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1 Generating Regular Fresnel Lens

As has been discussed in main text, we use a designed initial
guess derived from a mixture of a series of Fresnel lenses’ profiles
for different wavelengths. Without loss of generality, we take an
amplitude-type Fresnel zone-plate (FZP) as the instance for prin-
ciple illustration. Leveraging scalar diffraction theory, the complex
amplitude of a point at the image plane is the sum-up of all complex
amplitudes derived from all sub-waves emitted from ring-zones of
a FZP. To obtain constructive interference at the image plane, the
zones should switch from the opaque to transparent at radius

Rn =

√
nλf +

n2λ2

4
, (1)

where n is the integer for the nth ring, λ is the wavelength of the
light the zone plate is meant to focus, and f is the distance from
the center of the zone plate to the focal point. In this case, each
two neighbouring ring-zones holds the optical path difference of
half wavelength (corresponding to the modulation of 2π), such that
they contribute positive and negative amplitude to the spatial point,
respectively. Those negative components are blocked.

With respect to the phase modulation, we expect the incident light
to travel through the substrate medium with different thickness,
such that create the required optical path difference without block-
ing the light. That is to say, we can use the same math described
above to derive the radius for each ring zone, and then assign them
with different physical heights, corresponding to the phase delay
they modulate on the incident light rays. These height change can
be designed continuous or discrete subject to the fabrication method
one intend to apply.

2 Fabrication Details

As has been mentioned in main text, the DOEs are fabricated by re-
peatedly applying the lithography technique followed by a reactive
ion etching (RIE) step. Each round of fabrication results in a binary
profile on the substrate. Therefore, by repeating the process for N
times, a 2N -level phase plate could be fabricated.

In our work, we use 4 inch UV-grade fused silica wafers as the
substrates. Four iterations of lithography and etching are repeated
to produce 16-level phase zone plates. The fabrication process is
shown in Fig. 1.

In our designs, the principle wavelength is λ0 = 550nm. A
total 2π phase delay at this wavelength corresponds to a depth of
d = λ/(nλ − 1) = 1195nm, where nλ = 1.46008 is the re-
fractive index of the wafer at the principle wavelength. Therefore,
each level has a depth of 75nm in our designs. A final depth er-
ror of ±10nm has been achieved. The microscope images of the
fabricated DOE plates are shown in Fig. 2. We see that a Fresnel
lens has more regular periodical ring distribution, while a diffractive
achromat has more non-periodical ring distribution, corresponding
to the optimized surface profile.

Figure 1: Fabrication of DOEs consists of two major steps— litho-
graphy and etching. In the lithography step, patterns are trans-
ferred from the mask to photoresist on the wafer through exposure
to UV light. In the etching step, the transferred patterns are con-
verted to a binary profile on the wafer by reactive ion beam bom-
bardment.

3 Reconstruction Algorithms

As has been mentioned in main text, we seek to apply a two-step
fast deconvolution scheme to recovery the images. The reconstruc-
tion pipeline is illustrated in Fig. 3.

1st step We implement the first step of deconvolution at a down-
sampled scale, say half size of the width and height, to solve Eq.13
in the paper, which is

id = argmini µ‖b−Ki‖22 + β‖Di‖22, (2)

where D here is the first-order derivative filters matrix, µ, β are the
weights for each term. As has been mentioned, Eq.2 is a closed-
form optimization such that we have

iopt = argmini µ‖b−Ki‖22 + β‖Di‖22

⇔ 2µ
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where F (·) represents Fourier transform while F−1 (·) represents



Figure 2: Illustration of 5X microscope images of the fabricated
Fresnel lens (top), and diffractive achromat (bottom). Note that the
bright and dark changes indicate the physical height distribution.

Figure 3: Reconstruction of the images consists of two major steps:
In the 1st step, the blurred image is downscaled, then deblurred and
denoised at a downsampled scale; In the 2nd step, the processed
image from the 1st step is upsampled to the full scale, and used in a
cross-scale prior to assist the deblurring of the original image.

the inverse Fourier transform. Here the superscript ∗ indicates the
complex conjugate operation.

2nd step We implement the second step of deconvolution at the
full scale, to solve the Eq.15 in the paper, which is

if = argmini
µ

2
‖b−Ki‖22 + β‖Di‖1 + γ‖Di−Dis‖1, (4)

where D is the same derivative filters matrix as above, and ıs
is the image upsampled from the one deconvolved in the 1st

step. Adding the cross-scale prior results in a non-linear optim-
ization. An alternative solution is to introduce slack variable for
l1 term. Specially, we formulate the proximal operators like the
ones in [Boyd et al. 2011; Chambolle and Pock 2011], thus the l1
deconvolution is handled as shrinkage operators, we use p = Di
as variable

proxθ‖·‖1(p) = max

(
1− θ

|p| , 0
)
� p

proxθ‖ · −α‖1(p) = max

(
1− θ

|p− α| , 0
)
� p + α

(5)

where α = Dis. The proximal operators for convex conjugates can
be derived from [Boyd et al. 2011]. Next, we use a similar half-
quadratic penalty scheme in [Krishnan and Fergus 2009].

Specifically, the Eq. 4 can be rewritten by introducing the variable
p = Di that has been denoted. Then, we have

iopt = argmini
µ

2
‖b−Ki‖22+β‖p‖1+γ‖p−Dis‖1+

ρ

2
‖Di−p‖22,

(6)

where ρ is a weight that shall be gradually increased during the
optimization, such that once the weight ρ is becoming very large,
the modified objective Eq. 6 is equivalent to the original objective
we have defined in Eq. 4. We set the values namely integer powers
of
√

2 between 1 and 256 in all our implementation.

One can then divide the objective into two subproblems and apply
alternating methods to solve them iteratively. For the two quadratic
terms, by fixing p we have a similar closed-form solution as in Eq. 7
can be derived as

iopt = argmini
µ

2
‖b−Ki‖22 +

ρ

2
‖Di− p‖22

⇔ iopt = F−1
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µF (K)∗ F (b) + ρFD∗F (p)

µF (K)∗ F (K) + ρF (D)∗ F (D)

)
.
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Next we fix i, and optimize the two l1 norm terms that contain p,
the proximal operators that have been defined in Eq. 5 turn them to
be pixel-wisely shrinkage problem.

The quantitative comparisons tested on 50 hyperspectral dataset
images using 5 different reconstruction schemes are presented in
Fig. 4. From which we see that, generally speaking, our 2-step
cross-scale deconvolution method provides competitive results with
individual method.

4 Additional Results

We present full resolution images of the blurred and deblurred res-
ults presented in main text. See the captions of Fig. 6, Fig. 7 for
details. As a comparison, we present the synthetic results using a
diffractive achromat and and a regular Fresnel lens with the same
focal power at the principle wavelength, shown in Fig. 5. Averaging
all 50 hyperspectral tested images yields a PSNR 26.2 dB using our
diffractive achromat, while 22.9 dB using a regular Fresnel lens.
Besides, benefiting from the spectral invariant kernel behaviour, the
reconstructed results from our method exhibit more robustness with
smaller variance of PSNR values of full dataset. This means that
less artifacts occur when capturing a full spectrum image.



Figure 4: PSNR comparison of results reconstructed from 5 different reconstruction schemes, tested on 50 hyperspectral images from data-
set [Chakrabarti and Zickler 2011], with σ = 0.005 Gaussian white noise added. The color bars indicate the implementation with different
reconstruction schemes, as has been illustrated in the legends.

Figure 5: PSNR comparison of reconstructed images captured using a Fresnel lens and our diffractive achromat, tested on 50 hyper-spectral
images from dataset [Chakrabarti and Zickler 2011], with σ = 0.005 Gaussian white noise added. The yellow bars indicate the results
captured by a Fresnel lens, while the blue bar indicate the results captured by our diffractive achromat. Note that a cross-channel based
deconvolution like the ones in [Peng et al. 2015] is applied to obtain the results of Fresnel lens’ case.

We present another comparison of experimental results in Fig. 8.
From which we see that even after a preliminary color calibra-
tion, the reconstructed result from a Fresnel phase plate suffers
from a variety of color artifacts, especially at those regions where
green color component intensity is very low in real scene (red and
blue color regions), the cross-channel prior and color calibration
inaccurately enforce the gradient sharing between channels. Con-
sequently, for those regions where the real objects lack sufficient
full color information, they are reconstructed either with consid-
erable color artifacts or inaccurate edge enhancement. On the con-
trary, ours exhibits a higher color fidelity over all image, meanwhile
presenting an acceptable spatial resolution.

Diffractive-refractive hybrid lens design As has been men-
tioned in main text, one promising application of our achromatic
diffractive imaging method is to benefit the design of flat-field
lens. In those application scenarios where high quality color ima-

ging with large field of view but compact optics structure is ex-
pected, one can incorporate our diffractive achromat with refractive
lenses. As a proof of concept, the captured results of prototyping a
diffractive-refractive hybrid lens are presented in Fig. 9. Compared
to a pure refractive lens with the same optical power, the thickness
and material volume (over 35% reduced in the prototype case), as
well as off-axis geometric distortion of our hybrid design have been
reduced drastically.

Comments

We recommend the readers to refer to the project web-page named
http://www.cs.ubc.ca/labs/imager/tr/2016/DiffractiveAchromatImaging/
for the visualization of more experimental results.



Figure 6: Blurred and deblurred results of selected synthetic scenarios from hyperspectral data-
set [Chakrabarti and Zickler 2011; Skauli and Farrell 2013], with σ = 0.005 Gaussian white noise added.
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Figure 7: Blurred and deblurred pair results of real captured scenarios. All scenes are captured at different depths with single exposure,
using a single 0.5 mm ultrathin diffractive achromat we fabricate. Note that we roughly calibrate single PSF at one depth (2m), and use it for
all deconvolutions.



Figure 8: Comparison of a Fresnel lens (left column pair) and a diffractive achromat (right column pair), with their blurred and deblurred
results of natural scenarios. Both are captured at same depth with single exposure under same indoor artificial and mixed illumination, using
a single 0.5mm ultrathin Fresnel phase plate and a diffractive achromat we have fabricated, respectively. Note that for the Fresnel one, a
preliminary color calibration is added using Adobe Photoshop application. From which we see that although blur has been mostly removed
for the Fresnel lens one, considerable color artifacts are observed, explicitly illustrated by the failure of recover blue and red colors. On the
contrary, the recovery from our diffractive achromat successfully removes the blur, as well as preserve the color fidelity.



Figure 9: Blurred and deblurred pair results of natural scenes captured using a diffractive-refractive hybrid lens. All these scenes are
casually captured at different depths with single exposure and no gain under outdoor sunlight illumination, using a diffractive achromat
attached with an achromatic double element refractive lens from Thorlabs. The equivalent focal length is 50 mm, with a total optics thickness
5.2 mm (For comparison purpose, a pure refractive achromatic lens with same focal length and same material has the optics thickness 8.7
mm). Note that we roughly calibrate single PSF at one depth (around 2 m) indoor, and use it for all deconvolutions.


