount
of boundary elongation. While the problem we address is NP-hard, we pro-
vide an effective practical solution by iteratively detecting large rectangular
empty spaces, or void boxes, in the current atlas packing and eliminating
them by first refining the atlas using strategically placed axis-aligned cuts
and then repacking the refined charts. We repeat this process until no fur-
ther improvement is possible, or until the desired balance between packing
improvement and boundary elongation is achieved. Packed chart atlases are
only useful for the applications we address if their charts are overlap-free;
yet many popular parameterization methods, used as-is, produce atlases
with global overlaps. Our pre-processing step eliminates all input overlaps
while explicitly minimizing the boundary length of the resulting overlap-free
charts. We demonstrate our combined strategy on a large range of input
atlases produced by diverse parameterization methods, as well as on multiple

Authors’ addresses:Max Limper, max.limper@siggraph.org, Fraunhofer IGD / TUDarm-
stadt, Fraunhoferstr. 5, Darmstadt, 64283, Germany; Nicholas Vining, nvining@cs.ubc.
ca, University of British Columbia, 201-2366 Main Mall, Vancouver, British Columbia,
V6T 1Z4, Canada; Alla Sheffer, sheffa@cs.ubc.ca, University of British Columbia, 201-
2366 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2018/8-ART153 $15.00
https://doi.org/10.1145/3197517.3201328

sets of 2D fabrication panels. Our framework dramatically improves the
output packing efficiency on all inputs; for instance with boundary length
increase capped at 50% we improve packing efficiency by 68% on average.

CCS Concepts: • Computing methodologies→ Texturing;Mesh geometry
models; Parametric curve and surface models;

Additional Key Words and Phrases: Texture Atlas, 2D Patterns, Packing,
Packing Efficiency

ACM Reference Format:
Max Limper, Nicholas Vining, and Alla Sheffer. 2018. Box Cutter: Atlas
Refinement for Efficient Packing via Void Elimination. ACM Trans. Graph.
37, 4, Article 153 (August 2018), 13 pages. https://doi.org/10.1145/3197517.
3201328

1 INTRODUCTION
2D parameterized chart atlases are ubiquitously used to store surface
signals such as colors, textures, or normals [Hormann et al. 2007;
Sheffer et al. 2007]. While many popular parameterization methods
produce irregularly shaped atlas charts, the actual signals they en-
code are typically stored as 2D rectangular images defined over the
bounding box of the packed atlas to allow for efficient access and
GPU processing. Any space within this box that is not occupied by
the atlas charts (Figure 1a) is wasted as it contains no actual signal.
Wasting significant amounts of both memory and disk space is a
concern for asset-heavy real-time applications such as games. Space
waste considerations are also of concern for applications that use
2D panels for fabrication: when panels are cut out from flat material
sheets, the material within the bounding box of the cut panels is
often too fragmented to re-use for other needs and is consequently
discarded [Koo et al. 2017] (Figure 1c). Our Box Cutter algorithm
reduces material and memory waste by refining and repacking input
atlases to explicitly maximize their packing efficiency, or the ratio
between the sum of areas of the atlas charts and the area of their
bounding box (Figure 1bd).
We achieve this goal by strategically cutting the existing charts

to facilitate more efficient packing. In selecting the cuts, we seek to

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201328
https://doi.org/10.1145/3197517.3201328
https://doi.org/10.1145/3197517.3201328

153:2 • Max Limper, Nicholas Vining, and Alla Sheffer

Fig. 2. Box Cutter overview: Overlaps in the input (a) are resolved and seams are closed (if feasible), leading to a bijective parameterization with short
boundaries (b). The main stage of our algorithm then repeatedly cuts and repacks charts producing an atlas with high packing efficiency (PE) and controlled
maximum boundary length (BL) (c).

Fig. 3. Compactness versus packing efficiency: Packing compact, near con-
vex, charts produced by VSA [Cohen-Steiner et al. 2004] (a) produces an atlas
with the same packing efficiency as the much less compact ones produced
by D-Charts [Julius et al. 2005] (b), which have much shorter boundaries.
Our method refines the D-Charts atlas (b) to produce an atlas (c) with
significantly higher packing efficiency, while constraining the boundary
length to be less than the charts in (a).

cap or minimize boundary length elongation, since longer bound-
aries may lead to decreased rendering performance due to cache
misses [Hakura and Gupta 1997], and may also cause texturing
artifacts [Poranne et al. 2017]; resolving these artifacts requires du-
plicate storage of cross-seam signal content [González and Patow
2009]. Longer seams are similarly undesirable in fabrication settings,
where they increase fabrication time and may affect the appearance
of the output. Lastly, atlases used for either signal storage or fabri-
cation must be overlap-free, yet the raw atlases produced by many
parameterization methods contain overlaps (Figure 1c,Figure 2). Box
Cutter eliminates these overlaps prior to packing using an effective
boundary length minimizing strategy.
Previous approaches to atlas generation compute chart bound-

aries either prior to, or during, the parameterization stage (Section 2).
Consequently, their choices impact not only packing efficiency but
mapping distortion and continuity. Our method operates on previ-
ously computed atlases and does not change local chart geometry;
therefore it does not affect distortion and maintains mapping con-
tinuity (up to a rigid transformation) across all newly generated
seams. It is therefore well suited for use in conjunction with recent
frameworks that cut the processed model during parameterization
(e.g. [Myles and Zorin 2012; Poranne et al. 2017]). Users can first use
one of these frameworks to provide the desired tradeoff between
mapping distortion and boundary length, and then use our method
to remove overlaps and optimize packing efficiency.

Computing charts that are amenable to efficient packing is known
to be computationally hard [Chen et al. 2015]. A common approach
in prior art has been to rely on geometric proxies, or properties of
individual charts, as the means to predict packing efficiency. One
commonly used proxy is chart compactness (convexity and round-
ness) [Sander et al. 2003; Zhou et al. 2004]. However, compactness

Fig. 4. (left) Large void boxes in an existing atlas (grey) are strongly sugges-
tive of desirable cut locations (dashed lines). (right) After executing the cuts
and repacking the new charts, packing efficiency significantly improves.

is not a reliable proxy as both compact and highly non-compact
charts with comparable boundary lengths can be packed with equal
efficiency (Figure 3). Similarly, while pyramid-shaped geometries
often allow for efficient packing [Chen et al. 2015], one can easily
find examples where this is not the case: for instance, the packing
efficiency of any individual triangle is just 50%.
Instead of looking for indirect proxy chart properties that make

them amenable to efficient packing, we derive the location of our
new cuts from actual packing solutions.We note that, given a packed
atlas, the locations of the unused empty spaces - or voids - are
strongly suggestive of potentially desirable cut locations (Figure 4).
In particular, the side lines of rectangular axis-aligned voids, or void
boxes, are strongly suggestive of efficiency improving cut locations.
By extending these side lines we obtain a collection of refined charts
that can often be rearranged to form a more efficiently packed
atlas. We therefore use such void box elimination steps as the core
operation of our optimization framework.

Overview. We optimize packing efficiency using an iterative cut-
and-repack process. At each iteration we pack our charts into an
atlas, locate void boxes, and assess the impact of removing them
using one of the side line cut options. We then select and execute
the elimination step that best improves packing efficiency while
avoiding extreme boundary elongation. To accurately and rapidly
assess packing efficiency, we follow a common approach used by
practitioners in the real-time computer graphics space [Dalmau
2003] and employ a rasterized working space. Raster space compu-
tation allows us to efficiently repack charts, detect void boxes, and
compute different atlas properties.
To process raw atlases generated by popular parameterization

techniques, before applying the cut-and-repack iterations, we elimi-
nate any pre-existing global overlaps within the input charts (Sec-
tion 4). We express the problem of finding the shortest necessary
mesh cuts that separate the overlapping regions as a Minimum Cost

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination • 153:3

Lifted Multicut Problem (LMP) and efficiently solve it with exist-
ing algorithms. We then further reduce cut length by welding the
resulting charts together across different sets of edges when local
chart geometry allows for distortion-free and overlap-free welding.

Contribution. In summary, the contributions provided by this
paper are as follows.We present a framework for optimizing packing
efficiency of input 2D atlases that guarantees overlap-free atlases
and avoids undesirably long chart boundaries. Ourmethod is capable
of processing input meshes with tens of thousands of triangles
in just a few minutes. Our framework is based on two key novel
technical components: an effective chart cutting heuristic based
on void boxes, which facilitates efficient search for desirable atlas
configurations, and a generator for initial overlap-free layouts that
explicitly minimizes the resulting boundary length.
We validate our method by optimizing the packing efficiency of

a large range of atlases produced by multiple popular parameter-
ization methods (Section 5). Our framework eliminates all input
overlaps and improves packing efficiency by 14% or more compared
to both the initial and the overlap-free layouts, and a mean average
of 54%, with an increase in boundary length of 30% or less. We com-
pare our results to atlases generated using alternative approaches,
and demonstrate our ability to control the tradeoff between packing
efficiency and boundary length. We extend our algorithm to incor-
porate a range of user controls, and demonstrate the usability of
our outputs for rendering and fabrication applications.

2 PREVIOUS WORK
Our work builds on prior research on mesh parameterization, seg-
mentation for 2D parameterization and unfolding, cutting for fabri-
cation, and atlas or polygon packing.

Mesh Parameterization. Most planar mesh parameterization meth-
ods compute 2D embeddings of 3Dmesheswith a given disc-topology
boundary, while minimizing different distortion energies [Botsch
et al. 2010; Hormann et al. 2007; Sheffer et al. 2007]. Fixed bound-
ary methods [Floater 1997; Gu et al. 2002] allow for generation
of strictly rectangular parameterization atlases with optimal pack-
ing efficiency; however these methods introduce more distortion
than their free-boundary counterparts (such as [Lévy et al. 2002;
Sander et al. 2001; Sheffer et al. 2005; Smith and Schaefer 2015]),
and thus are less frequently used. None of these methods account
for packing efficiency, and they offer no means to control it. Our
method can process the outputs of any of these frameworks and
improve packing efficiency of the resulting atlas while keeping the
mapping distortion fixed. Our overlap resolution process is partic-
ularly suitable for processing outputs of global parameterization
methods [Ben-Chen et al. 2008; Jin et al. 2004; Kharevych et al. 2006;
Myles and Zorin 2012], which are typically prone to overlaps; our
method leverages the global mapping continuity they provide to
facilitate the boundary minimizing welding process (Section 4).
Our framework is not directly applicable for parameterizations

that constrain chart coordinates to particular values, such as [Ray
et al. 2010], but can be easily combined with methods such as [Liu
et al. 2017] which edit the underlying 2D signal to generate seamless
textures.

Mesh Cutting. Multiple methods cut 3D surface meshes prior
to parameterization (e.g. [Gu et al. 2002; Sheffer and Hart 2002]),

Fig. 5. Given an input parameterization with visible overlaps (left) the stan-
dard overlap removal approach of [Lévy et al. 2002] produces unnecessarily
long boundaries (center); our results (right) have shorter boundaries and
typically contain fewer charts (all examples packed using our method).

and try to balance anticipated mapping distortion and boundary
length. Simultaneous cutting-and-unfolding methods [Poranne et al.
2017; Sorkine et al. 2002] balance distortion and cut length directly.
None of these frameworks directly attempt to optimize for packing
efficiency.
Several segmentation approaches [Julius et al. 2005; Lévy et al.

2002; Sander et al. 2002, 2003; Zhou et al. 2004] prioritize more
compact (namely more convex, or round, charts), implicitly improv-
ing packing efficiency and reducing the likelihood of overlaps. As
demonstrated by Figure 3 compactness does not accurately predict
packing efficiency, and directly optimizing for it often leads to longer
boundaries than necessary for achieving an acceptable packing out-
come. Moreover, as pointed out by Poranne et al. [2017], cutting
the surface prior to parameterization often introduces undesirable
artifacts that can be avoided when the processes are performed in
tandem.

Our framework allows users to separate packing efficiency from
distortion considerations, and provides a direct trade-off between
boundary length and packing efficiency. We use it to significantly
improve the packing efficiency of atlases produced by a range of
mesh cutting methods (Section 5).

Carr and Hart [2002] optimize packing efficiency by segmenting
input meshes into charts that consist of two to six triangles each;
these charts can then be efficiently packed into a given bounding
box. Their technique combines low distortion with high packing
efficiency, but results in an extremely high number of charts. This
makes their approach unsuitable for applications such as modern
rendering pipelines, both real-time and offline (cp. [Munkberg et al.
2016]), and for manufacturing where excessive seams cause both
high manufacturing time and undesirable visual artifacts. Purnomo
et al [2004] use tightly packed tiny quadrilateral charts to generate
seamless textures. This framework suffers from similar drawbacks.

Overlap Avoidance and Resolution. Overlaps are a common fea-
ture of many free-boundary parameterization outputs [Hormann
et al. 2007]. Recent methods allow for bijective atlas generation for
inputs with fixed boundary connectivity [Jiang et al. 2017; Smith
and Schaefer 2015]. Given a configuration in which unconstrained
unfolding results in large overlaps (e.g. Figure 5), this approach can
lead to major increases in mapping distortion. Methods that simul-
taneously cut and unfold the meshes [Poranne et al. 2017; Sorkine
et al. 2002] can potentially prevent overlaps by adding new cuts on
the fly whenever overlaps occur. However such cuts can drastically

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

153:4 • Max Limper, Nicholas Vining, and Alla Sheffer

increase the length of the resulting boundaries. Our framework al-
lows users to employ boundary computation and mapping methods
that do not explicitly prevent global overlaps, and to resolve these
overlaps after the fact by introducing additional cuts where neces-
sary. Consequently the resulting mapping distortion is not affected
by overlap extent.
Our approach is consistent with the common industry practice

of resolving overlaps once they occur. The standard approach to
overlap removal, first proposed by Lévy et al. [2002], is to segment
atlas charts which exhibit overlaps along projections of overlapping
region boundaries. This approach may result in many small redun-
dant charts and unnecessarily long boundaries (Figure 5b). By using
a global cutting strategy designed to minimize boundary length, our
method produces significantly shorter boundaries than this earlier
method (Figure 5c).

Atlas Packing. Maximizing the packing efficiency for a given set
of charts is NP-hard [Garey and Johnson 1979; Milenkovic 1999];
thus existing methods use heuristic strategies that balance packing
efficiency against computation time [Lévy et al. 2002; Nöll and
Stricker 2011; Sander et al. 2003]. While these methods keep chart
geometry fixed, we introduce new cuts guided by the efficiency of
actual packings, allowing for significant improvement in packing
efficiency. We use a variation of the framework of Nöll et al [2011]
for the computation of actual packings in our method (Section 3.3).

Cutting and Packing for Fabrication. The problem we address
shares some similarity with packing of 3D shapes for fabrication
or compact storage [Chen et al. 2015; Zhou et al. 2014]. Zhou et
al. [2014] fold 3D objects into boxes by first discretizing each input
using an optimized voxel grid designed to minimize wasted space.
Such discretization unnecessarily reduces the degrees of freedom for
our setting and would lead to longer than necessary boundaries. Koo
et al. [Koo et al. 2017] minimize the wasted material used to fabricate
furniture from flat pieces by subtly changing the geometry of these
pieces. Our framework is designed to keep the local 2D geometry
fixed, and to improve packing efficiency by using strategic cuts.
The Dapper algorithm [Chen et al. 2015] cuts shapes into a small
number of parts, such that the parts can fit into the build volume
of a 3D fabrication device or can be packed into compact packages
for transportation. The authors note that such cutting and packing
problems are NP hard, and employ pyramidal decomposition as a
heuristic solution strategy. On 2D data, our method achieves better
packing efficiency while introducing shorter boundaries than their
approach (Figure 17).

3 COMPACTING THE ATLAS
The core step of our algorithm takes an overlap free atlas as input,
and improves its packing efficiency via a cut-and-repack strategy.
We introduce compacting cuts that free empty spaces in the packing
by cutting one ormore charts located next to void boxes (Section 3.1),
and then repack the resulting charts. We repeat the cutting and
packing steps (Section 3.2) until no further improvement is possible
without violating user constraints.

Users can constrain the amount of boundary elongation allowed,
specify a minimal acceptable size for the resulting charts, bias cut-
ting to avoid user-specified “no-cut” areas, put a time limit on the

computation, or simply let the method run until no further improve-
ment is possible. (e.g. Figures 6, 19). In the latter case, the algorithm
will terminate when a fixed number of attempts does not improve
packing efficiency by more than a given minimum improvement pϵ .
Our overall cutting and compacting strategy is agnostic to the

choice of packing method used, and can operate in conjunction with
any existing packing method (Section 2). However, since we repeat-
edly employ packing as an assessment tool to determine which cuts
to employ, our runtimes are highly dependent on packing time. The
packing framework we use (Section 3.3) is optimized for providing a
suitable trade-off between packing efficiency and computation time,
allowing us to use the packer as a black box evaluation tool between
fifty to a hundred times throughout the computation, while keeping
the overall computation time at around five minutes on average.

3.1 Cutting Strategy
The key observation behind our method is that inefficient packings
most often result from the presence of large contiguous unused
spaces, or voids, inside the packed chart atlas. Our goal, therefore,
can be cast as identifying the best cuts that will help to remove such
voids. We specifically focus on axis-aligned maximal void boxes -
boxes whose sides are aligned with the sides of the atlas’s bounding
box, which contain no atlas triangles, and whose size cannot be
further increased without intersecting an atlas chart (Figure 7). The
axis-aligned lines that coincide with the sides of these boxes provide
possible cut candidates, or cut lines, for packing improvement. For
voids immediately next to bounding box corners, we have one cut
line in each direction; for voids next to bounding box sides, we have
one cut line in the direction of this side and two in the other; and for
interior voids we have two lines in each direction. We observe that
these lines bound a subset of charts, which we call the supporting
charts (Figure 7b). If we cut the chart atlas along one of these pairs of
lines and remove the supporting charts, then the packing efficiency
of the remaining atlas can be trivially improved by collapsing the
resulting empty space andmoving the top line, and all portions of the
atlas on top of it, so that the top and bottom lines coincide (Figure 7c).
We then need to re-pack the removed supporting charts , which
will in most cases lead to an improvement in packing efficiency,
compared to the initial configuration (Figure 7a,d). While the size
of the supporting charts depends on the choice of the cut lines, for
large void boxes, at least one of the two cut line candidates typically
produces relatively small supporting charts. Packing algorithms
generally perform better givenmore and smaller charts, as they have
more degrees of freedom in packing them. Thus while we have no
guarantees that greedily guiding cuts by prioritizing the elimination
of largest voids will always improve the packing outcome, this is
very frequently the case. To avoid redundant cuts, rather than use
the void box size as a proxy for packing efficiency improvement, we
evaluate the impact of the cuts by directly computing the packing
efficiency of the resulting atlas.
The effectiveness of the global approach outlined above dimin-

ishes when no large voids exist inside the atlas. In such cases per-
forming global cuts, which cross multiple charts inside an atlas, may
lead to extensive boundary elongation with possibly only a small
improvement in packing efficiency. At the same time, we observe
that the overall packing quality of a chart atlas is often affected by
the packing efficiency of individual charts, namely how efficiently

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination • 153:5

Fig. 6. Influence of different parameters when optimizing an input parameterization (a). Our algorithm can be configured to terminate at different boundary
length budgets (b-d), as well as to prevent (b-d) or to allow (e) the creation of small pieces during cutting.

a) voids detected b) cut performed d) packed c) void collapse

?

Fig. 7. Compacting cut: a) detected maximal void boxes; b) a pair of cut
lines derived from one of the void boxes, and the associated supporting
chart in green; c) conceptual collapsing of the void box after removal of the
supporting chart; d) a more efficient packing achieved using these cuts.

Fig. 8. Local and global cuts, as derived from local and global void boxes
(shown in yellow and gray respectively). Left: an axis-aligned chart and a
respective void box. Right: global atlas layout, including the chart from the
left. Both boxes induce cuts that may help to improve the overall packing
efficiency.

an individual chart is packed inside of its own oriented bounding
box (Figure 8, Figure 9a). While an atlas packing method can of-
ten pack smaller charts within the void spaces surrounding charts
with low packing efficiency, eliminating these voids directly can
often dramatically improve the overall packing efficiency (Figure 8c).
Therefore, we also use the same void box detection process, on a
per-chart level, to evaluate a set of local cut candidates, where we
apply cuts to individual charts and consider maximal void boxes
that are oriented with respect to their parent chart.

3.2 Cut and Repack
The input to each cut-and-repack step is a packed atlas, with a given
packing efficiency p and total boundary length b. Each cutting step
generates one or two cut lines across the current charts and repacks
the resulting refined charts. The step first detects both local and
global cut candidates (n = 4 each) by locating the n largest void
boxes in either the current atlas or in the bounding boxes of the
current charts (Section 3.2.1). It then optimizes and ranks the candi-
date cuts, both local and global, selects the best one, performs the
cut, and re-packs the chart atlas. We provide two possible methods

Fig. 9. Local and global cuts on the horse model. The atlas shown in (a) is
already relatively compact. In this case, a global cut solution (b) is outper-
formed by a local cut (c).

Fig. 10. Cutting charts (detail view on the Armadillo dataset). Left: Input
piece and cut line. Center: Precise cutting, introducing new triangles. Right:
Shortest-path cuts through existing mesh edges.

for performing the cut. The first method precisely cuts through
each affected chart by subdividing all triangles intersected by a cut
line, triangulating any resulting quads and fixing any introduced
T-Junctions (see inset figure).

Alternatively, our method is able to
split charts following shortest paths along
the existing mesh edges, for applications
where the creation of new triangles is not
desired. In this case, we first locate all tri-
angle edges that intersect the cut line, resulting in one or multiple
intersected segments for each chart. We then order all intersected
edges along each cut line and find, for each segment, the closest
vertex of its first and last intersected edge. The cut is then per-
formed by connecting those edges via the shortest 2D path along
the mesh edges between those closest vertices. Examples are shown

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

153:6 • Max Limper, Nicholas Vining, and Alla Sheffer

Fig. 11. Example of cutting through the Duck dataset). As an alternative to
straight cuts through re-tessellation (a), our framework supports shortest-
path cuts, which do not introduce new trianlges, butmay lead to significantly
different results depending on the mesh (b-d).

in Figure 10 and Figure 11. After cutting (using one the two possible
methods), we repack and re-rasterize the new set of charts.

Locating Void Boxes. We extract candidate void boxes using an
efficient raster space algorithm. Given a rasterized representation of
either the entire atlas (global case), or of an individual chart (local
case), we use a simple axis-aligned scanline algorithm to locate the
largest void boxes. We store, for each pixel, the number of subse-
quent empty pixels in the horizontal direction inside a skip buffer,
having the same size as the rasterized atlas. We then efficiently
compute, for each empty pixel, the largest possible void box. This
is done by iterating along a line over the vertical direction (up and
down) until non-empty pixels or the chart boundary are reached,
while tracking at the same time the largest possible horizontal ex-
tent using the skip buffer. We record all maximum empty boxes
with size above a given threshold in a list. As this list may contain
overlapping boxes, we filter them out by first sorting the list of boxes
by size and then, for each entry, visiting all subsequent entries and
deleting any box that has more than a predefined amount (in our
case, 10%) of overlap. The result is a sorted list of void boxes with
minimal or no overlap and the maximum extent possible; no box
in the list can increase in size without intersecting a chart (Figure
8). We then select the n largest void boxes to induce axis-aligned
vertical and horizontal cuts as cut candidates.

BL(loc)

cut locationsOptimizing Cut Locations. Our decision to op-
erate on maximal voids is driven by packing
efficiency; however, we also wish to account for
boundary length when considering our choice
of cuts. We note that minor axis-aligned shifts
in the cut line locations can often significantly
reduce the cut length, and help avoid forma-
tion of tiny charts (Figure 6,de). For each pair of
candidate cut lines obtained, we consequently
perform a local line search that computes a lo-
cation that minimizes the resulting cut lengths. We define a range
of evenly spaced offsets within 5% of the corresponding bounding
box dimension, and explicitly evaluate the lengths of the resulting
cuts for each. Since the computation is very fast (intersection with
an axis aligned line) we use a dense set of 100 equally distributed
offset samples. We then select the best location. Note that if the line
does not cut any charts, then the operation will have no impact on

C0 C1

a) Candiates b) Result of C0 b) Result of C1

Fig. 12. Cut optimality as an estimate. Among two cut candidates (a), the
one with shorter cut length and a larger void may still lead to a less efficient
packing (b), compared to the cut that has lower score (c).

the packing. We thus always select the cut lines that cut across at
least one chart.

Ranking Cuts. The impact of any candidate cut depends on our
ability to efficiently re-incorporate the removed support charts into
the atlas. Thus our estimate of candidate cut optimality is only an
estimate - it may be that a less promising cut may outperform a
more promising candidate (Figure 12).
Thus instead of greedily applying the most promising cut, we

assess all 2n possible candidate cuts by executing each of them,
computing a new packing, and computing its packing efficiency p.
Rather than selecting the cut that maximizes packing efficiency, we
seek to balance efficiency against boundary elongation.We therefore
compute the score of a given cut as s = p

bα , where b is the ratio of
the boundary length to the length of the longest bounding box side
of the initial atlas, and p is the packing efficiency measured in the
rasterized space (Section 3.3). We use α = 0.2 in all the examples in
the paper. We choose the cut with the highest score s .

Tightest BBox

Optimally Aligned

3.2.1 Local Bounding Boxes. To compute local
candidate voids, we need to define a local atlas, or
oriented bounding box, per-chart. In general, the
tightest bounding box for a chart would provide
the best packing efficiency for this individual chart;
however, this is not our goal. Instead, we search
for the oriented bounding box of the chart which
produces the largest void boxes possible and thus
has the most potential to improve our packing.
From this perspective, an orientation that max-

imally aligns the sides of the chart with the axis directions is a
better alternative, since it is likely to align the sides of the maximal
concavities on the chart with the major axes, and result in cuts that
produce charts which are both convex and boxy and hence better
suited for packing. We compute a suitable orientation by locating
the orthogonal coordinate system whose edges are best aligned with
the directions of the chart boundaries. Specifically we minimize the
L1 norm of the boundary edge vectors over all possible rotation
angles θ :

E(θ) =
∑

|u1(θ)| + |v1(θ)| + ... + |un (θ)| + |vn (θ)|.

Here {⟨u1,v1⟩, ..., ⟨un ,vn⟩} are the rotated boundary edge vec-
tors. We obtain an approximate solution for the desired chart align-
ment via greedy search. When minimizing E(θ), we seek to optimize
the alignment between the global boundary directions and the major
axes. However, raw chart boundaries can contain high-frequency de-
tails. We ignore those details in the computation by pre-smoothing
the raw edge direction vectors, using a simple averaging of the

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination • 153:7

Fig. 13. Results of chart packing into a square-shaped atlas, using different
packing algorithms. For [Nöll and Stricker 2011], the bounded (non-modulo)
variant has been used.

immediate neighbors of each edge vector. θ itself is optimized via
brute-force search.

3.2.2 User Constraints. We allow users to introduce a range of
cutting constraints beyond boundary length restrictions.

Outward Offsetting. A range of applications require allocation of
extra space around chart boundaries. The quality of rendered signals
along boundaries can be improved by adding gutters [González and
Patow 2009]; tailoring applications require seam allowances; and
papercraft and other fabrication settings often benefit from flaps.
In our setting, accounting for all of these extra space requirements
is straightforward. Prior to each chart packing computation, we
offset the charts outwards by the amount necessary for the target
application, and then pack these extended charts as before. Our
optimization naturally adapts to this change by taking the extra
amount of space induced by the cuts into account during packing
efficiency computation.

Smin

Preventing Small Charts. Small charts can neg-
atively affect some of our target applications; for
example small charts may require an inappropri-
ately large amount of gutter space for rendering,
compared to their area, and are hard to manipulate
in fabrication settings. Unconstrained cuts, even af-
ter local cut optimization, may result in small charts being produced.
We explicitly prevent the formation of small charts by adding a
respective constraint to the cutting step and, likewise, to the cut
evaluation during cut optimization. We check each new chart re-
sulting from a cut to determine whether its extent, measured by
orthogonal distance to the cut line, satisfies a minimum size thresh-
old smin. If this is not the case, the respective segment of the cut
line is ignored, leaving its particular region uncut. Figure 6e shows
the effect of setting smin to 0, allowing the formation of tiny charts.
For all other examples in the paper we set smin to 1% of the length
of the largest side of the input atlas’s bounding box.

Biasing Cut Locations. A variant of our algorithm allows the user
to provide per-vertex weights, effectively specifying importance val-
ues for the different regions of the mesh.When computing scores for
cut candidates, these importance values can be taken into account
by multiplying the length of each resulting edge by its importance
(which is computed as the average of the importance value of its
two vertices). We then use this importance-biased boundary length
bimp instead of b to compute the score s for each possible solution.

3.3 Packing Computation
While our method can operate in conjunction with any packing
method, we found the following method, which extends the frame-
work of [Nöll and Stricker 2011], to provide the time versus packing
efficiency trade off we need. As with prior work we perform packing
in raster space. We follow the standard approach of sorting charts
from large to small, and then greedily placing them inside the dis-
crete working space. To assess placement we consider chart position
and orientation (including mirroring).
In contrast to Nöll and others, who use

horizon lines to track active area, we use the
bounding boxes of the current charts. This al-
lows placement of smaller charts inbetween
the large ones. In selecting the optimal place-
ment for each chart we by default choose the
one that extends the current active area by
the smallest number of pixels. Given multiple alternatives with the
same minimal pixel count, we select the one that places the chart
closest to the bottom left of the active area. This strategy pulls charts
towards this single corner, keeping space free in other areas and
facilitating our pixel shifting post-process. We support an optional
strategy that computes an augmented active area which fits a given
aspect ratio whenever a chart placement is evaluated. This allows
us to produce packings that approximate a prescribed aspect ratio,
which is useful in many practical scenarios (inset).

Hierarchical Optimization. In order to speed up the packing com-
putation, we maintain a hierarchy of buffers, where the resolution
of each coarser level is half of its previous one. The finest level of
the working space contains the actual chart data, consisting of one
chart ID per pixel. The remaining level pixels store the number of
empty corresponding fine level ones. Storing this number along
with each rasterized variant of a chart allows us to quickly reject
placements in coarse pixels that do not contain enough free fine
level pixels to accommodate a chart, and to directly compute the
best possible placement within large empty regions. This feature
reduces our run time by up to 60%. We explicitly store the boundary
of each rasterized chart. This allows us to check the boundary pixels
first when testing a possible placement at the finest level of the
hierarchy. Thus we can resolve many cases earlier than it would be
possible when checking chart pixels line by line.

Pixel-Shifting Post-Process. We prescribe an approximate reso-
lution for the rasterized atlas, and use it to rasterize each chart.
We rasterize charts conservatively: whenever a triangle partially
overlaps a pixel, that pixel is set. The raster resolution needs to
be kept moderate (1282 or 2562), since too many candidate evalua-
tions would slow down the packing process. However, the choice
of a resolution limits packing efficiency, as the unused continuous
domain space between two charts that are densely packed next to
each other in raster space may, in the extreme case, cover almost an
entire pixel, which can be a notable distance at moderate resolutions.
To eliminate such spaces, we optimize the packing in a post-process
at higher resolution (10242). Our optimizer translates charts pixel
by pixel towards a given gravity direction (e.g., to the bottom left
corner), as long as no other chart is being intersected. This process
is executed repeatedly for each chart until no chart can be moved
any more. Despite the higher resolution of the rasterized atlas, this

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

153:8 • Max Limper, Nicholas Vining, and Alla Sheffer

Fig. 14. Overlap removal. After removing overlaps from the input (left),
resulting charts (center) can be welded together along a common 3D space
seam segment if the parameterization is globally continuous across this
segment, and if the combined chart (right) has no self-overlaps. Input has
been globally parameterized using [Lipman 2012].

post-process consumes far less time than the actual packing, as we
only need to evaluate translations of the boundary pixels of each
chart in a given direction.
For typical scenarios, our packing method is able to efficiently

pack arbitrarily shaped charts inside a common atlas within a second
or less; an example packing is shown in Figure 13.

4 OVERLAP REMOVAL
We use an overlap resolution process that separates overlapping
chart regions using minimal length cuts as a preprocess to our
cut-and-pack algorithm. For globally continuous input atlases, we
employ an additional optional step that shortens the boundary of
the resulting atlas by attaching charts together, or welding them,
across globally continuous boundaries.

4.1 Chart Splitting
We eliminate overlaps by casting overlap removal as a multi-cut
problem. We find new charts by partitioning the graph into clusters;
each generated cluster represents a new chart, and overlapping
triangles are constrained to be assigned to different clusters. At
the same time, we wish to minimize the length of the boundaries
between these resulting clusters. We define a graph G = (V ,E)
whose vertices vi correspond to the triangles i of the input atlas.
We construct graph edges as follows. First, we add an edge ei, j for
every pair of triangles i and j that share a common edge within a
given chart. We assign this edge the weight li, j/lavд , where li, j is
the length of this edge and lavд is the average edge length within
the 2D atlas mesh. We then add an edge em,n for every pair of
overlapping trianglesm and n, and assign them a weight of -infinity.
An example is shown on the right. Triangles

1 and 2 are neighbors inside the mesh; therefore
they are connected through an edge inside the
graph, which has a positive weight. Triangles 0
and 4 are not neighbors, but they are overlapping;
therefore, the graph contains an additional edge
with negative weight between those two triangles
(nodes). In the presence of globally continuous
chart boundaries, we add additional edges that
bias the cut choice to prioritize cuts that facilitate
subsequent boundary shortening via chart welding. For each chart
that contains overlaps, we identify the globally continuous bound-
ary segments, namely segments that are associated with the same
3D seam and that are a rigid transformation of one another in 2D
space. For each pair of triangles i and j on opposite sides of such
a boundary we create a graph edge ei, j with a weight −li, j/lavд .

These weights encourage cuts that separate such matching seg-
ments, indirectly increasing the likelihood of welding them in our
subsequent boundary shortening step.
We then find the multi-cut that finds a set of cut edges that

maximizes
∑
ei j Wei jYei j ; here Yei j = 1 if the nodes i and j are in

the same cluster and 0 otherwise. Our multicut approach has two
advantages. First, by assigning infinite negative weights to edges, we
ensure that any solution must assign overlapping nodes to different
clusters, by definition; connecting overlapping triangles with edges
with infinite negative weights therefore guarantees an output in
which each cluster is free of overlaps. Second, the number of new
clusters naturally emerges from this solution. While this problem is
NP-complete in theory, excellent approximation algorithms exist.
We use the extended Kernighan-Lin algorithm proposed by Keuper
et al. [Kernighan and Lin 1970; Keuper et al. 2015], and obtain labels
Ye ∈ {0, 1} for each graph edge e , indicating the edges along which
we should cut the mesh. By performing these cuts, we obtain the
desired set of overlap-free charts.
Since our method operates on triangles, (in contrast to methods

that operate solely on boundary edges), we are able to remove all
possible types of overlaps, including local overlaps (triangle flips)
that may occur in the interior without affecting the boundary, and
overlaps that may occur without two points of boundary crossing.
In our implementation, overlapping triangles are quickly detected
by sorting 2D triangles into a regular grid and checking, for each
triangle, all other triangles that are intersecting with its cells. Our
weighting scheme can easy incorporate other criteria; for example,
edges between adjacent triangles can be weighed to reflect visual
importance, and to move cuts away from more visually important
areas (Figure 19).

4.2 Chart Welding
Our overlap removal step minimally elongates the input bound-
aries. While in many cases this elongation is necessary, we often
can further reduce the resulting boundary length by reattaching
charts along compatible boundaries. We consider a pair of boundary
segments on different charts to be compatible if: (1) these segments
lie on opposite sides of a common 3D seam; (2) the parameterizaton
is globally continuous across this segment; and (3) rigidly trans-
forming one chart to match the other along this segment does not
result in overlaps between the two charts (Figure 14). If all three
criteria hold, we can reduce the boundary length in our chart atlas
by welding the charts — transforming one chart to match the two
boundaries, and then closing the seam by merging its vertices in 2D
space.
We shorten the boundary of the overlap-free chart layout re-

sulting from the previous stage by using a greedy strategy. We
repeatedly choose the longest pair of compatible boundary seg-
ments and weld them together. While this process shortens the
boundaries it can severely decrease packing efficiency. We thus only
weld charts together if the packing efficiency of the resulting atlas
remains within a fixed bound of the pre-welding one (here we use
10%). We repeat the welding steps until no more improvement is
possible without violating this constraint.

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination • 153:9

Fig. 15. Results of optimization on various kinds of input models, generated by different parameterization algorithms. The horse and cow models have been
parameterized using ABF++ [Sheffer et al. 2005].

Fig. 16. Removing overlaps to obtain a bijective parameterization. From left to right: input, overlaps removed using the standard method of [Lévy et al. 2002],
overlaps removed using our method. The feline model has been parameterized using ABF++ [Sheffer et al. 2005].

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

153:10 • Max Limper, Nicholas Vining, and Alla Sheffer

Table 1. Results of optimization of various input data, using straight cuts
and re-tesselation(top) and shortest-path cuts through the mesh (bottom).
The tables show, for different boundary length thresholds, the increase in
packing efficiency compared to the overlap-free version, the output packing
efficiency and boundary length.

Straight Cuts

Model [Method] PE / BL PE Improvement (PE / BL)
Bijective BLen < 130% BLen < 150% BLen < 200%

armadillo [PTH+17] 55% / 11.3 +33% (73% / 14.4) +45% (80% /15.9) +46% (81% /19.3)
elk [PTH+17] 51% / 13.4 +42% (72% / 16.4) +58% (80% /20.0) +58% (80% /20.0)
girl [PTH+17] 44% / 14.8 +75% (77% / 18.7) +81% (80% /21.5) +85% (82% /22.8)
beethoven [SH02] 59% / 16.2 +31% (77% / 20.1) +36% (80% /22.1) +36% (80% /22.1)
bunny [SH02] 62% / 14.1 +28% (79% / 18.1) +30% (81% /20.0) +31% (81% /23.0)
cow [SH02] 49% / 9.1 +57% (77% / 11.4) +66% (82% /13.1) +66% (82% /13.1)
feline [SH02] 54% / 17.5 +37% (75% / 20.5) +41% (77% /25.5) +41% (77% /25.5)
gargoyle [SH02] 55% / 11.0 +33% (73% / 12.9) +53% (83% /16.4) +56% (85% /18.1)
horse [SH02] 51% / 7.8 +34% (69% / 9.7) +50% (77% /11.1) +71% (87% /13.9)
aircraft [Lip12] 68% / 12.2 +23% (84% / 15.7) +23% (84% /15.7) +23% (84% /15.7)
cup [Lip12] 69% / 6.9 +16% (80% / 8.4) +24% (85% /9.6) +30% (89% /11.3)
blade [BCW17] 55% / 13.7 +43% (78% / 17.6) +46% (80% /18.9) +47% (80% /20.9)
cow2 [BCW17] 64% / 12.6 +17% (74% / 15.2) +20% (76% /16.9) +30% (83% /24.2)
ramses [BCW17] 58% / 10.8 +29% (75% / 14.0) +32% (77% /14.2) +38% (80% /19.0)
camel [BCE+13] 49% / 21.4 +50% (74% / 26.5) +50% (74% /26.5) +50% (74% /26.5)
aircraft [MPZ14] 58% / 18.5 +40% (81% / 22.9) +50% (87% /27.3) +51% (88% /28.3)
santa [MPZ14] 61% / 27.1 +25% (77% / 32.0) +25% (77% /32.0) +25% (77% /32.0)
beetle [LZ14] 65% / 18.9 +21% (78% / 22.4) +21% (78% /22.4) +21% (78% /22.4)
bozbezbozzel [LZ14] 60% / 27.7 +20% (72% / 33.1) +20% (72% /33.1) +20% (72% /33.1)
bird [CZL+15] 30% / 9.4 +131% (70% / 11.5) +172% (83% /13.7) +181% (85% /18.4)
duck [CZL+15] 29% / 10.7 +159% (76% / 13.3) +160% (76% /16.1) +169% (79% /19.9)
excavator [CZL+15] 30% / 9.6 +114% (64% / 11.2) +167% (80% /14.0) +181% (84% /17.6)
jordan [CZL+15] 16% / 11.4 +273% (61% / 13.0) +370% (76% /16.1) +388% (79% /19.2)
tower [CZL+15] 38% / 10.6 +40% (54% / 12.5) +89% (73% /13.9) +131% (89% /19.3)
bunny [JKS05] 68% / 17.6 +14% (77% / 21.0) +14% (77% /21.0) +14% (77% /21.0)
fandisk [JKS05] 61% / 17.4 +37% (83% / 22.2) +39% (84% /24.9) +39% (84% /24.9)
rockerarm [JSP17] 42% / 12.4 +75% (74% / 15.3) +86% (79% /18.4) +96% (83% /22.6)
venus [JSP17] 59% / 5.4 +25% (73% / 6.4) +40% (82% /7.8) +55% (91% /10.7)
Min. 16% (5.4) +14% (54% / 6.4) +14% (72% / 7.8) +14% (72% / 10.7)
Max. 69% (27.7) +273% (84% / 33.1) +370% (87% / 33.1) +388% (91% / 33.1)
Average 52% (13.9) +54% (74% / 17.0) +68% (79% / 18.9) +74% (82% / 20.1)
Median 55% (12.5) +36% (75% / 15.5) +46% (80% / 17.7) +48% (82% / 20.5)

Shortest-Path Cuts

Model [Method] PE / BL PE Improvement (PE / BL)
Bijective BLen < 130% BLen < 150% BLen < 200%

armadillo [PTH+17] 55% (11.3) +33% (73% / 14.6) +38% (76% /16.9) +47% (81% /20.2)
elk [PTH+17] 51% (13.4) +28% (65% / 16.7) +46% (74% /18.2) +56% (79% /23.5)
girl [PTH+17] 44% (14.8) +66% (73% / 17.7) +84% (81% /22.2) +86% (82% /25.5)
beethoven [SH02] 59% (16.2) +27% (75% / 19.6) +32% (78% /24.1) +36% (80% /28.5)
bunny [SH02] 62% (14.1) +24% (77% / 18.3) +27% (79% /19.7) +34% (83% /25.5)
cow [SH02] 49% (9.1) +48% (73% / 10.7) +69% (83% /13.7) +76% (86% /15.9)
feline [SH02] 54% (17.5) +42% (77% / 22.5) +48% (81% /25.1) +52% (83% /28.6)
gargoyle [SH02] 55% (11.0) +30% (71% / 13.2) +40% (76% /14.4) +51% (82% /20.1)
horse [SH02] 51% (7.8) +30% (67% / 8.5) +53% (78% /10.7) +65% (84% /15.1)
aircraft [Lip12] 68% (12.2) +19% (81% / 14.7) +25% (85% /17.7) +26% (86% /20.4)
cup [Lip12] 69% (6.9) +14% (78% / 8.6) +14% (78% /8.6) +27% (87% /13.8)
blade [BCW17] 55% (13.7) +44% (78% / 17.6) +47% (80% /20.0) +53% (83% /24.7)
cow2 [BCW17] 64% (12.6) +19% (76% / 16.3) +21% (77% /17.4) +21% (77% /17.4)
ramses [BCW17] 58% (10.8) +29% (75% / 13.3) +42% (83% /15.7) +42% (83% /15.7)
camel [BCE+13] 53% (23.7) +47% (77% / 30.8) +47% (77% /30.8) +56% (82% /41.8)
aircraft [MPZ14] 58% (18.5) +28% (75% / 21.9) +40% (81% /24.5) +45% (85% /33.3)
santa [MPZ14] 57% (28.5) +32% (76% / 36.9) +38% (79% /40.2) +38% (79% /40.2)
beetle [LZ14] 65% (18.8) +20% (78% / 24.2) +20% (78% /24.2) +30% (84% /35.8)
bozbezbozzel [LZ14] 61% (27.7) +19% (72% / 32.7) +23% (74% /39.4) +36% (83% /55.1)
bird [CZL+15] 30% (9.4) +134% (71% / 11.6) +158% (78% /13.7) +178% (84% /14.5)
duck [CZL+15] 29% (10.7) +149% (73% / 13.7) +168% (79% /15.3) +177% (81% /20.3)
excavator [CZL+15] 30% (9.6) +141% (72% / 12.2) +162% (78% /12.9) +162% (78% /12.9)
jordan [CZL+15] 16% (11.4) +237% (55% / 13.3) +379% (78% /15.9) +396% (81% /21.7)
tower [CZL+15] 38% (10.6) +40% (54% / 12.5) +84% (71% /14.8) +104% (78% /19.4)
bunny [JKS05] 68% (17.6) +10% (74% / 20.8) +15% (77% /23.5) +15% (78% /28.3)
fandisk [JKS05] 61% (17.4) +33% (80% / 22.0) +36% (82% /24.3) +36% (82% /28.2)
rockerarm [JSP17] 42% (12.4) +57% (67% / 14.9) +76% (75% /17.4) +92% (81% /23.3)
venus [JSP17] 59% (5.4) +21% (71% / 7.0) +33% (78% /7.5) +41% (83% /10.5)
Min. 16% / (5.4) +10% (54% /7.0) +14% (71% /7.5) +15% (77% /10.5)
Max. 69% / (28.5) +237% (81% /36.9) +379% (85% /40.2) +396% (87% /55.1)
Average 52% / (14.0) +51% (73% /17.4) +67% (78% /19.6) +74% (82% /24.3)
Median 55% / (12.5) +31% (74% /15.6) +41% (78% /17.5) +49% (82% /22.5)

5 RESULTS
We tested our framework on a range of inputs, shown throughout
the paper, and with additional inputs and results included in the
supplementary material. We have tested our method on inputs pro-
duced via multiple combinations of cutting and parameterization

Table 2. Boundary length increase through overlap removal (smaller is
better), using [Lévy et al. 2002] and using our method. Models from the first
section (cut using [Sheffer and Hart 2002]) do not have globally continuous
parameterizations, hence no welding is possible. Models from the second
section use globally continuous methods [Bommes et al. 2013; Bright et al.
2017; Levi and Zorin 2014; Lipman 2012; Myles et al. 2014].

Model [Method] BLen Increase (Pack. Eff.)
[Lévy et al. 02] Overl. Cut Welded

beethoven [SH02] +76% (62%) +13% (59%) +13% (59%)
bunny [SH02] +47% (57%) +17% (62%) +17% (62%)
feline [SH02] +58% (48%) +14% (54%) +14% (54%)
gargoyle [SH02] +30% (54%) +15% (55%) +15% (55%)
aircraft [Lip12] +70% (71%) +25% (68%) +7% (68%)
cup [Lip12] +37% (81%) +42% (71%) –13% (69%)
blade [BCW17] +35% (43%) +22% (60%) +16% (55%)
cow2 [BCW17] +70% (56%) +23% (65%) +16% (64%)
ramses [BCW17] +35% (58%) +18% (56%) +18% (58%)
camel [BCE+13] +92% (61%) +26% (57%) +8% (49%)
aircraft [MPZ14] +57% (64%) +12% (66%) +1% (58%)
santa [MPZ14] +58% (60%) +15% (66%) –1% (61%)
beetle [LZ14] +66% (40%) +24% (66%) +14% (65%)
bozbezbozzel [LZ14] +92% (64%) +29% (65%) +15% (60%)
Min. +30% (40%) +12% (54%) –13% (49%)
Max. +92% (81%) +42% (71%) +18% (69%)
Average +59% (59%) +21% (62%) +10% (60%)
Median +58% (59%) +20% (63%) +14% (60%)

methods: manually unwrapped inputs, seam generation [Sheffer
and Hart 2002] followed by parameterization [Sheffer et al. 2005]
for the horse, cow and feline models in Figures 15, 16; simultaneous
cutting and parameterization [Poranne et al. 2017] for the elk and
armadillo models Figure 15; different global parameterization meth-
ods [Bommes et al. 2013; Bright et al. 2017; Levi and Zorin 2014;
Lipman 2012; Myles et al. 2014], chartification methods for bunny
and fandisk models in Figures 15, parameterized using [Sheffer et al.
2005]; 2D data sets used for the Dapper paper [Chen et al. 2015],
shown in Figure 17, and models parameterized using the bijective
free-boundary method of Jiang et al. [2017].

Our framework is agnostic to how the input was generated, and
performs equally well on the different data sources (Figures 15, 20). A
range of statistics for the models shown in the paper is summarized
in Tables 1 and 2. Overall, our method improves output packing
efficiency by an average of 54% when the increase in boundary
length is capped at 30%, and an average of 74% when boundary
length is allowed to double. It achieves the greatest improvement on
the jordanmodel. For all data sets shown in table 1, the optimization
process took 306 seconds on average with the boundary elongation
constrained to be at most 30% (using an i7-3770 CPU at 3.4Ghz and
32GB of RAM). These are comparable to the runtimes of Chen et
al. [Chen et al. 2015]. Since packing is an offline process typically
done once per asset, we consider our runtimes acceptable for a large
target user-base. In our tests, increasing triangle count by a factor of
four via subdivision roughly doubled runtime. Our method achieves
25% to 46% PE improvement on models with 140K-200K triangles
within a 30 minute time limit (see supplemental material). Time
limits allow users to balance time spent against resulting PE. For
example, when optimizing the triceratops data set, we get packing

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination • 153:11

Fig. 17. Comparison results generated by Dapper [Chen et al. 2015](leftmost
column) to those generated using method, using as termination criterion
the respective Dapper result’s number of pieces (second column), packing
efficiency (third column), and boundary length (fourth column).

efficiency rates of 74%/83%/86% when limiting execution time to
15s/45s/180s respectively.

Our overlap removal method significantly improves on the state
of the art as demonstrated by Figures 5 and 16 and summarized
by Table 2. On average, while prior overlap removal methods elon-
gated boundaries by roughly 60% our method resolves overlaps with
only 10% elongation. Our method performs best on the outputs of
globally continuous parameterization methods, where the initial
atlases exhibit very large overlaps and also allow for subsequent
welding by leveraging the extra degree of freedom provided by
global continuity.

Since a common scenario consists in the use of a single UV atlas
for an entire scene, we have also created a single arrangement of all
the models shown in Figures 15, 16, which we optimized using Box
Cutter - the result (created within 44 minutes) is shown in Figure 22.

Comparison to Prior Art. We have evaluated the performance of
our method against the Dapper approach [Chen et al. 2015] which
focuses on tradeoffs between packing efficiency and chart count. To
allow for a comparison, we have used different termination criteria,
running our algorithm until the number of generated charts, result-
ing boundary length or packing efficiency matches the respective

Fig. 18. Using gutter space with our algorithm. An overlap-free input (a-b)
is compacted without gutter space (c) and with gutter space (d), using one
percent of the normalized bbox side length.). Using gutter space around the
chart boundaries decreases packing efficiency and leads to less, and shorter,
cuts in the resulting compact atlas.

Fig. 19. Importance-weighted cutting. When optimizing an input parame-
terization (a) by removing overlaps (b) and performing compacting cuts (c),
new cuts may cross important regions, such as the facial features in this
case. Using importance weights (d), our algorithm is able to protect such
regions from cutting during overlap removal (e) and compacting (f).

Dapper results. As can be seen in Fig. 17, our method outperforms
their approach in terms of packing efficiency and boundary length
for almost all cases. The only exception is the pagoda data set (right-
most column), where Box Cutter obtains lower packing efficiency
results when constrained to produce only two charts.

Edge Cutting Modes. In some applications, it may not be desir-
able to cut triangles exactly with cutlines and retriangulate; in this
case, we provide a method which cuts triangles along their edges,
following the closest path to a cutline (Section 3.2). Using these
paths instead of cutlines, we achieve a similar packing efficiency on

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

153:12 • Max Limper, Nicholas Vining, and Alla Sheffer

Fig. 20. Results for both stages of our algorithm on various kinds of input
models, generated by different parameterization algorithms. From left to
right: input parameterization, overlaps removed, compacted result.

Fig. 21. Fixed-resolution textures (2048×2048px), used to store normals and
occlusion, applied to the girlmodel (cp. Figure 1). Left: Maps generated using
the unoptimized input of [Poranne et al. 2017]. Right: Maps generated using
our optimized version. The higher packing efficiency of our parameterization
leads to significantly sharper features on the rendered result.

average as the default framework, with only 6% larger increase in
boundary length on average (compare BL in Table 1, top vs bottom).

User Control. Our framework can accommodate a range of user
preferences. We support different termination criteria as shown in
Figure 6. Our framework can penalize cuts in visually important
areas, so that artists can redirect cuts away from key feature areas
(Figure 19). We can also directly account for the allocation of extra
space around the chart boundaries, which is necessary to support
gutters for seamless signal storage (Figure 18 and for generating
flaps for papercraft (Figure 1, 23).

Fig. 22. Optimizing the common UV atlas of a collection of models.

Fig. 23. Papercraft fabrication example. An unoptimized layout (a) is op-
timized (b) in order to efficiently exploit available material for fabrication
(c).

Validation. To validate the impact of our cutlines derived from
void boxes, we performed an experiment in which we replaced
our candidate cutline set with random vertical and horizontal lines,
while keeping the rest of the optimization framework - including
ranking of cuts and local search - unchanged. Packing efficiency
decreased across our set of all inputs by 15%, which is a significant
drop.

Applications. We have tested the two core applications of our
methodology - signal storage and fabrication. Figure 21 shows am-
bient occlusion and normal maps captured from a high-resolution
input and baked onto a low-resolution mesh using our atlases. Our
more efficient packing allows for a more efficient use of texture
space, and consequently a higher quality reproduction of the baked
normals and occlusion data, resulting in sharper edges and creases
in high-frequency areas. Figures 1 and 23 demonstrate the usability
of our method for fabrication. We started from two original atlases
containing overlaps, making them unsuitable for fabrication. After
overlap removal the atlas packing efficiency was 31% and 49% respec-
tively, which subsequently improved to 61% in both cases, following
our optimization. Given a target model size of 11.3 × 13 × 7.2cm,
we used a 27.9 × 43.2cm sheet of paper to create the bunny model
using our output atlas. To create this model using the original layout
would have required a 56.7 × 36.9 sheet of paper.

6 CONCLUSION
We have introduced Box Cutter, a new method for improving chart
packing efficiency suitable for both rendering and fabrication set-
tings. Our method provides users with direct control of the tradeoff
between chart boundary length and packing efficiency, and allows
for the specification of key parameters such as visual importance,
gutter sizes, and minimal acceptable chart size. Additionally, we pro-
pose a new algorithm for overlap removal which produce bijective
outputs while minimizing output boundary length.

Limitations and Future Work. While our algorithm works in prac-
tice, we cannot offer any theoretical guarantees on its outputs. In our
worst case model, the bunny, our packing efficiency improvement is

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

Box Cutter: Atlas Refinement for Efficient Packing via Void Elimination • 153:13

only 14%. In the future, an obvious extension of this approach would
be to look at three-dimensional void boxes and cuts for packing 3D
objects. We believe this will work in practice, but this has not been
tested.

ACKNOWLEDGMENTS
This workwas supported byNSERC and by the FITweltweit program
of the German Academic Exchange Service (DAAD). We would
also like to thank Julian-Alexander Neagu (https://www.artstation.
com/julianalexanderneagu) for modeling the sculpted details and
providing the baked textures of the girl model. Our thanks also
go to Chrystiano Araújo for implementing the flaps for our 2D
output and creating the papercraft models, as well as to Luciano S.
Burla for creating the video. We are deeply grateful to Tobias Nöll
for providing results for various packing algorithms. Finally, we
would like to thank Tobias A. Franke for his helpful feedback and
suggestions.

REFERENCES
Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal Flattening by

Curvature Prescription and Metric Scaling. Computer Graphics Forum 27, 2 (2008),
449–458.

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.
2013. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article
98 (July 2013), 12 pages.

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno LÃľvy. 2010. Polygon
Mesh Processing. AK Peters. 250 pages.

Alon Bright, Edward Chien, and Ofir Weber. 2017. Harmonic Global Parametrization
with Rational Holonomy. ACM Trans. Graph. 36, 4, Article 89 (July 2017), 15 pages.

Nathan A. Carr and John C. Hart. 2002. Meshed Atlases for Real-time Procedural Solid
Texturing. ACM Trans. Graph. 21, 2 (April 2002), 106–131.

Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich Benes,
Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-pack for 3D
Printing. ACM Trans. Graph. 34, 6, Article 213 (Oct. 2015), 12 pages.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational Shape
Approximation. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). ACM, New York,
NY, USA, 905–914.

Daniel Sanchez-Crespo Dalmau. 2003. Core Techniques and Algorithms in Game Pro-
gramming. New Riders Games.

Michael S. Floater. 1997. Parametrization and Smooth Approximation of Surface
Triangulations. Comput. Aided Geom. Des. 14, 3 (April 1997), 231–250.

Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Francisco González and Gustavo Patow. 2009. Continuity Mapping for Multi-chart
Textures. ACM Trans. Graph. 28, 5 (2009), 109:1–109:8.

Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. 2002. Geometry Images. In Proceed-
ings of the 29th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’02). ACM, New York, NY, USA, 355–361.

Ziyad S. Hakura and Anoop Gupta. 1997. The Design and Analysis of a Cache Architec-
ture for Texture Mapping. In Proceedings of the 24th Annual International Symposium
on Computer Architecture (ISCA ’97). ACM, New York, NY, USA, 108–120.

K. Hormann, B. Lévy, and A. Sheffer. 2007. Mesh Parameterization: Theory and Practice.
In SIGGRAPH 2007 Course Notes. ACM Press, San Diego, CA, vi+115.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Complex Augmen-
tation Framework for Bijective Maps. ACM Trans. Graph. 36, 6 (2017), 186:1–186:9.

M. Jin, Y. Wang, S. T. Yau, and X. Gu. 2004. Optimal global conformal surface parame-
terization. In IEEE Visualization 2004. 267–274.

Dan Julius, Vladislav Kraevoy, and Alla Sheffer. 2005. D-Charts: Quasi-Developable
Mesh Segmentation. Computer Graphics Forum 24, 3 (2005), 581–590.

B. W. Kernighan and S. Lin. 1970. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal 49, 2 (Feb 1970), 291–307.

Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoue, Thomas Brox,
and Bjorn Andres. 2015. Efficient Decomposition of Image and Mesh Graphs by
Lifted Multicuts. In The IEEE International Conference on Computer Vision (ICCV).

Liliya Kharevych, Boris Springborn, and Peter Schröder. 2006. Discrete Conformal
Mappings via Circle Patterns. ACM Trans. Graph. 25, 2 (April 2006), 412–438.

B. Koo, J. Hergel, S. Lefebvre, and N. J. Mitra. 2017. Towards Zero-Waste Furniture
Design. IEEE Transactions on Visualization and Computer Graphics 23, 12 (Dec 2017),
2627–2640.

Zohar Levi and Denis Zorin. 2014. Strict Minimizers for Geometric Optimization. ACM
Trans. Graph. 33, 6, Article 185 (Nov. 2014), 14 pages.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. In Proceedings of the 29th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’02). ACM, New York, NY, USA, 362–371.

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4, Article 108 (July 2012), 13 pages.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless:
Seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Trans. Graph. 36, 6 (2017), 216:1–216:15.

Victor J. Milenkovic. 1999. Rotational polygon containment and minimum enclosure
using only robust 2D constructions. Computational Geometry 13, 1 (1999), 3 – 19.

Jacob Munkberg, Jon Hasselgren, Petrik Clarberg, Magnus Andersson, and Tomas
Akenine-Möller. 2016. Texture Space Caching and Reconstruction for Ray Tracing.
ACM Trans. Graph. 35, 6, Article 249 (Nov. 2016), 13 pages.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global
Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages.

Ashish Myles and Denis Zorin. 2012. Global parametrization by incremental flattening.
ACM Trans. Graph. 31, 4, Article 109 (July 2012), 11 pages.

Tobias Nöll and Didier Stricker. 2011. Efficient Packing of Arbitrarily Shaped Charts
for Automatic Texture Atlas Generation. In Proceedings of the Twenty-second Euro-
graphics Conference on Rendering (EGSR ’11). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 1309–1317.

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping.

Budirijanto Purnomo, Jonathan D. Cohen, and Subodh Kumar. 2004. Seamless Texture
Atlases. In Proc. Symp. Geometry Processing. 65–74.

Nicolas Ray, Vincent Nivoliers, Sylvain Lefebvre, and Bruno Lévy. 2010. Invisible Seams.
In Proc. Eurographics Conference on Rendering. 1489–1496.

Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe. 2002. Signal-
specialized Parametrization. In Proc. Eurographics Workshop on Rendering. 87–98.

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. 2001. Texture Map-
ping Progressive Meshes. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA,
409–416.

P. V. Sander, Z. J.Wood, S. J. Gortler, J. Snyder, andH. Hoppe. 2003. Multi-chart Geometry
Images. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (SGP ’03). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 146–155.

Alla Sheffer and John C. Hart. 2002. Seamster: Inconspicuous Low-distortion Texture
Seam Layout. In Proceedings of the Conference on Visualization ’02 (VIS ’02). IEEE
Computer Society, Washington, DC, USA, 291–298.

Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bogomyakov. 2005.
ABF++ : Fast and Robust Angle Based Flattening. ACM Transactions on Graph-
ics (Apr 2005).

Alla Sheffer, Emil Praun, and Kenneth Rose. 2007. Mesh Parameterization Methods and
Their Applications. Foundations and TrendsÂő in Computer Graphics and Vision 2, 2
(2007), 105–171.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion Piecewise Mesh Parameterization. In Proceedings of the Conference on
Visualization ’02 (VIS ’02). IEEE Computer Society, Washington, DC, USA, 355–362.

Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. 2004. Iso-charts: Stretch-
driven Mesh Parameterization Using Spectral Analysis. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP ’04). ACM,
New York, NY, USA, 45–54.

Yahan Zhou, Shinjiro Sueda, Wojciech Matusik, and Ariel Shamir. 2014. Boxelization:
Folding 3D Objects into Boxes. ACM Trans. Graph. 33, 4, Article 71 (July 2014),
8 pages.

ACM Trans. Graph., Vol. 37, No. 4, Article 153. Publication date: August 2018.

https://www.artstation.com/julianalexanderneagu
https://www.artstation.com/julianalexanderneagu

	Abstract
	1 Introduction
	2 Previous Work
	3 Compacting the Atlas
	3.1 Cutting Strategy
	3.2 Cut and Repack
	3.3 Packing Computation

	4 Overlap Removal
	4.1 Chart Splitting
	4.2 Chart Welding

	5 Results
	6 Conclusion
	Acknowledgments
	References

