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The attached supplementary files include the result images of the PSNR and OCR com-
parisons in Fig.6 of the main paper, the full resolution result images of Fig.4-5 in the
main paper, and more results on real-world images.

In this supplementary pdf, Sec. 1 gives the derivation details of important equations in
the main paper, and Sec. 2 shows more details and results of our algorithm.

1 Derivations

This section gives the details of Eq.6-10 in the main paper. Note, that we use the gray
box to indicate the equations and figures from the main paper.

Derivation of Eq.6-7. The objective of latent image estimation at t-th iteration is de-
fined as
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The half-quadratic optimization technique [1] solves Eq. 2 by alternatively updating xt

and ut
i. More specifically, for xt update,
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This is solved by setting the gradient of the right-hand linear least squares to be zero,(
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where matrix Kt−1 represents corresponding convolution with blur kernel kt−1. Be-
cause Kt−1 and Ft

i represent convolution process, Eq. 4 can be efficiently solved in
Fourier domain. Let λt = βt/2, we have
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For ut
i update,
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This minimization problem is pixel-wise separable. The key idea of [5] is to replace this
minimization problem with a shrinkage function ψt

i , i.e.,
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By Substituting Eq. 7 to Eq. 5, we have
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Note that we replace xt−1 with zt−1 in our blind deblurring framework. Therefore,
Eq. 8 becomes
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which is Eq.6 in the main paper. Eq.7 in the main paper can be derived in similar way
thus it’s omitted here.

Derivation of Eq.8. The objective of kernel estimation is defined as

kt = argmin
kt

||y − kt ⊗ zt||22 + τ t||kt||22 (10)

This is solved by setting the gradient of the right-hand linear least squares to be zero,

(ZT
t Zt + τ t)kt = ZT

t y (11)

where matrix Zt represents corresponding convolution with image zt. Eq. 11 can be
efficiently solved in Fourier domain:

kt = F−1

[
F(zt)∗ · F(y)

F(zt)∗ · F(zt) + τ t

]
(12)

which is Eq.8 in the main paper. ∗ represents conjugate transpose.
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Calculation of Eq.9. For xt update, the training loss ` = ||xt − x̄||22. Its gradient w.r.t.
the model parameters Θt = (f ti , ψ

t
i , λ

t) is computed as
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In order to compute ∂xt/∂Θt, xt in Eq. 9 can be rewritten as
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Then ∂xt/∂Θt can be derived following the matrix calculus rules, and we refer the
derivation details of ∂xt/∂Θt to the supplemental material of [5].

Calculation of Eq.10. For zt and kt update, the training loss ` = ||kt− k̄||22 +α||zt−
x̄||22. Its gradient w.r.t. the model parameters Ωt = (gt
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where
∂`
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= 2(kt − k̄) (16)
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In order to compute ∂kt/∂zt and ∂kt/∂Ωt, kt in Eq. 12 can be rewritten as
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For brevity, we denote (ZT
t Zt + τ t) as Π, and (ZT

t y) as Λ, then kt = Π−1Λ. We
use the square bracket around any image a, i.e. [a], to indicate the matrix representing
convolution with a. Moreover, we define matrixR representing rotating a 2D image by
180 degrees, i.e.,Ra means rotating the 2D image a by 180 degrees. Then, we have
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And,
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By substituting Eq. 16, 17, 19, 20 into Eq. 15, we have
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The derivation of ∂zt/∂Ωt is similar as ∂xt/∂Θt, and we refer the details to the sup-
plemental material of [5]. We will make our training code publicly available with the
paper.

2 More algorithm details

Example training data. Fig. 1 visualizes example blur kernels and images used at our
training.

Fig. 1. Example kernels and images used at training of our algorithm.

Intermediate results. Our method uses a multi-scale approach to prevent bad local
optima. Fig. 2 and 3 shows intermediate results of our estimated image x and kernel
k at each scale. Note that our algorithm simultaneously estimates the latent image and
blur kernel, and does not need extra non-blind deconvolution steps.
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blurry input

true kernel

x at scale 1, iter 5 x at scale 2, iter 5 x at scale 3, iter 5 x at scale 4, iter 5

k at scale 1, iter 5 k at scale 2, iter 5 k at scale 3, iter 5 k at scale 4, iter 5

Fig. 2. Example intermediate results of our algorithm on a synthetic test image. Please zoom in
for better view.

blurry input x at scale 1, iter 5 x at scale 2, iter 5 x at scale 3, iter 5

k at scale 1, iter 5 k at scale 2, iter 5 k at scale 3, iter 5

Fig. 3. Example intermediate results (cropped) of our algorithm on a real-world test image (shown
in Fig.5 in the main paper). Please zoom in for better view.

Documents with color figures. In the main paper we focus on the text documents, how-
ever our algorithm can be easily extended to handle the documents with color figures,
as shown in Fig. 4. First, we run our blind deblurring algorithm on the text regions to
recover the latent text images and blur kernels. Second, we take the kernels estimated
from the text regions around the color figures (optionally interpolate the kernels using
the EFF model [2] for spatially-varying blur), and deblur the color figure regions as
non-blind deconvolution. Finally, we align the text and figure regions to generate the
final image.



6 Lei Xiao2,1 Jue Wang3 Wolfgang Heidrich1,2 Michael Hirsch4

This is a benefit of our algorithm as we jointly estimate the text image and the blur
kernel, and the latter can be further used for deblurring non-text regions non-blindly.
Hradiš et al. [3] does not recover the blur kernel thus cannot handle the figure regions
in the document.

In our current implementation, we manually mark the figure regions for above pro-
cesses. As a future work, we are interested in training a classifier to automatically pre-
dict the figure regions directly from the blurry input.

(a) Blurry input (b) Our deblurred image

Fig. 4. Result on example document containing color figures. The right-bottom corner in (b)
shows the blur kernel estimated from the text regions. In this example we simply use [4] for the
non-blind deblurring step, although [5] can be used instead for improved results.
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