Showcasing design study methodology through simpler design challenges: An application to a microbial genomics clinical report design

Anamaria Crisan (@amcrisan)¹, Geoffrey McKee (@DrGWM)², Tamara Munzner (@tamaramunzner)¹, & Jennifer Gardy (@jennifergardy)²,³ ¹Department of Computer Science, University of British Columbia, CANADA; ² School of Population and Public Health, University of British Columbia, CANADA; ³ British Columbia Centre for Disease Control, CANADA

Challenge

Introducing infovis to domain specialists

- Needed: simple vehicle to convey infovis methods to specialists in other domains
- Solution: use less complex design problem, like a static report

Application & collaboration context

- Collaborate with COMPASS-TB project team to redesign a clinical report for tuberculosis (TB) whole genome sequencing (WGS)
- Show a design study methodology in action

Discovery Expert Consults

Task and Data

Questionnaire

Experts

Tuberculosis clinicians, nurses, epidemiologists, and researchers

Expert consult themes

- Procedural considerations
- Current issue: multiple documents with different results
- Limited time to read content
 - "10 seconds [to review content] is likely, one minute is luxurious"
- Design considerations
 - Emphasize: clinically actionable results "my patient's isolate is 6 SNPs from someone diagnosed 3 years ago. What is the clinical action?"
- Design Constraints
- imit to available data
- Conform to ISO15189:2012 requirements
- No interactivity, no colour (must be deliverable by PDF, Fax,)

Relationship between data and tasks

Limited consensus of data used for surveillance tasks

Degree of Consensus:

High

Some

Very low

Design Choice Questionnaire

Design sprint outcomes

1) Example of whole reports

Four alternative options generated, below are two of them

2) Example of isolated components

Tested wording, abbreviations, adding a summary (right), and grouping drugs

Date received in

Resistant

Resistant

Rifampin

Ethambutol

Pyrazinimde

Participant design preferences

Oxford

Not for diagnostic use

Sample Details

Sequencing

Mycobacterium Whole Genome Sequencing Report from MGIT Positive Samples

Print name:

MYCOBACTERIUM TUBERCULOSIS WHOLE **GENOME SEQUENCING REPORT** NOT FOR DIAGNOSTIC USE 12345678910 **DOUGLAS JONES** Birth Date OXFORD Location Sample Type SPUTUM Sample Date 1916-12-25 **OXFORD** 1917-01-01 Reporting Lab Report Date The specimen was positive for Mycobacterium tuberculosis. It is resistant to isoniaizd and rifampin. It belongs to a cluster, suggesting recent transmission The specimen was positive for Mycobacterium tuberculosis Drug Susceptibility \square No drug resistance predicted Drug susceptibility is predicted by the detection ☐ Mono-resistance predicted of known M. tuberculosis drug resistance confer-☑ Multi-drug resistance predicted

Rifampin

Ethambutol

Pyrazinimde

Resistant

Resistant

Resistant

Redesigned Report

More details

Experimental Guidelines

- 1. Design around tasks
- 2. Compare components not just whole designs
- 3. Compared against a control

Design Guidelines

- 1. Exploit visual hierarchy
- 2. Use emphasis carefully
- 3. Use words precisely
- 4. Use images judiciously
- 5. Information density OK, with caution

