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Fig. 1. FlowRep describes complex free-form 3D geometries (a) by a compact network of descriptive and projectable curves (e) that can be used to both depict
and reconstruct (f) the input (L2 distance between (a) and (f) is 0.1% of bounding box diagonal). Given an input quad mesh (a) it extracts strands of dominant
flowlines (b), uses those to compute a dense descriptive network (c) and then systematically simplifies it to obtain the desired compact net (d).

We present FlowRep, an algorithm for extracting descriptive compact 3D
curve networks from meshes of free-form man-made shapes. We infer the
desired compact curve network from complex 3D geometries by using a
series of insights derived from perception, computer graphics, and design
literature. �ese sources suggest that visually descriptive networks are
cycle-descriptive, i.e their cycles unambiguously describe the geometry of
the surface patches they surround. �ey also indicate that such networks
are designed to be projectable, or easy to envision when observed from a
static general viewpoint; in other words, 2D projections of the network
should be strongly indicative of its 3D geometry. Research suggests that
both properties are best achieved by using networks dominated by �owlines,
surface curves aligned with principal curvature directions across anisotropic
regions and strategically extended across sharp-features and isotropic areas.
Our algorithm leverages these observation in the construction of a compact
descriptive curve network. Starting with a curvature aligned quad dominant
mesh we �rst extract sequences of mesh edges that form long, well-shaped
and reliable �owlines by leveraging directional similarity between nearby
meaningful �owline directions. We then use a compact subset of the ex-
tracted �owlines and the model’s sharp-feature, or trim, curves to form a
sparse, projectable network which describes the underlying surface. We
validate our method by demonstrating a range of networks computed from
diverse inputs, using them for surface reconstruction, and showing extensive
comparisons with prior work and artist generated networks.
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Fig. 2. Artist generated 3D (a) and 2D (b) descriptive curve networks suc-
cinctly convey complex free-form shapes.
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1 INTRODUCTION
Artists employ sparse descriptive networks of 3D curves lying on
the surface of imagined objects as a starting point for modeling
such envisioned shapes, with curve generation followed by surfa-
cing, and quickly communicate 3D shapes on paper by sketching 2D
projections of such 3D curve networks depicted from informative
viewpoints (Figure 2). In addition to providing an e�ective visual
communication tool, sparse descriptive curve-network represen-
tations of 3D models provide designers with intuitive handles for
shape editing [Gal et al. 2009]; facilitate compact shape representa-
tion and abstraction [Mehra et al. 2009]; support shape-preserving
mesh simpli�cation [Gehre et al. 2016]; and enable other high-level
operations. We propose FlowRep, a method for computing visually
descriptive compact curve networks of free-form man-made, or de-
signed, shapes from existing models (Figure 1). FlowRep networks
e�ectively convey the shape of input models to human observers
and can be used for the range of applications above. �ey accurately
encode input geometry enabling both perceptual and geometric
reconstruction; the mouse in Figure 1f was accurately reconstructed
from our curve network alone using the method of [Pan et al. 2015].
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While previous methods have addressed the related problems of
surface partitioning [Bnire et al. 2013; Campen et al. 2012; Cohen-
Steiner et al. 2004; Eppstein et al. 2008; Myles et al. 2014] and ex-
traction of sets or networks of di�erent feature curves [DeCarlo et al.
2003; Gehre et al. 2016; Mehra et al. 2009], the partition boundaries
or sets of curves they produce do not provide a detailed description
of complex man-made free-form shapes (Section 2); the compact
sets of curves they generate either do not allow a human viewer
to visualize the detailed 3D shape that they represent, or are not
su�cient to reconstruct the shape using existing surfacing methods.
In contrast, and as demonstrated by our comparisons, our method
addresses the fundamental problem of generating a curve network
that unambiguously de�nes the target shape for human observers
and allows for e�ective reconstruction of the shape from the curves
alone using perception-driven surfacing techniques [Bessmeltsev
et al. 2012; Pan et al. 2015].

�e �rst challenge that we face in extracting the desired curve
networks from input models is determining the properties these
networks must possess to adequately describe a given shape. Design
literature points to two sets of criteria that these curve con�gurati-
ons should satisfy (Section 3). �e desired curve networks should
be projectable - i.e. the 3D shape of the curves should be predictable
from their 2D projection when viewed from non-accidental view-
points - and the network cycles should clearly describe the surface
regions they bound. As observed by previous literature [Pan et al.
2015; Xu et al. 2014], artist drawn networks are typically dominated
by a combination of trimming curves, which indicate sharp featu-
res, and �owline curves, or surface curves aligned with principal
curvature directions in anisotropic regions and smoothly extending
into and traversing isotropic areas. �ese �owlines are key to both
network projectivity and cycle descriptiveness (Section 3). By con-
struction, curvature tensor-aligned curves are orthogonal; this is a
key property for recovering their 3D shape from a 2D projection
of the curve network [Xu et al. 2014]. Moreover, human observers
tend to mentally surface 3D network cycles by interpreting most
cycle curves as aligned with principal curvature directions on an
imaginary surface. �ey consequently envision surfaces on which
the curvature directions are interpolating the directions of these
curves and the curvature magnitudes are a blend of the curvatures
along these curves [Bessmeltsev et al. 2012; Pan et al. 2015]. When
extending �owlines across isotropic regions, artists leverage the
extra degree of freedom these regions provide to optimize both
curve projectivity and descriptiveness. While dense �owline and
trim networks adequately describe shape, design literature indicates
a strong preference for using compact, minimalist, cycle-descriptive
networks to avoid visual clu�er [Eissen and Steur 2008]. When
creating such compact networks, artists use dominant �owline cur-
ves to delineate regions with monotone curvature variation, whose
geometry is consequently well described by their boundaries. Using
these guidelines for creating the desired descriptive networks, we
seek to compute a compact descriptive set of projective dominant
�ow lines on the input shapes. To extract this compact network, we
leverage observations about the desired properties of such curves
derived from design and modeling literature (Section 3) and use
those to quantify dominance, descriptiveness and projectivity. We
then employ these de�nitions in a network computation algorithm.

Fig. 3. �ad-meshing methods that optimize for mesh regularity, such as
[Bommes et al. 2013], use quad partitions (a) as a starting point and o�en
exhibit systemic misalignment with curvature directions as highlighted in
(b). Meshing methods that seek to adhere to curvature directions more
strictly o�en result in meshes with multiple sporadic singularities and non-
quad elements (c). To avoid systemic curvature misalignment we use the
la�er type of meshes as a starting point for generating descriptive curve
networks (d).

Tracing individual �owlines, especially across isotropic regions
and near curvature-�eld singularities, is inherently unreliable. We
provide global context for �owline computation by using a curvature
aligned quad-dominant mesh as a starting point for our algorithm.
Edge sequences on such meshes are largely aligned with curvature
directions in anisotropic regions and typically smoothly extend
across isotropic ones; such edge sequences provide a natural star-
ting point for tracing an initial set of �owlines from which we can
subsequently distill the desired dominant subset.

Using such meshes as a starting point, however, introduces di�e-
rent challenges. First, quad-meshing methods balance mesh quality
and vertex regularity against curvature alignment. Generation of
more regular meshes, e.g. [Bommes et al. 2013; Campen et al. 2016],
o�en requires signi�cant deviation from curvature directions (Fi-
gure 3b). In our se�ing, the requirement for curvature �eld align-
ment is paramount, necessitating the use of curvature aligned, but
potentially highly irregular, meshes with singular vertices and non-
quad faces (Figure 3c). We extrapolate projectable and dominant
�owlines, overcoming misaligned edges and mesh irregularities,
by leveraging directional a�nity between adjacent meaningful �o-
wlines. We note that dominant principal curvature directions are
characterized by clusters, or strands, of adjacent similarly directed
�owlines or sequences of mesh edges. Our �owline extraction met-
hod �rst clusters the mesh edges into strands, and then extracts
individual �owlines from these strands. We use the extracted �o-
wlines to compute the desired network. We �rst assemble a dense
descriptive trim and �owline network that describes the input sur-
face within a given tolerance, and then simplify and optimize this
network using the dominance, projectivity and descriptiveness me-
trics identi�ed above to obtain the desired compact solution.

Our contribution is two-fold. We identify and enumerate the
key properties of descriptive curve networks suitable for commu-
nicating complex designer shapes; we then propose the �rst curve
network extraction algorithm that generates networks with these
desired properties. We test our method on a diverse range of inputs,
showcasing its ability to generate the desired results on complex
free-form models, and validating it through comparison to artist
outputs, designer evaluation, and comparisons to prior art (Secti-
ons 8, 9). As this validation con�rms, our networks successfully
capture and convey the essence of the input shapes both in 3D space,
and when viewed from general viewpoints.
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Fig. 4. Projectivity and cycle descriptiveness (all renders show the same 3D
model in same view). Projection of an orthogonal quad mesh (b) conveys the
underlying 3D geometry be�er than that of a non-orthogonal mesh (a). A
flowline network (f) over a curvature aligned field (e) succinctly describes the
surface, while a network (d) generated from an arbitrary smooth cross-field
(c) does not.

2 RELATED WORK
While our focus on computing perceptually descriptive curve net-
works for design shapes is new, our method is related to a range of
works that seek to either partition surfaces, or to extract di�erent
types of feature curves from an input mesh.

Curvature Aligned Meshes. At the �nest level, curvature aligned
polygonal meshes, e.g. [Alliez et al. 2003], provide two of the quali-
ties we seek: descriptiveness and projectivity (Figure 4b). However,
they are clearly not compact. We use such meshes as a starting
point for our framework, which compacts them while maintaining
these two key properties (Figure 4f).

Mesh Segmentation and Reverse Engineering. Methods for mesh
segmentation, e.g. [Cohen-Steiner et al. 2004; Julius et al. 2005] and
reverse engineering, e.g. [Bnire et al. 2013; Nieser et al. 2010; Wu and
Kobbelt 2005] aim to segment models into regions with particular
surface characteristics, for instance developable surfaces, planes, or
conics. �ey pay minimal a�ention to the properties of the boun-
dary networks that arise from the partition they produce, and at
best optimize for boundary straightness or compactness. While
these methods facilitate algorithmic reconstruction of approximate
input geometry from the curve network and compactly encoded
region descriptors (such as surface type, axis of revolution or radius),
the curve networks they generate are o�en not cycle-descriptive
and, when projected to 2D space, provide li�le information on the
originating 3D curves (Figure 13). �e key distinguishing feature of
our method compared to these approaches is our focus on network,
rather than region, properties, and consequently the ability to con-
cisely and e�ectively describe input surfaces independent of their
speci�c geometry using network curves alone.

�ad Patch Layout. A range of methods extract coarse quad pa-
tch layouts to facilitate parameterization and surface ��ing. Early
methods, such as [Bommes et al. 2008] generate such layouts semi-
manually; this approach is still popular [Campen and Kobbelt 2014;
Zhuang et al. 2014]. More recent frameworks use motorcycle graphs,
starting at quad mesh singular points [Eppstein et al. 2008] to obtain
singularity-free quad patches. Recent works [Bommes et al. 2011;
Tarini et al. 2011] improve the patch layouts by simplifying spiraling
patch boundaries and merging nearby singularities. Gunpinar et
al. [2014a; 2014b] augment the graph tracing with geometric conside-
rations, leading to be�er capture of prominent features. Alternative
approaches use a curvature-aligned tensor �eld instead of a mesh as
a starting point [Bommes et al. 2013; Campen et al. 2012; Myles et al.

2014; Raza�ndrazaka et al. 2015] and trace separatrices from �eld
singularities to form quad patches. Whether starting from a quad
mesh or a �eld, the results of these methods are highly dependent on
the location of singularities and can therefore be signi�cantly misa-
ligned with curvature directions (Figures 3,14). Even when aligned
with curvature the separatrice boundaries used by such networks
form irregular valence vertices, resulting in networks that contain
few orthogonal intersections, making the mental leap from the net-
work to the underlying surface challenging (Figure 14a). Similar to
the �rst group of layout methods, we use meshes as a starting point;
however, we seek a distinctly di�erent set of network curves, one
aimed at perceptual rather than purely geometric approximation of
the input model.

Feature Curves and Curve Networks. A large body of research ad-
dresses detection of both sharp features and prominent curves, such
as ridge and valley lines on meshes, e.g. [Hildebrandt et al. 2005; Lai
et al. 2007]. �ese curves are o�en used to augment contours when
generating sketches of input models, e.g. [DeCarlo et al. 2003], and
are e�ective at quickly conveying the overall shape of objects [Cole
et al. 2008; Eissen and Steur 2008] (Figure 12b). When aiming to con-
vey proportions and geometric details, artists utilize more detailed
descriptive, or “precise”, drawings [Eissen and Steur 2008] which
augment contours and sharp feature curves with dominant �owlines
and typically do not include smooth ridges or valleys (Figure 2). Our
work focuses on capturing the curve networks artists use in the
la�er context (Figures 11, 12c).

Mehra et al. [2009] represent 3D shapes using networks of sharp
feature curves with speci�ed normals along them, selecting a suita-
ble curve subset to achieve a desired abstraction. To describe smooth
regions, they augment those networks to include the boundaries
of coarse planar segmentation regions [Cohen-Steiner et al. 2004]
(Figure 13b). Gehre et al. [2016] allows for a more e�ective control
of network density using a global scale parameter and support inclu-
sion of other feature curves, such as ridges and valleys in the output
networks. As noted earlier, feature curves alone are not su�cient
to accurately describe smooth shapes, while segmentation boun-
dary networks are rarely projectable and are therefore not suitable
for our needs. Moreover, while the network resolution constraints
these methods use are largely spatial, FlowRep network density is
controlled by its descriptiveness - resulting in much denser spacing
on prominent details, such as the mouse wheel, and sparser ones
on more monotone areas such as the top of the mouse (Figure 1).

Shape Proxies. de Goes et al. [2011] propose a user-assisted met-
hod for coarse abstraction of natural shapes. �ey �rst segment
models into roughly convex parts, and then partition those using an
extension of VSA [Cohen-Steiner et al. 2004] that seeks to reduce
T-junction count. Our automatic framework targets free-form man-
made shapes and is designed to accurately capture their geometry
(Figure 15, top).

Planar curves, or slices, aligned with major curvature direction
or key symmetry planes are successfully used to fabricate real-
life proxies of 3D shapes [Cignoni et al. 2014; McCrae et al. 2011].
�is representation requires a leap of imagination to envision the
intended surface, and performs worst when curvature streamlines
are non-planar (Figure 15,e,h), leading Cignoni et al. [2014] to use
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hundreds of slices to obtain recognizable representations of medium
complexity shapes. Our alternative approach e�ectively describes
shapes of similar complexity with just a few curves (Figure 15,f,i).

Analysis of Design Networks and Drawings. �ere is a growing
body of work on recovering 3D information from professional design
drawings [Iarussi et al. 2015; Shao et al. 2012; Xu et al. 2014] and
surfacing of 3D designer networks [Bessmeltsev et al. 2012; Pan et al.
2015]. �is line of work has been the catalyst for our exploration of
the inverse problem - extracting a descriptive network from a given
3D geometry. We discuss the insights we derive from these papers
and which we utilize in our work in Section 3.

3 DESCRIPTIVE CURVE NETWORKS
Our goal is to compute a sparse network of curves on the surface of
an arbitrary 3D model that succinctly describes the model’s shape
(Figure 2). Based on observations from design tutorials and relevant
perception and computer graphics literature, we identify and formu-
late three major sets of geometric criteria that jointly determine the
overall network e�ectiveness: cycle description, curve dominance,
and network projectivity.

Cycle Description. A curve cycle is a collection of curve segments
that demarcate the boundary of a single surface patch, whether that
surface is a real surface or merely implied. Perceptual studies [Ste-
vens 1981], validated by recent modeling research [Bessmeltsev
et al. 2012; Pan et al. 2015], suggest that, when shown a curve cycle
consisting of several smooth curve segments, human observers opt
for a unique mental interpretation of the cycle’s implied interpo-
lating surface. Speci�cally, viewers tend to perceive most of the
provided curves as representative curvature lines on an imaginary
underlying surface. �ey subsequently imagine a surface whose
principal curvature lines smoothly blend these curves. Since surface
principal curvatures fully de�ne its geometry, viewers consequently
imagine a unique surface interpolating this cycle.

X× Observation of industrial design
practices [Bordegoni and Rizzi 2011;
Eissen and Steur 2008] indicates that

artists leverage this property when creating 3D curve networks or
depicting 3D geometry in 2D space. �eir networks are dominated
by �owline curves aligned with principal curvature directions in
anisotropic areas and extended across isotropic regions and are
augmented by trimming curves which demarcate open boundaries
and sharp features. As demonstrated in the inset, for the surface on
the le� the trimming curve alone (middle) incorrectly conjures a �at
surface, while the cycles of the rightmost network are descriptive
of the originating surface on the le�.

Flowline Dominance. Design literature [Bor-
degoni and Rizzi 2011; Eissen and Steur 2008]
highlights the need to keep the number of net-
work curves minimal for aesthetic reasons. It
consequently provides helpful guidelines as to

what subset of �owlines and trimming curves is dominant, or best
at succinctly conveying surface geometry. �is literature indicates
a preference for using �owlines which delineate large areas of mo-
notone curvature, and are representative of one of the curvature

Fig. 5. Algorithm stages: (a) Input quad-dominant mesh; (b) flowline
strands; (c) compact descriptive network; (d) regularized final network.

directions within these areas. As a speci�c example, Eissen and
Steur [2008] recommend that artists demarcate roundings (mar-
ked in red in the inset). �ey also recommend using “bigger sized
curves �rst” and adding more curves as necessary “to emphasize
the transformation of the surface”. �is advice suggests a prefe-
rence for hierarchical network constructions - �rst capturing major
anisotropic regions by tracing their dominant principal curvature
streamlines, and then re�ning the network to add �ner details.

× X
front view:

side view:

Network Projectivity. Artist-generated des-
criptive curve networks are designed to serve
as a self-su�cient proxy of the 3D shape.
Consequently, evidence indicates that artists
construct networks whose 2D projections in
many, if not all, views can be used by hu-
man observers to successfully predict their
3D shape [McCrae et al. 2011]. In the inset
the network on the right satis�es this pro-
perty, while the one on the le� does not. Per-

ception research [Stevens 1981] points out that smoothly crossing
2D curves in design drawings are universally perceived as orthogo-
nal. As highlighted by [Shao et al. 2012; Xu et al. 2014] this cue is
critical when extrapolating depth from line drawings. Artists ubiqui-
tously employ such crossing orthogonal 3D curves in their networks.
Curves meeting at T-junctions are similarly perceived as likely ort-
hogonal, unless contradicted by the surrounding context [Xu et al.
2014]. �ere is no indication in research that any other type of
intersection or curve ending contributes to viewer understanding
of 3D network geometry given a 2D projection. �ese observations
suggest a preference for orthogonal curve networks dominated by
regular (valence-4) vertices, with no open-ended curves.

Human observers are more successful at inferring 3D curve shape
from 2D projections of �a�er curves [Stevens 1981; Todd and Reei-
chel 1990]. While restricting the set of network curves to strict
planes reduces the set of models one can e�ectively describe [Xu
et al. 2014], artists are strongly encouraged to use planar curves
when depicting shapes [Eissen and Steur 2008], whenever possible.

Lastly, artists are strongly encouraged to draw local symmetry, or
geodesic curves when depicting complex surfaces [Eissen and Steur
2008, 2011]. �e symmetry cue is known to be helpful in recovering
the 3D shape of network curves from a 2D view [Shao et al. 2012;
Xu et al. 2014].

4 ALGORITHM OVERVIEW
Based on the criteria outlined above, we seek to construct a sparse
cycle-descriptive network of trim curves and projective dominant
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Fig. 6. Detailed algorithm overview: (a) Input quad-dominant mesh; (b) initial flowline strands; (c) initial conservative flowlines; (d) final flowline strands; (e)
reliable flowlines; (f) dense descriptive network; (g) simplified network; (h) network post local optimization; (i) regularized final network.

�owlines. We seek �owlines that are aligned with curvature directi-
ons in anisotropic areas, and which smoothly extend across features
and isotropic regions.

To make the problem tractable, we discretize the solution domain
by starting from a �nite set of potential �owlines. While one could
start from a network constructed by directly tracing on a smooth
curvature-aligned tensor �eld, tensor �eld tracing raises nume-
rous accuracy issues [Myles et al. 2014; Ray and Sokolov 2014] and
requires the consideration of subtle streamline seeding and termina-
tion choices [Campen et al. 2016; Myles et al. 2014]. We note that
existing methods for generating curvature-aligned quad-dominant
meshes robustly address these issues, and that their outputs can
provide a suitable starting point for our method. Most of the ed-
ges in anisotropic regions on such meshes are, by design, aligned
with curvature directions, and most edges in isotropic regions are
aligned with a smooth extension of the curvature �eld. Moreover
such meshes, when dense enough, satisfy both projectivity and
cycle-descriptiveness (Figure 3c, Figure 4e); our task can therefore
be formulated as extracting a compact subset of the mesh edges
which maximally retains both properties. We control the trade-o�
between compactness and descriptiveness by imposing a bound on
the cycle-descriptiveness error, and optimizing for the most compact
dominant and projective edge network that satis�es this bound.

In this section, we give a high-level formulation of the problem
and overview the key components of our method. Details of the
formulation and method will be discussed in the next three sections.

f1

f2
f3

Problem Statement. Given an input quad-dominant
mesh M (Figure 6a), we formulate the computation
of our target network N as selection of a subset of
mesh edges with the following properties. We de�ne

a �owline as a (possibly closed) path made up of a sequence of
vertex-adjacent edges (see inset; three �owlines f1, f2, f3 are iden-
ti�ed by three di�erent colors). We associate positive projectivity
and dominance costs pf and df with each �owline f . �ese costs
are designed to decrease as a �owline’s projectivity or dominance
increases. We also associate a descriptiveness error dc with each
network cycle c �e exact formulations of pf , df and dc are de-
tailed in Section 5. Using these measures, our discrete optimization
goal can then be formulated as computing a connected set of net-
work �owlines f that minimizes network cost while satisfying a
descriptiveness threshold:

minEN =
∑
(pf + df ) (1)

subj. to maxdc < dmax ∀c ∈ N

Here dmax is a user speci�ed descriptiveness threshold that controls
the network sparsity.

Two key properties make this problem distinct from those addres-
sed by traditional discrete mesh segmentation frameworks. First,
our network computation operates on two distinct sets of entities.
While our optimization function is de�ned on �owlines, or sequen-
ces of mesh edges, our constraints are de�ned on the cycles, or
patches of mesh faces, that the �owlines bound. Second, unlike clas-
sical segmentation frameworks, the function we seek to optimize is
essentially independent of the number of edges within each selected
�owline, but highly dependent on the a priori unknown number of
network �owlines and their overall properties.

Solution Framework. We obtain the desired output network, by
using the observation that an assignment of mesh edges to �owlines
can be made largely independently of the choice of which �owlines
will be eventually used in our �nal network. We therefore �rst group
sequences of edges into �owlines (Figure 6b-e) and then select a
subset of these �owlines, in combination with the surface trim
curves, to assemble the desired network (Figure 6f-h). We contrast
our approach against classical segmentation methods in Section 8.

×

X

Strand-based Flowline Extraction. In general we ex-
pect pairs of similarly directed edges that share a
common vertex to belong to the same �owline and
orthogonal adjacent edges to belong to di�erent �o-
wlines. We use these criteria to determine when �o-
wlines should terminate, i.e. under which conditions
adjacent edges should belong to di�erent �owlines,
and when local geometry allows for multiple alter-
natives to determine which pairs of adjacent edges

should be joined into the same �owline. Due to meshing artifacts,
singularities, misaligned edges, and inaccuracies in curvature �eld
computation, making these choices based on purely local geometry
around the edges in question (inset, top) can introduce �owlines
misaligned with dominant �ow directions.

We obtain �owlines aligned with dominant �ow (inset, bo�om)
by taking global context into account. We note that dominant
and meaningful curvature cross-�eld directions on the surface are
characterized by groups of multiple long, adjacent, similarly directed
streamlines, or streamline strands. We leverage this behavior by
�rst extracting similarly directed �owline strands (Figure 6b-d) and
then using these strands to extract individual, reliable �owlines
(Figure 6e). We do not know a priori the number of strands we seek;
however, as noted earlier, we generally expect consecutive edges
across vertices and opposite edges within quads to belong to the
same strand if they have similar directions, and expect orthogonal
edges and intersecting �owlines to belong to di�erent strands. We
use these observations to formulate strand extraction as a correlation
clustering problem [Bansal et al. 2004] (Figure 6d). We then use these
strands to extract individual, reliable �owlines (Section 6, Figure 6e).
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Fig. 7. Independently formed flowlines (a,b,e) can be sub-optimal and may
occasionally persist through network computation (e). Strand computation
(c,d,f) correctly splits edges between di�erent strands overriding purely
local alignment and resulting in be�er final networks (f).

Figure 7 demonstrates the di�erences between the local and global
approaches on real-life inputs.

Network Assembly. Selecting an optimal subset of the compu-
ted �owlines requires solving a discrete constrained optimization
problem within a large solution space. Adding �owlines into a net-
work individually is problematic. While humans can easily identify
dominant curvature streamlines i.e. surface curves across which
curvature changes non-linearly, algorithmically identifying such
locations on a mesh is error prone. Absent this information, do-
minance is best assessed in the context of an existing network,
where it can be directly evaluated by comparing the impact on
cycle-descriptiveness of removing individual �owlines from the
network. Intuitively, keeping more dominant �owlines results in a
more cycle-descriptive network. Using all �owlines at once to �rst
form a dense network, and then simplifying it by gradually remo-
ving �owlines, provides an adequate solution but is computationally
expensive as it involves multiple redundant insertion and removal
operations.

To e�ciently compute the desired network we adopt a mixed top-
down/bo�om-up strategy. Our network construction process starts
from a minimal network of only trim curves (Figure 10a) and pro-
gressively re�nes the inadequately described cycles on this network
(Figure 10, Section 7.1). At each re�nement stage we add all �owli-
nes that span, or cross, these cycles into the network (Figure 10b),
delaying the decision on which of them are best until the network
is su�ciently descriptive. Re�nement terminates once all network
cycles are su�ciently described; speci�cally, when the description
error dc for each cycle is below our threshold dmax (Figure 6f).

At this point we have su�cient context to proceed with the sim-
pli�cation process, and can remove redundant �owlines (Section 7.2,
Figures 5c, 6g, 10c). We greedily remove less dominant and less pro-
jectable �owlines while enforcing the descriptiveness threshold. We
then further reduce the network energy EN , subject to our descrip-
tiveness constraints, by reassessing local �owline selection (Figure
6h). While this combined process is not guaranteed to converge to
a global minimum, it works well in practice, resulting in networks
of similar complexity to those produced by artists.

Post-Processing. �e network produced
by the framework discussed so far is con-
strained by the underlying mesh discretiza-
tion. �is can lead to sub-optimal wiggles

along �owlines and some approximately orthogonal, rather than

Fig. 8. (a) More (green) and less (red) well described cycles on a row-boat,
before and a�er local optimization. (b) Flowlines colored by decreasing
projectivity (blue to red). (c) More (blue) and less (red) dominant flowlines.

strictly orthogonal, �owline intersections (inset, le�). As a post-
processing step, we eliminate these artifacts by directly optimizing
�owline geometry. We �rst use an iterative Gauss-Seidel smoot-
her which straightens �owlines while maintaining and improving
�owline orthogonality at their intersections. Speci�cally, for each
interior �owline vertex we project its neighbors to its tangent plane
and the vertex toward the average of these projections. We relo-
cate �owline intersections by applying the angle equalizing mesh
formula proposed by [Surazhsky and Gotsman 2004]. �e newly
computed positions are projected to the input surface at each step.
Finally, we detect all near-planar �owlines (a �owline is near-planar
if every point on the �owline is less than half of the average mesh
edge length from its best-�t plane, computed via least squares) and
make them strictly planar, and straighten all near-linear �owlines
(using the same distance threshold, but tested against the best-�t
line) (Figure 6i).

�e following sections describe in detail the measures used in our
problem formulation (Section 5), and the two stages of our solution
framework (Sections 6, 7). Pseudocode for our solution framework
is given in the appendix.

5 MEASURING NETWORK PROPERTIES
Our framework seeks to solve the optimization problem described
by Equation 1. We now derive the formulas used to measure the op-
timized energy and constraints. To enable meaningful combination
of di�erent values we express all quantities as angles (measured in
degrees).

5.1 Cycle Descriptiveness.
Our descriptiveness metric assesses how well a given network curve
cycle describes the region it surrounds (Figure 8a). Intuitively, we
wish to measure how well the curvature directions and magnitudes
in the interior of a region can be reproduced from the magnitudes
and directions along the boundary. However, estimating curvature
di�erences is sensitive to di�erent scales in high versus low cur-
vature regions. To enable conservative and robust descriptiveness
computation we use di�erences in normals as proxy for curvature
changes: in particular, we measure the angle di�erences between
real normals across the patch and ones predicted based on normals
along the cycles.

n1
1

n2
1np

1
n

v f1
f2

We predict interior normals based on
the boundary by locally mimicking the
method of Bessmeltsev et al. [2012]. Spe-
ci�cally, for each vertex v within a re-
gion we locate �owlines that cross this
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vertex and intersect the boundary curves of the region (see inset).
For each �owline fi we use the normals at the cycle intersections
n1
i and n2

i to obtain a normal prediction at the vertex

n
p
i =

d1
d1 + d2

n1
i +

d2
d1 + d2

n2
i

where di is the distance along the �owline from v to respective
intersection point. To be conservative we measure local descriptive-
ness error as the maximum normal deviation between per �owline
predictions and the actual normal

d(v) = max
i
(∠(n

p
i ,n)).

In theory we could extend this mechanism to handle vertices with no
crossing �owlines, e.g. by computing some directed paths from them
to the boundary. However, given that the regions we process are
su�ciently well spanned by �owlines, and given that the normals
within them change gradually, we found that it is safe to simply
omit all such vertices from our region descriptiveness computation.

We seek a conservative descriptiveness estimate. �us we refrain
from using vertex descriptiveness average as the per cycle value, yet
we also wish to avoid using the worst value as it may be an outlier.
To discard outliers, rather than using the largest angle d(v) as the
per-cycle error dc , we set dc to the 90th percentile value. Lastly,
if a non-planar region has more than one boundary cycle , we by
default consider it poorly described, se�ing dc = 90◦.

5.2 Flowline Cost.
We assign a cost pf +df to each �owline based on how its presence
impacts the descriptiveness df and projectivity pf of the network
N .

vi+k

vi

vi+j vi+h

vi+2knknj nh

Projectivity. We measure raw
�owline projectivity by locally
evaluating its planarity, its devia-
tion from local geodesics, and its
connections within the network.

For each �owline f we use short odd-length sliding sequences of
vertices vi , . . .vi+k , . . . ,vi+2k to assess planarity and geodesicity
(we use k = 5). We �t planes to triplets of vertices vi ,vi+j ,vi+2k
j ∈ [1, 2k − 1]. We then measure sequence planarity as the average
angle between the normal of the central plane nk and those of the
other planes nj ��ed to the sequence:

Pi =
1

k − 1
∑

j ∈[1,2k−1], j,k
∠njnk .

�e planarity of the entire �owline is in turn the average of local
sliding sequence planarity costs:

P(f ) =
1
|i ∈ s |

∑
i ∈s

Pi (2)

We recall that a curve is locally considered a geodesic if its local
��ing plane contains the surface normal. We thus measure geodesi-
city by evaluating the angle between the normal to the surface n at
vi+k and the plane pk . Strictly speaking, geodesicity is a boolean
property - in a continuous se�ing, a curve is either a geodesic or

it is not. �us our measure becomes meaningless above a certain
angle, leading us to compute geodesicity as

G(f ) =
1
|i ∈ s |

∑
i ∈s

min(∠nkn(vi+k ),Gm ) (3)

where Gm = 15◦.
As observed earlier, the interaction between network curves, spe-

ci�cally their intersections, plays a major role in the projectivity
of the overall network. When interpreting the geometry conveyed
by the network, human observers leverage orthogonal crossings
both between �owlines and between �owlines and trimming cur-
ves. We therefore prioritize retaining �owline curves that form
such crossings by associating endiness costs E1(f ) and E2(f ) with
the ends of open �owlines. We use an endiness value of 30 for
�owline/trimming-curve T-junctions, and 60 for all others. Both
values are set to zero for a closed loop.

We set �owline projectivity pf as follows, weighing geodesicity
by dmax/Gm to bring all values to a common scale,

pf = P(f ) +
dmax
Gm

G(f ) + E1(f ) + E2(f ) (4)

Predicted normals
Actual normals

Flowline Dominance. Assessing domi-
nance by measuring curvature continuity,
as suggested by design literature, is unre-
liable in a discrete se�ing. Instead, we ob-
serve that a �owline’s dominance within
a network context can be evaluated by
measuring the impact of removing this
�owline on the descriptiveness of the af-

fected cycles. �e higher the resulting descriptiveness error, the
more dominant the �owline. Recalling that the dominance error is
computed as a maximum along two spanning �owline directions,
we note that removing a network �owline impacts only one of these
directions (see inset). Accordingly, to be�er pinpoint the impact
of each network �owline, we use a modi�ed cycle descriptiveness
metric when assessing the impact of the removal. For each cycle
resulting from removing a �owline f , we only consider the di�eren-
ces between the predicted and actual normal for normals predicted
using �owlines crossing f , and ignore the di�erences along other
�owlines. We then use the maximum of the cycle errors as a domi-
nance estimate D(f ). Since we want the cost to be smaller the more
dominant a �owline is, we use

df = 360 − D(f ) (5)

as the cost. Figure 8 visualizes some �owlines colored based on pro-
jectivity and dominance. Note that these costs are only meaningful
in the context of a network. �us when computing �owlines prior
to network construction, we require proxy values to predict �owline
properties, as discussed in the next section.

6 FLOWLINE COMPUTATION
�e goal of the �owline computation stage is to generate a set of
reliable �owlines which we can use to assemble our network (see
Section 7). Since purely local reasoning about individual �owline
formation is unreliable we employ a global approach that levera-
ges directional similarity between edges associated with adjacent
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Fig. 9. Dominant flowline strands on the mug: (a) initial edge strands and
(b) extracted conservative flowlines; (c) final strands and (d) flowlines.

�owlines (Figure 7). We �rst form strands, or clusters, of simi-
larly directed edges , and then extract individual �owlines from
these strands. When forming strands we employ the following
positive (likely to be in same strand) and negative (likely to be
in di�erent strands) cues. Edges are expected to belong in the
same strand if they are roughly parallel, and either share com-
mon vertices or lie on opposite sides of common quads (see inset).

e

+

+

+

−
−

−
−

�ey are expected to belong to di�erent strands if they
share common vertices and are roughly orthogonal.
Once formed, �owlines belonging to the same cluster
should not cross one another. While the no-crossing

constraint is a very strong clustering cue, we cannot apply it to our
raw input consisting of individual edges. To take advantage of this
cue, we employ a two-stage process: we �rst form initial strands
using only cues applicable to edges and extract initial conservative
�owlines from those; we then use those initial �owlines to generate
a set of reliable strands using the full set of clustering cues; and
�nally use those strands to extract reliable extended �owlines.

�e combination of positive and negative cues that we use for
strand formation naturally feeds into a correlation clustering fra-
mework [Bansal et al. 2004]. We employ the version of correlation
clustering that maximizes

∑
e ceYe , where Ye ∈ 0, 1 is 0 if the end

nodes of the arc e are in di�erent clusters and 1 if they are in the
same cluster. While the general correlation clustering problem is
NP-hard, it has a number of e�cient approximation methods. We
use the method of [Keuper et al. 2015] to compute the clusters; while
not optimal, it performs well in practice. �e speci�c edge weights
used in our two clustering steps are de�ned below.

6.1 Initial Strands and Flowlines.
Initial Strands. To form initial strands using correlation clustering

(Figure 6b) we treat mesh edges as graph nodes, and associate non-
zero weights with the arc connecting edge nodes i, j when these
either share a common vertex, or form opposite sides in a mesh
quad. When a pair of mesh edges i, j share a common vertex, we
de�ne the arc weight ci j as

ci j =


e
−

( αi j
σ1

)2

, if αi j ≤ 45

wne
−

( 90−αi j
σ2

)2

, otherwise
(6)

αi j is the angle di�erence between the unsigned edge directions
projected to the vertex tangent plane, wn = −5, σ1 = 5, and σ2 = 15.
�is weight is positive when edge directions are closer to paral-
lel than orthogonal, and negative otherwise. For arcs connecting

opposite edges within each quad, we de�ne the weight as

ci j = wpe
−

( αi j
σ3

)2

. (7)

We set σ3 = 5◦ and use a very small parallel coe�cient wp =

0.05, as at this stage we desire clusters dominated by local �owline
smoothness.

Initial Flowline Extraction. We generate �owlines from strands
by segmenting the connected components of each strand into indi-
vidual �owline edge sequences (Figure 6c). We avoid making any
potentially ambiguous choices by using all irregular and trim curve
vertices within such components as �owline termination points and
de�ne each resulting one-dimensional edge sequence as a �owline.

6.2 Reliable Strands and Flowlines.
�e initial �owlines allow for more global reasoning about, and
consequently extraction of, more reliable strands and �owlines
(Figure 9).

Reliable Strands. We obtain reliable strands using our correlation
clustering setup by treating the initial �owlines as graph nodes, and
associating arcs with pairs of �owlines f , f ′ that share common
end vertices or contain edges on opposite sides of mesh quads.
At each shared end vertex, we �rst compute the tangent vectors
for the emanating �owlines f , f ′ (using the average across a local
neighborhood set to �ve average mesh edge lengths). We then
compute cf ,f ′ as a function of the angle between these tangents
using the formula in Equation 6, but with a more tolerant σ1 =
7.5. For �owlines that share two endpoints we sum up the values
obtained at both ends.

For each pair of �owlines f and f ′ that contain opposite edges
i ∈ f , j ∈ f ′ on shared quad mesh faces, we compute the arc weight
as a function of both the angles between such pairs of opposite edges,
and the proportion of such opposite edges as a function of the length
l of the shorter �owline (intuitively the bigger this proportion, the
more likely the �owlines are to be in the same strand):

c(f ,f ′) =
2
l

∑
i, j

e
−

( αi j
σ3

)2

. (8)

As observed earlier, crossing �owlines should not belong to the
same cluster. We therefore associate a large constant negative arc
weight c(f ,f ′) = −25 with each pair of crossing �owlines (f , f ′).

�e overall score function that our strand computation seeks to
maximize is max

∑
c(f ,f ′)Y(f ,f ′) where Y(f ,f ′) is 1 if the two �owli-

nes are in the same cluster and 0 if not.

Reliable Flowline Extraction. We use the obtained strands to ex-
tract extended reliable �owlines (Figure 6e). �e connected compo-
nents of our �owline strands can form a range of graph con�gurati-
ons, allowing for multiple individual �owline con�gurations. We
form our reliable �owlines using a greedy process which prioritizes
extraction of more projectable and longer �owlines within each
component. We measure projectivity using the metric in Section 5.2.
Flowline endiness costs E1,E2 (Section 5.2) dominate all other pro-
jectivity components and are lowest for closed loops. �us for each
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Fig. 10. Network computation: (a) Initial trim curve network; (b) descriptive
dense network; (c) final network.

connected component we extract all closed loop �owlines �rst, prio-
ritizing more projectable closed loops when given multiple options.
We then use a greedy process to extract the longest open �owlines
that cannot be extended, i.e. ones that start and end at a valence
one vertex, again prioritizing more projectable ones, given multiple
same length alternatives. Mesh artifacts can result in spiraling �o-
wlines, where one edge is directly or indirectly parallel to another
edge. While sometimes these spiral �owlines need to be included in
the �nal network for description purposes, one cycle is o�en su�-
cient to describe the surrounding geometry. To facilitate processing
of individual cycles, we detect spirals, and split them at the point
where they complete a full cycle but have yet to become parallel. If
there are multiple such points, we select the one(s) which result in
the most projectable �owlines.

7 NETWORK COMPUTATION
We use the computed �owlines to form a descriptive network by
employing a mixed top-down/bo�om-up strategy. Starting with a
network of trim curves only, we �rst progressively add �owlines
to obtain a dense network that describes the input model within
the given descriptiveness threshold dmax (Figure 6f, 10b); we then
simplify it by removing redundant �owlines (Figure 6g, 10c).

7.1 Top-Down: Dense Descriptive Network Computation
Network Initialization. We compute feature curves on the input

model using ridge and valley detection [Yoshizawa et al. 2005] with
conservative se�ings designed to capture only sharp features. �e
boundary and extracted feature curves form our initial network,
which we use to partition the input surface into a set of cycles
surrounded by network curves (Figure 10a). We evaluate the des-
criptive error dc of each cycle and classify these cycles as either
covered or uncovered depending on whether it is below, or above,
the descriptiveness threshold dmax. We note that the trim curve
network may not form any cycles, and may even be empty; in this
case, the initial cycle set contains one uncovered region which spans
the entire input surface.

Network Re�nement. We say that a �owline spans a region if it
splits it into two or more separate regions. We re�ne the network by
iteratively incorporating �owlines that span currently uncovered re-
gions: for each uncovered region, we detect all �owlines that span it;
we add all located spanning �owlines into the network, shortening
them as described below to avoid forming undesirable network topo-
logy. We then compute the cycle-descriptiveness error (Section 5.1)
for all newly formed regions. If uncovered regions remain, we per-
form another iteration; otherwise the algorithm terminates. In the
rare case where uncovered regions have no spanning �owlines, we

repeat the reliable �owline extraction step (Section 6.2) with the
parameter σ1 increased by 1◦. We restrict this computation to �ow-
lines that currently intersect the uncovered regions in question. We
repeat this stage if necessary until coverage is achieved.

Flowline Shortening. As noted in Section 3, network projectivity
depends on its connectivity. In particular, �owlines are least pro-
jectable when terminating at valence one or two end-points and
T-junctions between �owlines and trim curves are more projectable
than T-junctions between �owlines.

×
×

f

We maximize the projectivity of each open �ow-
line we embed in the network, by collapsing open
end-points to T-junctions (inset, right) and collaps-
ing purely �owline T-junctions to �owline-trim
curve T-junctions (inset, le�), while constraining

the shortened �owline to span the same set of uncovered regions.
We �rst identify the section of each �owline that spans this set of
regions and the excess sections on either end of it. If an excess
section does not end at a trimming curve, but does intersect one, we
shorten it to the closest such intersection to its current end point.
Similarly, if it ends at a valence 1 or 2 vertex, we shorten it to end
at the nearest �owline intersection to the current end point.

7.2 Bo�om-Up: Network Simplification
We formulate the extraction of a compact network out of the dense
descriptive network produced by the previous step as a direct op-
timization of the constrained problem formulated in Section 4. In
contrast to the original formulation, which operated by assigning
edges to �owlines, we keep the �owlines computed in the previous
stage largely �xed, and focus on selecting the optimal subset among
them (Figure 6g). Our discrete optimization goal can consequently
be formulated as computing the subset of �owlines f ∈ N that
minimizes EN , subject to the constraint that maxdc < dmax over all
cycles c in the resulting network. While such discrete constrained
minimization problems o�en require sophisticated machinery to
optimize, we found that a greedy approach that mimics classical
mesh simpli�cation, followed by local �owline movement, works
su�ciently well for our needs.

Simpli�cation. We place the �owlines in a priority queue ordered
by their cost (Section 5.2), then repeatedly remove the highest cost
�owlines whose removal does not violate our descriptiveness con-
straint from the network. A�er each �owline is removed, we update
the cost of its neighboring �owlines and compute the descriptive-
ness error for the newly formed, merged, regions. �is process
terminates when no �owlines can be removed without violating our
constraints. A typical simpli�cation output is shown in Figure 10.

Removing a �owline from a network can result in undesirable va-
lence 2 or 1 joints at the endpoints of remaining �owlines. To avoid
these, we shorten such remaining �owlines by removing the secti-
ons between the undesirable endpoints and their nearest network
intersections. Before shortening the �owlines we check if doing so
would violate our descriptiveness threshold. If the threshold would
be violated we abort the precipitating �owline removal; otherwise
we remove the �owline and perform the shortening step.
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Connectivity Optimization. When two or more �owlines end at a
common valence four vertex, removing one of these �owlines redu-
ces network projectivity by reducing the valence of the intersection.
To penalize undesirable valence reduction, prior to starting the sim-
pli�cation, we locate all sequences of compatibly oriented �owlines
that share common endpoints (�owlines are deemed compatible
if the angle between their tangents at the shared point is obtuse).
We merge these sequences into composite �owlines with their own
score and place them into the simpli�cation queue. For each �owline
within the sequence we set the endiness Ei cost (Section 5.2) for the
endpoint within the composite to zero, decreasing the likelihood of
these �owlines being targeted for removal, before the composite.
During simpli�cation when any such interior �owline is removed,
we update the composite and the cost of the other �owlines interior
to this composite accordingly.

Post-process Local Optimization. Post-simpli�cation we locally
further optimize the network as follows (Figure 6h, 8a). First, for
each �owline, we locate its immediately adjacent le� and right �ow-
lines in the same strand, and test the impact of removing the current
�owline from the network and adding its immediate neighbor
instead. We perform the substitution if it decreases the network
energy and the resulting network still satis�es the descriptiveness
threshold. We repeat these steps as long as the energy decreases.

A�er local optimization, we once again shorten open network
�owlines, removing end-sections if doing so replaces valence 1 or 2
endpoints with T-junctions or replaces pure �owline T-junctions by
�owline-trim curve ones, and does not violate our cycle-descriptiveness
threshold.

As in many other segmentation setups, our output networks
may occasionally end up with close by parallel �owlines none of
which can be removed without li�ing the descriptiveness error
for a neighboring cycle just above our threshold. To avoid visual
clu�er, we detect such pairs of adjacent parallel �owlines (using a
distance bound of two average mesh edge lengths) and examine the
impact on the descriptiveness error of removing either one or the
other. We select as a candidate a �owline whose removal increases
the error the least. We remove this �owline if the increase in the
descriptiveness error is less than 20%.

8 VALIDATION
We validate the results produced by our method in a number of
ways: by comparing our outputs against artist-generated networks
and prior art, by performing a qualitative evaluation study, and by
demonstrating that the networks generated by our method can be
used to closely reproduce the originating models.

Comparison to Artist Generated Networks. We selected 4 models
(rounded cube, treball, mouse, boat) ranging from simple (cube) to
highly complex (mouse, boat) and provided them to three indus-
trial designers/artists. We asked one artist to manually generate
descriptive 3D curve networks for these models, and asked two
artists to create design drawings of them from given descriptive
views. While the artist results are, as expected, not identical, they all
share common characteristics, which are similarly captured by our
outputs (Figure 11). It took the artist over three hours to generate
the 3D curve networks (two hours for the mouse, one for the boat,

Fig. 11. Comparison against artist generated networks: (le� to right) input
model, artist generated 2D design drawings and 3D network (red), and our
algorithmic result (blue).

Fig. 12. Suggestive contours combined with ridge and valley lines [DeCarlo
et al. 2003] (b) convey the overall input shape (a); a FlowRep descriptive
network (c) provides a more detailed and accurate description of the input
geometry.

and about half an hour total for the simpler two models). Our fully
automatic method takes a fraction of this time, generating all four
results in under �ve minutes.

To provide further comparison to artist-created networks, we qua-
litatively compared our output to the inputs used by [Bessmeltsev
et al. 2012; Pan et al. 2015] (Figure 16, right). We directly processed
quad-meshes produced by Bessmeltsev et al. [2012] (co�ee-machine,
airplane). We also quad-meshed and processed the dog-head surface
produced by Pan et al. [2015]. Our output networks (blue) are very
similar to their inputs (green).

Fig. 13. Surface segmentation (e.g. VSA [Cohen-Steiner et al. 2004]) (b) and
reverse engineering methods (d,e) are not designed for, and do not produce,
projectable curve networks; their output is o�en not descriptive to a human
observer. FlowRep networks (c,f) satisfy both criteria.

Comparison to Prior Art. Figures 12, 13, 14, and 15 show represen-
tative comparisons of our outputs against prior art. As Figure 12
demonstrates, while suggestive contours combined with ridge/valley
lines convey the overall input shape, our networks provides a more
precise description of the input. Figure 13 contrasts our networks
with those generated by planar segmentation and reverse engineer-
ing approaches; as demonstrated FlowRep outputs support be�er
mental visualization of the input than such approaches.
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Fig. 14. (a) �ad-partition [Bommes et al. 2013] of the treball and ellipsoid
(a) compared to our network (b). �ad partitions, here [Gunpinar et al.
2014a], are highly dependent on the singularity locations in the initial mesh
dri�ing from curvature directions (c). FlowRep result on same model (d).

Fig. 15. While exoskeletons [De Goes et al. 2011] only roughly capture co-
arse part structures of shapes (b), our method describes the geometry in
more detail (c). Planar slices [McCrae et al. 2011] are restricted in their
ability to convey free-form shape (e,h), while FlowRep networks are well
suited for this task (f,i).

As demonstrated in Figures 3 and 14a, quad partition boundaries
(e.g. [Bommes et al. 2013]) are not projective, making it hard for
viewers to envision the originating geometry. �ey are also o�en
misaligned with curvature directions as highlighted by the misma-
tch between shading and curve directions in Figure 14c (network
courtesy of [Gunpinar et al. 2014a]). Such misalignment results
in non-descriptive cycles. Our networks are strictly aligned with
curvature directions (Figure 14d) and enable viewers to envision
the originating shape from a 2D projection.

While exoskeletons [De Goes et al. 2011] reduce the number of T-
junctions formed by unconstrained VSA [Cohen-Steiner et al. 2004],
this semi-automatic method is only suitable for coarse abstraction,
while our automatic framework captures much �ner details on
the same geometry (Figure 15, top). As highlighted by Figure 18,
mimicking their bo�om-up approach using an automatic process re-
sults in fragmented �owlines. Lastly, as shown in Figure 15 (bo�om)

planar slice proxies [McCrae et al. 2011], while descriptive of mul-
tipart simple shapes, compare poorly to our networks on typical
design shapes.

�alitative Evaluation. We showed seven designers (including the
two who produced the drawn networks) images of our results and
of the results produced by the artists, without telling them which is
which. To ensure uniform style we used identical views, line style
and color, and generated non-transparent renders for the 3D models.
�e model was shown in top row and the renders in bo�om row.
We then asked the designers “How well do the design drawings
on the bo�om re�ect the shape on the top?” (see supplementary
material for exact questionnaire). All seven designers assessed all
the shown networks as re�ective of the input, ranking ours on par
with other renders; three of them commented on our mouse and
boat as being most descriptive. �e positive comments included
“easier to understand”, “precise and simple”, “great sense of depth”.
On the negative side one commented that some of our curves were
not smooth, and one designer felt that the curves on the mouse
were too close to one another.

We also conducted a study to compare our outputs to previous
work. We asked 34 nonexpert users to compare our outputs to curve
networks generated by alternative methods. Each query in this
study included an input model (A, top) and two curve networks
(B and C, bo�om), arranged in random order and presented side
by side: one generated by our algorithm, and one generated by an
alternative method (suggestive contours [DeCarlo et al. 2003], quad
patch layouts generated by [Bommes et al. 2013] and [Gunpinar
et al. 2014a], variational shape approximation [Cohen-Steiner et al.
2004], exoskeletons [De Goes et al. 2011], and planar slices [McCrae
et al. 2011], totaling eight queries.) Users were asked the question,
“Which �gure on the bo�om (B, or C) more accurately describes
the shape on the top (A)?”. Across all queries participants preferred
our outputs to the alternatives 92% of the time. �e individual
comparison with lowest majority preference for our method (80%)
was against quad partition [Bommes et al. 2013] on the ellipsoid
(Figure 14). �e network drawings used for the evaluation were
generated using descriptive views, and the same view was used
for all models. �e exact questionnaires used in the evaluation are
included in our supplementary material.

Reproduction. Our method aims to create networks that can be
used to reproduce the input shapes both mentally and algorithmi-
cally. To validate the algorithmic reconstruction feature we ran the
surfacing framework of [Pan et al. 2015] on a subset of our outputs
(Figure 16, le�). As shown, the surfaced networks look very similar
to the input models. �e L2 distance between the inputs and the
re-surfaced networks measured using [Cignoni et al. 1998] was un-
der 0.3% of the bounding box diagonal, leading us to conclude that
our networks do not only describe the models perceptually but also
compactly and accurately encode their geometry.

9 RESULTS
We have demonstrated our method on a large set of inputs, ranging
from simple (rounded cube, spiral, torus, bump) to highly complex
(shu�le, boats, mouse, toilet). Our tests included open surfaces
(beetle, bathtub), ones with sharp features (mouse, row-boat), and
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Fig. 16. Reproduction. Le�: pairs of input models with computed FlowRep networks (wireframes) and these networks resurfaced using [Pan et al. 2015] (blue).
Right: Input curve networks (green), surfaces produced by [Bessmeltsev et al. 2012; Pan et al. 2015], and our networks (blue) computed from these surfaces.

Fig. 17. Networks with di�erent descriptiveness thresholds , shown on the
ellipsoid model.

Fig. 18. Alternative network extraction methods: (a) bo�om-up cycle cluste-
ring results in poorly descriptive networks with highly irregular connectivity;
network optimization using only flowline projectivity (b) or only their do-
minance (c), versus full optimization (d).

smoother, more organic ones (treball, spiral, ellipsoid, phone handle,
dog-head, big buck bunny). We tested our method on coarsely
meshed complex shapes (beetle, at 4K triangles) as well as �ne
meshed ones (mouse, boat, toilet, at 30K triangles each). Our results
on all these models are consistent with human expectations.

Symmetry. Most quad-meshers do not detect or enforce global
symmetry. To produce globally re�ectively symmetric results we
use external code to detect global re�ective symmetries, quad-mesh
one half of a symmetric model, and use a re�ected mesh as input.
We used this approach for the boat, mouse, bo�le, phone-handle,
big buck bunny, and dog-head.

Network Resolution. Our framework allows users to control the
density of the output curve networks by changing the descriptive-
ness threshold dmax, as illustrated in Figure 17. By default we use a
threshold of 20◦. For the rowboat and wineglass we used thresholds
of 30◦ and 10◦ to obtain more aesthetically pleasing results. We use
30◦ for more organic models (doghead, phone).

Impact of Design Choices. Figures 7 and 18 demonstrate the im-
pact of our key algorithmic choices on the �nal results. Figure 7
demonstrates the importance of using our strand formation pro-
cess to obtain reliable �owlines. �is process contributes to our
success in processing highly irregular meshes, with singularities
and numerous edges which are misaligned with curvature directi-
ons. Figure 18 shows a comparison against a number of alternative
network formation strategies. �e �rst mimics [De Goes et al. 2011]
as it uses a bo�om up cycle growth strategy directly optimizing

Fig. 19. Curve networks generated from di�erent meshes of same model: (a)
[Bommes et al. 2013], (b) ArtMesh. The input mesh in (a) exhibits feature
dri� (sharp features migrating between mesh flowlines); leading FlowRep
to preserve these flowlines generating visual redundancy.

Fig. 20. Impact of systemic mesh vs curvature tensor misalignment: (a)
Interleaved spiral flowlines resulting from curvature dri� may result in
undesirable T-junctions (mesh from [Jakob et al. 2015]); (b) more signifi-
cant misalignment predictably distorts the network orientation (mesh from
[Bommes et al. 2013]); (c) large patches of randomly aligned quads (top of
the hat) similarly lead to artifacts.

EN (Equation 1) while aiming to keep consecutive �ow-lines or
edges together to minimize the appearance of T-junctions. Even on
simple models, this strategy results in highly irregular networks
with redundant T-junctions and fragmented �owlines.

Figures 18b and c show the impact of using a network simpli�-
cation strategy that takes only �owline projectivity (b) or only its
dominance (c) into account. Both networks satisfy our descriptive-
ness threshold, but select di�erent representative �owlines within
individual strands. Absent dominance (Figure 18b) the result has
more geodesic �owlines but has some less well described cycles; in
contrast in Figure 18c the cycles are well described but the interior
symmetry curve is not included. Our solution (Figure 18d) balances
both sets of criteria, and is more re�ective of traditional drawings
of such toroidal shapes.

Input Mesh Impact. We tested our framework on quad-meshes
produced by a range of sources. Most of our inputs were generated
using ArtMesh (h�p://www.topologica.org) or were a priori given
to us in quad-mesh format (spiral, glass, bathtub, beetle). �e plane
and co�ee-machine in Figure 16 were generated by [Bessmeltsev
et al. 2012]. We also tested inputs generated using quad-patch la-
yout [Bommes et al. 2013] (Figures 19, 20b) and Instamesh [Jakob
et al. 2015] (phone handle, and Figure 20a). As our examples de-
monstrate, FlowRep is largely agnostic to mesh artifacts, such as
non-quad elements, irregular connectivity, and uneven element si-
zing, e.g. Figure 3b. Our method is more sensitive to consistent
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Fig. 21. Impact of halving/doubling default algorithm parameters (weights
used for correlation clustering; weights of di�erent elements of En (Eq. 1)).

Fig. 22. Additional results.

curvature misalignment and irregular mesh �ow in isotropic areas
(hat, Figure 20c). Input meshes whose edges form long spirals due
to systemic edge direction dri� [Jakob et al. 2015] may lead to extra
T-junctions in the �nal output (Figure 20a). While FlowRep can pro-
cess meshes whose edge directions consistently and signi�cantly
deviate from curvature directions, such as those sometimes produ-
ced by quad-patch layout (e.g. [Bommes et al. 2013]), the results
in this case are, as expected, less re�ective of human expectations
(Figure 20b).

Runtimes and Parameters. Our runtimes range from 3 seconds
for simple models such as the wineglass (5K faces) to 48 and 111
seconds for complex ones such as the mouse (30K faces) and the
toilet (28K faces) respectively. Roughly 75% of the time is spent
performing edge correlation clustering for �owline initialization.
Once initial �owlines are formed, the simpli�cation stage dominates,
taking another 20%. Overall, the dominating runtime factors are
the original mesh resolution and geometric complexity. With the
exception of the descriptiveness threshold dmax all other algorithm
parameters are �xed across all inputs, and as shown in Figures 18, 21
changing them has fairly minimal impact on the outcome.

Limitations. Our method relies on curvature-aligned quad-dominant
meshes to serve as a reliable proxy of a curvature aligned tensor
�eld smoothly extended across isotropic areas. It successfully over-
comes sporadic topological noise (e.g. Figure 3) but is a�ected by
systemic misalignment and uneven mesh sizing (Figure 20). �e
trade-o� we require is supported by many research and commercial
meshers. Our framework does not explicitly account for symme-
tries, beyond global re�ection, even when these are present in the
mesh. Detecting such symmetries at the mesh level using existing
methods, and then enforcing similar processing on symmetric edges
and �owlines, would alleviate this concern.

10 CONCLUSIONS
�is paper presented FlowRep, the �rst algorithm for computing
descriptive compact curve networks from an input mesh. Our out-
put networks succinctly describe complex free-form shapes and are
suitable for both perceptual and algorithmic reconstruction. When
computing the networks our method optimizes two main criteria:

cycle-descriptiveness, or the network’s ability to describe the un-
derlying surface, and network projectivity — the ability to perceive
the network’s 3D shape from its 2D projection. We use these pro-
perties to �rst trace reliable �owline curves on the surface, then
use the �owlines to extract an initial projectable and descriptive
network, and �nally coarsen the network while maintaining a given
descriptiveness threshold. Combined together, these steps result in
descriptive networks comparable with those produced by artists,
and which have been extensively validated to show that they agree
with viewer perception.

�is work opens many avenues for future research. As noted,
our results are contingent on the quality of the input quad meshes.
Producing initial meshes tuned to optimally adhere to our requi-
rements can both simplify our algorithm and improve its results.
Ours is the �rst a�empt to evaluate network suitability for the task
at hand. Additional perception research may be able to improve this
formulation, and machine learning algorithms based on perceptual
studies might be�er pinpoint the necessary balance between the
key geometric properties we have identi�ed.

ACKNOWLEDGEMENTS
�is work has been funded by NSERC and by a gi� from Adobe
Inc. We are grateful to Marcel Campen, Fernando De Goes, Erkan
Gunpinar, Mikhail Bessmeltsev and James McCrae for providing
comparison data, and Hao Pan for surfacing our outputs. We would
like to thank Yixin Zhuang for his help with the project. �e “big
buck bunny” model is provided courtesy of the Blender Institute,
licensed CC-A�ribution. Mouse, bowler cap and wine glass are
provided courtesy of Microso�, licenced CC BY 4.0. “miniature row
boat” and “bathtub” are provided by thingiverse.com, licensed CC
BY-SA 3.0.

REFERENCES
Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun.
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APPENDIX

Algorithm 1 Compute Flowlines
procedure ComputeFlowlines(mesh = (V , E))

Construct a graph G1 where each node is an edge of mesh
for each edge i ∈ E do

for each edge j connected to i do
G1[i, j] ← ci j (Eq. 6)

for each edge j face-opposite to i do
G1[i, j] ← ci j (Eq. 7)

C1 = CorrelationClustering(G1) . maximize
∑
e ceYe

Join connected edges in each c ∈ C1 into initial �owlines
Construct a graph G2 where each node is a �owline
for each �owline f do

for each �owline f ′ sharing an end-point v with f do
G2[f , f ′] ← ci j (Eq. 6, with i and j being tangential vectors

of f and f ′ at v .)
for each �owline f ′ intersecting f do

G2[f , f ′] ← (−25)
for each �owline f ′ parallel to f do

G2[f , f ′] ← cf , f ′ (Eq. 8)
C1 = CorrelationClustering(G2) . maximize

∑
e ceYe

Join connected �owlines in each c ∈ C2 into reliable �owlines

Algorithm 2 Network Computation
procedure ComputeNetwork(network N )

for each trimming curve t do . Network Re�nement
N ← (N ∪ {t })

while ∃(cycle c) | dc < dmax do
for each cycle c with dc > dmax do

for each �owline f spli�ing c in two parts do
N ← (N ∪ {f })

Construct all composite �owlines fc . Network Simpli�cation
Let C be the set of all composite �owlines
Let Q be a priority queue
for each �owline f ∈ (N ∪C) do

Compute �owline cost pf + df of f (Eq. 4, 5)
Q ← Q ∪ {f }

while Q is not empty do
f ← maximal cost �owline in Q
Q ← (Q \ {f })
if ∀cycles c ∈ (N \ {f }), dc < dmax then

N ← (N \ {f })
Update costs pfn + dfn of neighbors fn of f

for each �owline f ∈ N do . Local Optimization
for each neighbor fn of f do

if pfn < pf ∧∀cycle c ∈ ((N \ {f })∪ {fn }), dc < dmax then
N ← ((N \ {f }) ∪ {fn })
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