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The attached supplementary files include the result images of the PSNR and OCR com-
parisons in Fig.6 of the main paper, the full resolution result images of Fig.4=5 in the
main paper, and more results on real-world images.

In this supplementary pdf, Sec. 1 gives the derivation details of important equations in
the main paper, and Sec. 2 shows more details and results of our algorithm.

1 Derivations

This section gives the details of Eq.6=10 in the main paper. Note, that we use the gray
box 7 to indicate the equations and figures from the main paper.

Derivation of Eq.6=7. The objective of latent image estimation at ¢-th iteration is de-
fined as

N
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Applying the half-quadratic splitting [1] on each filter response Fix’, we have
N 5t
X' —argninly - K@ x(+ Y (st + GIFK - ulE) @
xt,uf i=1

The half-quadratic optimization technique [1] solves Eq. 2 by alternatively updating x*
and u!. More specifically, for x* update,
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This is solved by setting the gradient of the right-hand linear least squares to be zero,
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where matrix K;_; represents corresponding convolution with blur kernel k’~!. Be-
cause K; 1 and F! represent convolution process, Eq. 4 can be efficiently solved in
Fourier domain. Let A = 3¢/2, we have
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For u! update,

t
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This minimization problem is pixel-wise separable. The key idea of [5] is to replace this
minimization problem with a shrinkage function wf, 1.€.,

u; = ¥ (Fix'™) ©)
By Substituting Eq. 7 to Eq. 5, we have
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Note that we replace x~! with z'~! in our blind deblurring framework. Therefore,
Eq. 8 becomes
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which is Eq.6 in the main paper. Eq.7 in the main paper can be derived in similar way
thus it’s omitted here.

Derivation of Eq.8. The objective of kernel estimation is defined as

Kt :argi'(rtninHy—kt@ZtH%+7't|‘kt”§ (10)

This is solved by setting the gradient of the right-hand linear least squares to be zero,
(ZZ,+ 7K' =Zy n

where matrix Z; represents corresponding convolution with image z‘. Eq. 11 can be
efficiently solved in Fourier domain:

F(z')" - F(y)

K'=F! =
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which is Eq.8 in the main paper. * represents conjugate transpose.
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Calculation of Eq.9. For x’ update, the training loss / = ||x! — %||3. Its gradient w.r.t.
the model parameters O = (ff, !, \') is computed as

ot ox' ot
t T 9Ot wt
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In order to compute 9x’/96%, x* in Eq. 9 can be rewritten as

N -1 N
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Then axt/ OO* can be derived following the matrix calculus rules, and we refer the
derivation details of 9x* /06! to the supplemental material of [5].

Calculation of Eq.10. For z* and k* update, the training loss £ = ||k’ — k||3 + a||z* —
%||3. Its gradient w.r.t. the model parameters 2° = (g!, ¢t, 7, %) is computed as

ot 0z' ok' ot Ok' o¢ | 0z' ol

s _ Tt s 2o 2 o 2 P 15
02l ~ 00 oz ok T 02l okt T 90 0 (1>
where
o -
I _ 16
A 2(k" — k) (16)
ot L
P 20(z" — X) 17
In order to compute 0k’ /9z' and Ok’ /02, k! in Eq. 12 can be rewritten as
k' = (Z{Z+ ") (Z]y) (18)

For brevity, we denote (Z[Z; + ') as I1, and (Z]y) as A, then k! = TT"1A. We
use the square bracket around any image a, i.e. [a], to indicate the matrix representing
convolution with a. Moreover, we define matrix R representing rotating a 2D image by
180 degrees, i.e., Ra means rotating the 2D image a by 180 degrees. Then, we have
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And,
okt OTI 1A
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By substituting Eq. 16, 17, 19, 20 into Eq. 15, we have
or _ =
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The derivation of 9z®/9f2¢ is similar as Ox*/06?, and we refer the details to the sup-
plemental material of [5]. We will make our training code publicly available with the

paper.

2 More algorithm details

Example training data. Fig. 1 visualizes example blur kernels and images used at our
training.
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Fig. 1. Example kernels and images used at training of our algorithm.

Intermediate results. Our method uses a multi-scale approach to prevent bad local
optima. Fig. 2 and 3 shows intermediate results of our estimated image x and kernel
k at each scale. Note that our algorithm simultaneously estimates the latent image and
blur kernel, and does not need extra non-blind deconvolution steps.
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Fig. 2. Example intermediate results of our algorithm on a synthetic test image. Please zoom in

for better view.
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Fig. 3. Example intermediate results (cropped) of our algorithm on a real-world test image (shown
in Fig.5 in the main paper). Please zoom in for better view.

Documents with color figures. In the main paper we focus on the text documents, how-
ever our algorithm can be easily extended to handle the documents with color figures,
as shown in Fig. 4. First, we run our blind deblurring algorithm on the text regions to
recover the latent text images and blur kernels. Second, we take the kernels estimated
from the text regions around the color figures (optionally interpolate the kernels using
the EFF model [2] for spatially-varying blur), and deblur the color figure regions as
non-blind deconvolution. Finally, we align the text and figure regions to generate the
final image.
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This is a benefit of our algorithm as we jointly estimate the text image and the blur
kernel, and the latter can be further used for deblurring non-text regions non-blindly.
Hradis et al. [3] does not recover the blur kernel thus cannot handle the figure regions

in the document.

In our current implementation, we manually mark the figure regions for above pro-
cesses. As a future work, we are interested in training a classifier to automatically pre-
dict the figure regions directly from the blurry input.
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Figure 1. (a) the input image. (b) the corresponding fcature space.
The pixel A can be generated by lincarly combining the color at
Band C.

this method was extended by Chuang et al. [S] with the
Bayesian estimation framework. These methods work well
when the unknown pixels are near the foreground bound-
ary, and the number of unknown pixels is relatively small.
Rhemann et al. [15] proposed an improved color

collect samples according to the geodesic distanc

matting [6] collected those samples along rays of
directions. In general, these methods work well

(b) Our deblurred image

Fig. 4. Result on example document containing color figures. The right-bottom corner in (b)
shows the blur kernel estimated from the text regions. In this example we simply use [4] for the
non-blind deblurring step, although [5] can be used instead for improved results.
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