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contributions

Design study success story. 
 
Highlighting matches and mismatches:  
• task & data abstractions ←→ visual encoding & interaction design 
• multiple concurrent time series 

Addressing domain convention, familiarity & trust. 

Reflecting on methods for visualization design studies.
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design process timeline

2013 2014 2015

project
inception

work 
domain 
analysis task & data 

abstraction
workflow 
design

visual 
encoding 

design

production 
development 

by collaborator

4 months full-time

3 months part-time 4 months part-time
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outline: design process

1. analyzing the work domain 
• interviews with 9 energy workers 

2. identifying data and task abstractions 
3. visual encoding sandbox prototyping 
4. eliciting feedback on vis. encoding designs 
5. prototyping workflows 
6. production development by collaborator
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work domain analysis

5

energy workers’ skill 
sets, goals, activities 

existing tools 

workarounds

43 su
mmary slid

es



10-15Brehmer et al. – InfoVis 2015 6

21 energy worker artefacts
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outline: design process

1. analyzing the work domain 
2. identifying data and task abstractions 
3. visual encoding sandbox prototyping 
4. eliciting feedback on vis. encoding designs 
5. prototyping workflows 
6. production development by collaborator
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data abstraction
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building portfolios
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Term Abstraction Example

Building ID Unique categorical #123

Building area quantitative 450m2

Location spatial 49.26º N, 123.25º W

tag categorical “restaurant”
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raw time series data
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Term Abstraction Example

Energy demand quantitative 200 kW

Outdoor 
temperature

quantitative 18º C

images: pixabay, wikimedia commons
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derived time series data
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Term Abstraction Example

Consumption quantitative 800 kWh

Intensity
normalized 
quantitative

1.78 kWh / m2

% Savings
normalized 
quantitative

40%

Rank ordinal 1st, 2nd, 3rd
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Trends

Actions
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Present EnjoyDiscover
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task abstraction
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User Role Affiliation EM Use & Frequency
Port–
folio? Portfolio Size, Organization Task abstractions: current (not in EM) Task abstractions: desirable Task abstractions: possible (does data exist?) Task abstractions: target

JC
space automation 

specialist Pulse Energy
meta-user / power-user : 
frequently setting up charts, 
baselines for clients

YES (Client portfolios range in size, 
hierarchical structure)

• Lookup → Compare: ranked performance (absolute and 
normalized)!

• Lookup → Identify: CUSUM of entire portfolio, single space

• Locate → Compare: portfolio performance faceted by any 
database field (tag, geographical location, primary use, square 
footage, year constructed,…)!

• Locate → Identify: space’s contribution to portfolio’s CUSUM!
• Lookup → Compare: multivariate ranking of portfolio 

performance!
• Locate → Identify: validated savings vs. unvalidated savings !
• Locate → Identify: end-use disaggregation within a space; !
• Locate → Identify contributions of parameters and events 

baselines (ECMs, weather, outages, holidays, other events)!
• Locate → Compare multiple baselines!
• Produce aggregate baselines!
• Locate → Identify noise / confidence / uncertainty in baseline

• Locate → Compare: portfolio performance faceted by any 
database field (geographical location, primary use, square footage, 
year constructed,…), faceted by tag!

• Locate → Identify: space’s contribution to portfolio’s CUSUM!
• Lookup → Compare: multivariate ranking of portfolio 

performance

• Locate → Compare: portfolio performance faceted by 
space or by space attributes (over time)!

• Locate → Identify: contribution of individual space 
performance to aggregate space performance (over 
time)!

• Lookup → Compare | Summarize: multivariate ranking 
of spaces (over time)

KN energy analyst UC Berkeley several hours a week, additional 
analysis in Excel YES

UCB campus: ~100 spaces (90% 
concentrated on single campus), 
subset in EM, departments cross-
cuts spaces

• Locate → Compare: consumption of [largest spaces, libraries, 
mid-size spaces]!

• Locate → Identify: causes of threshold events in reference to 
OAT!

• Lookup → Compare: ranked space performance!
• Locate → Compare: before & after ECMs!
• Lookup → Compare: monthly department performance

• Lookup → Compare: department performance at arbitrary time 
scales!

• Locate → Identify contribution of department(s) to space 
consumption!

• Lookup → Compare OAT-demand regression curves before & 
after ECMs!

• Locate → Identify: end-use disaggregation within a space!
• Lookup → Identify changes in space sensitivity to OAT!
• Locate → Compare: consumption of UCB to other universities;!
• Lookup → Identify: weather predictions, trends

• Lookup → Compare: monthly department performance!
• Lookup → Compare: departments (arbitrary groups of spaces) 

performance at arbitrary time scales!
• Locate → Identify contribution of department(s) to space 

consumption (assuming assignment of tags to sq. footage, 
occupants within a space)!

• Lookup → Identify changes in space sensitivity to OAT!
• Lookup → Identify: weather predictions, trends

• Locate → Compare: portfolio performance faceted by 
space or by space attributes (over time)!

• Lookup → Compare  | Summarize: multivariate 
ranking of spaces (over time)

JC energy manager McGill day-to-day monitoring YES

2 McGill campuses, 4 zones in 
Downtown campus (~70 
spaces), McDonald campus (~20 
spaces); all in EM; JC focuses on 
50 steam meters

• Locate → Compare | Summarize: combined consumption of 
two campuses; four groups of spaces for main campus!

• Browse → Identify: contribution of individual spaces to 
combined consumption, anomalies (spikes, surges) !

• Lookup → Identify: threshold events

• Lookup → Identify: contribution of individual spaces to 
combined consumption, anomalies (spikes, surges) !

• Locate → Identify: causes of threshold events in wider context!
• Lookup → Identify: contributions of parameters to PAM 

baselines (weather, occupancy) 

• Lookup → Identify: contribution of individual spaces to 
combined consumption, anomalies (spikes, surges) !

• Locate → Identify: causes of threshold events in wider context

• Locate → Compare: portfolio performance faceted by 
space or by space attributes (over time)!

• Locate → Identify: contribution of individual space 
performance to aggregate space performance (over 
time)

MT energy specialist Surrey School District
EM for data export;  analysis 
done in Excel, EM analysis 
offloaded to student volunteers

YES
~130 schools, 2 accounts, 36 in 
EM (Electricity, 2 submetered), 4 
in EM (Natural Gas)

• Lookup → Compare: ranked performance (absolute and 
normalized)!

• Browse → Identify: anomalies (jumps in rankings), trends 
(consistent rankings) at macro-level between spaces!

• Locate → Compare: single-space performance across N time 
periods!

• Produce annotations to explain aspects of performance

• Lookup → Compare: multivariate ranking of portfolio 
performance!

• Locate → Identify | Compare: single space performance, within 
and between operating hours and between days

• Lookup → Identify: anomalies (jumps in rankings), trends 
(consistent rankings) at macro-level between spaces!

• Locate → Compare: single-space performance across N time 
periods!

• Produce annotations to explain aspects of performance !
• Lookup → Compare: multivariate ranking of portfolio 

performance!
• Locate → Identify | Compare: single space performance, within 

and between operating hours and between days

• Lookup → Compare  | Summarize: multivariate 
ranking of individuals (over time)!

• Locate → Compare: individual performance (over 
time)

BE
head maintenance 

engineer, automation
University of British 
Columbia

daily email digest, follow-up in 
EM ~3-4 hrs / week YES

UBC campus, ~100 spaces and 2 
zones in EM, monitors about 10 
spaces / week

• Lookup → Compare: ranked space performance!
• Locate | Explore → Identify: anomalies, causes of threshold 

events / alerts

• Locate → Identify: end-use disaggregation within a space!
• Locate → Identify contributions of parameters to PAM baselines 

(weather, outages, holidays, other events)
Lookup → Compare | Summarize: multivariate ranking of 
individuals (over time)

LZ
climate and energy 

engineer
University of British 
Columbia

infrequent (annual, semi-annual 
reports) YES

UBC campus, ~100 spaces and 2 
zones in EM, LZ only interested 
in handful of C.Op spaces

• Lookup → Identify: differential between actual and predicted 
performance!

• Lookup → Identify: CUSUM!
• Locate → Compare: actual to baseline performance

• Locate → Identify: cause of long-term trend alerts!
• Locate → Identify: baseline precisions / uncertainty!
• Locate → Compare: performance across, arbitrary time periods

Locate → Compare: performance across arbitrary time periods Locate → Compare: individual performance (over time)

CG energy efficiency engineer 
(consultant) SES Consulting some exploratory analysis, most 

analysis done in Excel
NO  
(small)

(single-space focus or small 
group of spaces (e.g. 5))

• Explore | Browse → Identify: load profile of space, anomalies; !
• Lookup | Locate → Compare: within and across spaces: monthly 

and seasonal differences in consumption / schedule / demand; 
OAT vs. demand for occupied and unoccupied periods, !

• Lookup → Summarize: distribution of OAT, demand 

Locate → Identify: end-use disaggregation use within a space; Locate 
→ Identify | Compare: effects of simulated ECMs on space 
performance

• Lookup | Locate → Compare: within and across spaces: monthly 
and seasonal differences in consumption / schedule / demand; 
OAT vs. demand for occupied and unoccupied periods, !

• Lookup → Summarize: distribution of OAT, demand 

• Locate → Compare: individual performance (over 
time)!

• Lookup → Summarize: distributions of individual’s 
attributes (over time)

NV energy efficiency engineer 
(consultant) SES Consulting

some exploratory amnalysis, 
confirmatory analysis done in 
Excel

NO (single-space focus) Lookup → Compare: month-to month %∆ in consumption, peak 
demand, actual : baseline

• Locate → Identify: effects of simulated ECMs on a space based 
on previous success!

• Locate → Compare: effect of ECMs between spaces

Lookup → Compare: month-to month %∆ in consumption, peak 
demand, actual : baseline Locate → Compare: individual performance (over time)
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User Role Affiliation EM Use & Frequency
Port–
folio? Portfolio Size, Organization Task abstractions: current (not in EM) Task abstractions: desirable Task abstractions: possible (does data exist?) Task abstractions: target
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task abstraction
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outline: design process

1. analyzing the work domain 
2. validating data and task abstractions 

• checking back with 3 energy workers 
• “did I understand your tasks correctly?” 
• tailored design proposals 

3. visual encoding sandbox prototyping 
4. eliciting feedback on vis. encoding designs 
5. prototyping workflows 
6. production development by collaborator

15



10-15Brehmer et al. – InfoVis 2015

a

b

c

existing tool
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Energy Manager
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moving average (green line). extrema (whiskers). data.

(e) Colorfield – a vertical stripe (f) Color Stock Chart – each (g) Woven Colorfield – original (h) Event Striping – smoothed
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related work
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Creative User-Centered Visualization Design
for Energy Analysts and Modelers

Sarah Goodwin, Jason Dykes, Sara Jones, Iain Dillingham, Graham Dove, Alison Duffy,
Alexander Kachkaev, Aidan Slingsby, and Jo Wood, Member, IEEE

CHANGE PROPORTION OF 
APPLIANCE CONSUMPTION
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PERIODS TO ‘GROW’ PERIODS

TOOLS FOR
DATA SCULPTING

CONSUMPTION WILL SHRINK
DURING THIS PERIOD

CONSUMPTION WILL GROW 
DURING THIS PERIOD

CLICK AND DRAG ON TIMELINE
TO SELECT PERIODS

 

SHIFT TO HERE ... FROM HERE CLOTHES DRYER

Fig. 1. Demand Horizons show modeled weekday energy demand over 24 hours amongst high consumption domestic appliances.
Data Sculpting allows us to shift consumption interactively by ‘moulding’ the horizons to explore ‘what if?’ scenarios. For example,
here fifty percent of ‘Clothes Dryer’ consumption is shifted from the evening peak to a period when overall demand is lower.

Abstract—We enhance a user-centered design process with techniques that deliberately promote creativity to identify opportunities
for the visualization of data generated by a major energy supplier. Visualization prototypes developed in this way prove effective
in a situation whereby data sets are largely unknown and requirements open – enabling successful exploration of possibilities for
visualization in Smart Home data analysis. The process gives rise to novel designs and design metaphors including data sculpting.
It suggests: that the deliberate use of creativity techniques with data stakeholders is likely to contribute to successful, novel and
effective solutions; that being explicit about creativity may contribute to designers developing creative solutions; that using creativity
techniques early in the design process may result in a creative approach persisting throughout the process. The work constitutes
the first systematic visualization design for a data rich source that will be increasingly important to energy suppliers and consumers
as Smart Meter technology is widely deployed. It is novel in explicitly employing creativity techniques at the requirements stage of
visualization design and development, paving the way for further use and study of creativity methods in visualization design.

Index Terms—Creativity techniques, user-centered design, data visualization, smart home, energy consumption

1 INTRODUCTION

These are exciting times for utility companies and their energy analysts
– the energy domain is data rich and globally significant. Energy an-
alysts and modelers are now striving to effectively use the volumes of
data from emerging Smart Home technologies to understand consumer
behavior, conserve energy and manage supply and demand. Data vi-
sualization can offer great potential in this domain, but developing ap-
propriate solutions presents considerable challenges, since the nature
of the data are relatively unknown and the needs of energy data an-
alysts and modelers are not yet well understood. The design brief is
therefore essentially open-ended.

• Sarah Goodwin, Jason Dykes, Iain Dillingham, Alexander Kachkaev,
Aidan Slingsby, Jo Wood are with the giCentre, City University London.
E-mail: {Sarah.Goodwin.1, J.Dykes, Iain.Dillingham.1,
Alexander.Kachkaev.1, A.Slingsby, J.D.Wood}@city.ac.uk.

• Sara Jones, Graham Dove and Alison Duffy are with the Centre for
Creativity in Professional Practice, City University London. E-mail:
{S.V.Jones, Graham.Dove.1}@city.ac.uk, Alison@perspectiv.co.uk.

Manuscript received 31 March 2013; accepted 1 August 2013; posted online
13 October 2013; mailed on 4 October 2013.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Participatory approaches to user-centered design, in which users
and other stakeholders are involved in co-creating requirements and
designs for interactive systems can lead to solutions that are more use-
ful and usable [35]. We have successfully used human-centered ap-
proaches in the design of visualization solutions before and have doc-
umented these in detail [27]. However, the role of creativity in these
approaches has as yet been only implicit. Over the last decade some
fields of interactive systems development have increasingly focussed
on introducing elements of deliberate creativity into participatory user-
centered design processes. The aim here is to enable all participants
(users, designers and other stakeholders) to contribute to the explo-
ration of new fields and the generation of requirements and design
ideas for novel and useful systems [1, 6, 53]. Establishing require-
ments can be considered a fundamentally creative process whereby
requirements analysts and stakeholders work collaboratively to gener-
ate ideas for software systems [29, 30, 32]. Indeed, Robertson [42]
regards requirements analysts as inventors who bring about innovative
change in designs to establish advantage. Techniques for deliberately
introducing creativity into the process of user-centered design can be
used effectively in this context. For example, Schmid [46] used cre-
ativity triggers [42] to help workshop participants invent requirements,
whilst co-creation [45] and creativity workshops [24, 31] have been
shown to be effective in generating novel requirements.
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Goodwin et al. (2013): similar domain, different data, partial task overlap

Fig. 3. Consumption Signatures allows modeled data to be loaded (columns) and reordered so that the weekly consumption patterns of appliances
can be compared. Various coloring options scale sequential schemes by selected row, column or cell and allow diverging schemes to emphasize
difference from selected items. Patterns in daily (Lighting), seasonal (Heating) and modeled (Washing and Cleaning) data are clear as are weekend
differences (bottom two rows of each cell) such as the delay in the morning heating peak and more cooking during daytime at weekends.

Table 2. Prototype Enhancements – suggested by the design team and
by analysts in the Feedback Workshop, and implemented in iteration 2.

Prototype Name Design Team Analysts Implemented
Demand Horizons 11 7 6

Consumption Signatures 7 5 10
Ownership Groups 10 3 8

Smart Home HeatLines 10 3 6

4 RESULTS: VISUALIZATION PROTOTYPES

The four prototypes were developed with complimentary characteris-
tics to explore different tasks, data and designs – as characterized by
the focus points (section 3.2). The features are described below with
detail of specific interactions explained in the supplementary video.

4.1 Modeled Data
Two of the prototypes used hourly consumption data modeled for 2000
households over a period of 30 days, with different average hourly
rates calculated for households at weekdays and weekends

Demand Horizons: (Fig. 1) uses horizon charts [20] to show ag-
gregated and appliance-based energy demand during a typical 24 hour
period. Horizon charts can be switched to area graphs to aid under-
standing. Animated transitions [21] highlight the differences in con-
sumption between typical days during the week and weekend. Ap-
pliances can be re-ordered by contribution to the total, morning or
evening peaks and individual appliance charts can be added or re-
moved for detailed investigation of the differences in demand between
appliances and their effect on overall consumption. Several amend-
ments were implemented in the second development iteration, includ-
ing quick switching between gas and electricity appliances. In particu-
lar, a new feature was created in order to allow demand to be modified
directly through the metaphor of data sculpting. This allows peaks to
be flattened through the interface in two ways: the overall consump-
tion of any appliance can be interactively varied to simulate improved
efficiency; consumption can be time-shifted, using the grow, shrink, fix
or free buttons, to simulate change in behavior (see Fig. 1 and video).

Ownership Groups: (as shown in the supplementary video) con-
sists of a bar chart linked to a set of Tufte’s [50] redesigned Tukey
box plots [51]. Bars representing each appliance are sized by the
number of households that own at least one of each. Bars can be re-
ordered to show the appliances by proportion or alphabetically. The
box plots show average hourly consumption of households. Upon se-
lection of a particular appliance these are updated to show the aver-
age consumption of the households owning this appliance. Design en-
hancements implemented after the Feedback Workshop included new
selection mechanisms and three additional means of ordering – by ap-
pliance type, subtype and total power/load on the grid. Alternative
views related to co-ownership of appliances were also investigated.

Consumption Signatures: (Fig. 3) visualizes the model’s highest
resolution data, with records at 15 minute intervals aggregated accord-
ing to time of day and day of week. Multiple outputs can be structured
in to this weekly signature for comparison, including a six month sim-
ulation to show seasonal variation and a one week simulation with two
algorithmically optimized alternatives. Multiple derived values (such
as minimum, maximum and average consumption) were abstracted
from the model outputs and households were sampled in the case of
large data sets to ensure rapid responses. Calendar views [52, 54] vi-
sualize weekly consumption: seven rows relate to days of the week,
with 96 columns – one for each 15 minute period of the day. These
signatures are positioned in a matrix of small multiples in which data
sets (columns) and appliances or groups of appliances (rows) are juxta-
posed for comparison [15]. They are colored according to their values
with two alternative schemes: a sequential scheme represents absolute
values and a diverging scheme [19] shows the numerical difference
between each signature and a selected item: a column (data set); row
(appliance); cell (particular signature) or pixel (individual value). Dur-
ing the second development iteration the need to rescale the legend to
the ‘best fit’ for each signature was identified and implemented.

4.2 Smart Home Trial Data
Smart Home HeatLines: (Fig. 4) represents the raw live data from the
Smart Home trial. Individual households are represented as rows of
values varying over time. Summaries (count, average, maximum and
minimum) are calculated by household for each variable for particular
time periods. Further data abstraction is available in real time as the
temporal kernel can be interactively re-sized to aid pattern identifica-
tion and avoid distortion due to inconsistencies in collection times.
Sequential color schemes [19] are used to represent values, with a
line graph to aid in the identification and interpretation of patterns
and trends for any selected household. The summary statistic, source
(electricity, gas or appliance) and time period (total and weekly or
daily averages) can be varied interactively. Households (rows) can be
re-ordered by value at a particular time period. Grouping by demo-
graphic type, sorting by similarity of profile and a map to show ani-
mated geographical variations over time were added during the second
development iteration – as shown in the supplementary video.

5 RESULTS: VALIDITY AND CREATIVITY

Reflecting on both the visualization design evaluation literature [47]
and methods for evaluating creativity [8, 28] we constructed a struc-
tured process to determine the extent to which both the visualization
prototypes themselves and the design process through which they were
generated were seen as both valid and creative (Table 3).

The extent to which the outputs of our process were themselves
viewed as creative was a particularly important indicator of how suc-
cessful we had been in our introduction of techniques for deliberately
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Fig. 4. SmartHome HeatLines: visualizes Smart Home trial data per
household by time. Here, data are aggregated to show average weekly
electricity consumption, with households ordered (top to bottom) by type
of participant and consumption on Monday at 6pm.

stimulating creative thinking into the design process. A review by
Dean et al. [8] reveals that most authors evaluate creative outputs
through some combination of the dimensions of appropriateness, nov-
elty and surprise. Our evaluation was therefore structured in this way,
with questionnaires, a structured group discussion, and subsequent
analysis of responses. The objective was to gather analysts’ views of
the appropriateness of the designs, in terms of whether or not they sat-
isfied relevant requirements, their novelty, in relation to the analysts’
previous experience, and the surprise that they engendered.

We conducted an Evaluation Workshop with four of the five en-
ergy analysts who participated in the Requirements Workshop at the
Smart Home test house. We began by presenting the four prototypes
and demonstrating the enhanced functionality that had been added dur-
ing the second development iteration through (increasingly analyst di-
rected) chauffeuring, linking this to specific requirements and feed-
back. Chauffeuring was deemed appropriate as a rapid means of get-
ting analysts to use the software to access the data and as we were not
evaluating the usability of the prototypes but rather the value of the
approaches developed in regards to established opportunities.

After each demonstration analysts evaluated the appropriateness,
or utility, of each prototype by completing a questionnaire that asked
them to assess the extent to which various relevant requirements were
satisfied by the prototype by rating strength of agreement on a six point
scale ranging from strongly agree (1) to strongly disagree (6). Due to
the small numbers of prototypes and participants involved in the study,
it was not appropriate to attempt any quantitative evaluation of the
novelty or surprise factors of the prototypes, and we therefore adopted
a qualitative approach to evaluating these aspects. Thus the Evalu-
ation Workshop ended with a structured group discussion where the
prototypes were again used through directed chauffeuring on a shared
screen to prompt discussion relating to the novelty of each design, and
the surprise they engendered.

Our aim in evaluating the creative user-centered process through
which the designs were developed was to gain some initial insights
into the extent to which it could be seen as being effective and cre-
ative, and the impacts this may have had on designers and other stake-
holders, as well as on the prototypes that were developed. We relied
predominantly on the reflections of our experienced design team, in-
formed by inputs from other stakeholders during the structured group
discussions (see section 5.3), as documented in section 7.

5.1 Appropriateness of The Prototypes
Responses to the questionnaires reveal that 3 of the 4 prototypes score
highly for meeting the needs of the energy analysts as expressed during
the Requirements Workshop – responses tending to the left in Fig. 5.

Demand Horizons returned a modal score of 2 for the questionnaire
responses, and the energy analysts thought of many uses for the tech-

STRONGLY
DISAGREE

STRONGLY
AGREE Demand Horizons STRONGLY

DISAGREE
STRONGLY
AGREE Consumption Signatures

STRONGLY
DISAGREE

STRONGLY
AGREE Ownership Groups STRONGLY

DISAGREE
STRONGLY
AGREE SmartHome HeatLines

Fig. 5. Responses to the Prototype Appropriateness Questionnaire.
Strong agreement (1) with positive statements about utility in light of
requirements to the left, strong disagreement (6) to the right.

Table 3. Evaluation Process

Considering Evaluating Method
The Prototypes Appropriateness Questionnaire
The Prototypes Novelty Structured Group Discussion
The Prototypes Surprise Structured Group Discussion

The Design Process Validity & Effect Structured Group Discussion
The Design Process Creativity Reflection by Designers

nique, some of which were beyond the initial remit: “it starts to be-
come an interesting customer’s view.” The analysts found the design
particularly appealing and engaged especially with the data sculpt-
ing feature, which is discussed in more detail in section 6.

Consumption Signatures scored 1s and 2s in the questionnaire (sig-
nifying strong agreement or agreement that requirements were satis-
fied). The energy analysts were excited and fascinated by this appli-
cation. It was seen as “very powerful and very useful,” highlighted
as being a particularly intuitive design that allowed analysts to gain
insights quickly: “you could spend months searching the data for in-
sights but this just points you straight at it.” It was also seen as an
excellent knowledge building tool: “I could imagine ... just taking a
week off and just letting your curiosity dive in and out.”

Ownership Groups scored 3s – 5s in the questionnaire and was the
only prototype not seen as immediately useful by the analysts. While
the questions being asked were notably valid and useful to the indus-
try: “just knowing what people have allows you to size up the mar-
ket,” the modeled data does not group appliances with users in real-
istic ways. This lack of validity in our data limited opportunities for
insight and thus utility. The slick and elegant design, whilst meeting
the criteria gathered from the Requirements Workshop, was in part also
deemed inappropriate – the Tufte [50] style box plots being unpopular.

Showing the live trial data through Smart Home HeatLines caused
particular excitement and engagement. All scores were between 1 and
3 with a mode of 1 indicating that it was considered highly relevant to
the analysts’ needs. The tool was deemed appropriate for “a very wide
user base” in fact “anyone interested in gaining insight from energy
consumption data.” The focus group discussion also revealed that it
could improve communication of the Smart Home project amongst
colleagues: “we could be there for days, sharing it with other people.”
The value of exposing the analysts to the trial data in this way was
explicit: “this would be invaluable in starting to prove that some of
these electronic [Smart Home technology] approaches work.”

Alongside our evaluation by energy analysts, we also asked the en-
ergy modelers, who had generated the data on which three of the proto-
types were based, to informally evaluate our prototypes. We engaged
with them throughout the development process and found that they
considered all four prototypes very appropriate to the needs of the en-
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(a) Line graph – vertical position
encodes value.

(b) Modified Stock Chart – line
graph with monthly highs and
lows (horizontal bars) and 30-day
moving average (green line).

(c) Box Plot – each month shows
its interquartile range (box),
mean (horizontal line), and
extrema (whiskers).

(d) Composite Graph – bar chart
encoding the monthly average is
overlaid on a line graph of the raw
data.

(e) Colorfield – a vertical stripe
of color encodes the value of each
day (darker green means higher
sales).

(f) Color Stock Chart – each
month has 3 color blocks: the top
encodes the maximum, middle is
the mean, bottom is the minimum.

(g) Woven Colorfield – original
colorfield’s pixels are randomly
permuted within each month, cre-
ating discrete “blocks” of values.

(h) Event Striping – smoothed
data plotted as a colorfield with
outliers overlaid as vertical color
bands (end of Sep, dark green).

Figure 2: Visual designs explored in this experiment. The first two rows of encodings use position to encode value; the bottom two use color. Conditions
2d, 2b, 2c, 2g, 2f, and 2h calculate and display different statistics at the per-month scale, which requires prior task knowledge ( e.g. that the tasks will
be performed at the scale of months).

For some comparison tasks, summary statistics may suffi-
ciently summarize the necessary information in a series. Box
plots (Figure 2c) discretely compute and visualize the range,
interquartile range (IQR), and mean of the series for each
temporal region. The explicit encoding of these statistics may
better afford comparisons of the encoded statistics, but does
so at the expense of the raw data.

Composite graphs (Figure 2d) layer a line graph over a bar
chart representing averages of discrete subregions. By ex-
plicitly mapping the mean value aggregated over each month,
this approach may enhance the viewer’s ability to extract av-
erages from the visualization without inhibiting their ability
to extract point-level information from the original series. Vi-
sually encoding the average may also provide a benchmark
statistic for comparisons requiring average extraction, such
as spread (average distance from the average).

Color-Based Encodings
Recent work demonstrates that color encodings, such as those
used in colorfields (Figure 2e), may better support average
comparisons than position encodings [13]. Colorfields map
each datapoint within a series to a point on a color scale,
creating a one-dimensional heatmap. We anticipate that the
perceptual system’s ability to preattentively summarize color
will support summary comparisons; however, we also antic-
ipate that colorfields will be less effective for point compar-
isons due to the limited perceptual fidelity of color.

Color Stock Charts (Figure 2f) explicitly map the local ex-
trema and average of each temporal range using color (aver-
age in the center, with top and bottom runners representing
local maxima and minima respectively). This approach sim-
plifies the visual computation required to extract point val-
ues from a colorfield while preserving some high-level statis-
tics from the series; however, the performance benefit of this

mapping may be limited by the ability of the color encoding
to communicate each statistic. Further, encoding only these
tasks statistics sacrifices the ability to extract data about local
features or other distributional information.

Color weaving [2, 13] (Figure 2g) breaks local structures in
a colorfield by randomly permuting data values at the pixel-
level within each month. This technique encodes a series
as task-blocked woven glyphs whose pixel-level distribution
mirrors the distribution of values in each month. Prior studies
have shown that by breaking this local structure, color weav-
ing improves the perceptual system’s ability to summarize the
encoded values [13, 17]. The enhanced visual structures of
color weaving may better afford average and spread compar-
isons; however, the increased difficulty of extracting a partic-
ular datapoint may complicate point comparisons using color.

Event striping [2, 14] (Figure 2h) highlights outliers in
the dataset by representing outlier values as broad “stripes”
drawn over a smoothed colorfield representation of the origi-
nal series. Explicitly mapping outlier values within the series
visually boosts unusual values while the smoothed colorfield
preserves the context of the series. Event striping provides
an example of an encoding designed specifically for a given
task. Its visual design is very similar to colorfields; however,
the design choices made to support outlier identification may
influence how well the encoding supports other tasks.

METHODS
A series of experiments, one for each of six tasks (discussed
below), compared the performance of viewers asked to make
comparative judgments from time series data across the eight
different visual encodings (described above). The experi-
ments shared some common features across both tasks and
encodings that we describe here. The Experiments and Re-
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be performed at the scale of months).

For some comparison tasks, summary statistics may suffi-
ciently summarize the necessary information in a series. Box
plots (Figure 2c) discretely compute and visualize the range,
interquartile range (IQR), and mean of the series for each
temporal region. The explicit encoding of these statistics may
better afford comparisons of the encoded statistics, but does
so at the expense of the raw data.

Composite graphs (Figure 2d) layer a line graph over a bar
chart representing averages of discrete subregions. By ex-
plicitly mapping the mean value aggregated over each month,
this approach may enhance the viewer’s ability to extract av-
erages from the visualization without inhibiting their ability
to extract point-level information from the original series. Vi-
sually encoding the average may also provide a benchmark
statistic for comparisons requiring average extraction, such
as spread (average distance from the average).

Color-Based Encodings
Recent work demonstrates that color encodings, such as those
used in colorfields (Figure 2e), may better support average
comparisons than position encodings [13]. Colorfields map
each datapoint within a series to a point on a color scale,
creating a one-dimensional heatmap. We anticipate that the
perceptual system’s ability to preattentively summarize color
will support summary comparisons; however, we also antic-
ipate that colorfields will be less effective for point compar-
isons due to the limited perceptual fidelity of color.

Color Stock Charts (Figure 2f) explicitly map the local ex-
trema and average of each temporal range using color (aver-
age in the center, with top and bottom runners representing
local maxima and minima respectively). This approach sim-
plifies the visual computation required to extract point val-
ues from a colorfield while preserving some high-level statis-
tics from the series; however, the performance benefit of this

mapping may be limited by the ability of the color encoding
to communicate each statistic. Further, encoding only these
tasks statistics sacrifices the ability to extract data about local
features or other distributional information.

Color weaving [2, 13] (Figure 2g) breaks local structures in
a colorfield by randomly permuting data values at the pixel-
level within each month. This technique encodes a series
as task-blocked woven glyphs whose pixel-level distribution
mirrors the distribution of values in each month. Prior studies
have shown that by breaking this local structure, color weav-
ing improves the perceptual system’s ability to summarize the
encoded values [13, 17]. The enhanced visual structures of
color weaving may better afford average and spread compar-
isons; however, the increased difficulty of extracting a partic-
ular datapoint may complicate point comparisons using color.

Event striping [2, 14] (Figure 2h) highlights outliers in
the dataset by representing outlier values as broad “stripes”
drawn over a smoothed colorfield representation of the origi-
nal series. Explicitly mapping outlier values within the series
visually boosts unusual values while the smoothed colorfield
preserves the context of the series. Event striping provides
an example of an encoding designed specifically for a given
task. Its visual design is very similar to colorfields; however,
the design choices made to support outlier identification may
influence how well the encoding supports other tasks.

METHODS
A series of experiments, one for each of six tasks (discussed
below), compared the performance of viewers asked to make
comparative judgments from time series data across the eight
different visual encodings (described above). The experi-
ments shared some common features across both tasks and
encodings that we describe here. The Experiments and Re-

Albers et al. (2014): 
evaluation of 
multiple encodings 
for identifying 
aggregate values

Glyph Temporal Enc. Data Value Enc. (ranked) Data Density Issues

Dot Plot Position CS Position CS (1) Small dots difficult to see for small glyphs

Line Glyph Position CS Position CS (1)/Direction (3) May become very dense

Bar Chart Position CS Position CS (1)/Length (3)/
Area (4) May become very dense

Star Glyph Angle Length (3) Small angular differences are hard to distinguish

Stripe Glyph Position CS Color Saturation (6) Color blending for small areas

Clock Glyph Angle Color Saturation (6) Color blending

Table 1. Partial overview of the design space for temporal glyphs. We show combinations of the encodings for quantitative data (cf. Cleveland and
McGill’s [10]) ranked according to their study results: 1) Position CS, 2) Position NAS, 3) Length/Direction/Angle, 4) Area, 5) Volume/Curvature,
6) Shading/Color Saturation. Other combinations are certainly possible. Position CS = position along a common scale, Position NAS = position along
non-aligned scale. Glyph designs written with bold characters are the ones used in our experiment.

along a common scale but that judgements of area and length
may also play a role. Therefore, we cannot safely test, which
visual variable affects the perception of the data value.

When comparing glyphs visually, the distance between the
representations matters. We chose to keep the distance for
the different designs identical and, therefore, to have the same
uniform small multiple layout. As a consequence it was im-
portant to set a fixed aspect ratio for each glyph. To maximize
display space for circular glyphs for a fairer comparison we
chose a square aspect ratio for each glyph.

For the color encoded glyphs (CLO and STR) we chose a
heatmap colorscale, which was motivated by the yellow to
red colorscale from ColorBrewer [7]. This scale takes advan-
tage of the fact that the human visual system has maximum
sensitivity to luminance changes for the orange-yellow hue
[23] and it is also suitable for color blind people.

For each trial, the same type of glyph—but showing different
data—was drawn on the screen in a small multiple layout of
8⇥ 6 = 48 glyphs in total (Figure 1). Each glyph was drawn
at a resolution of 96 × 96 pixel.

Tasks

Many different tasks exist that can be performed on time-
oriented data [2, 3, 24]. We chose our tasks taking two crite-
ria into account: (1) their ecological validity, i. e. how com-
monly they are performed in environments where the quick
comparison of multiple time series is needed. (2) their het-
erogeneity in terms of the elementary perceptual tasks, i. e.
we picked tasks that involve the comparison of visual vari-
ables for encoding data values, investigating different layouts
for time and the combination of the two. In terms of ecologi-
cal validity our tasks were inspired by our work with network
security analysts from a large university computer center who
had to monitor large amounts of network devices. The ana-

lysts had to be able to efficiently detect anomalous traffic pat-
terns (e.g., peak values in none working hours) to be able to
quickly react on the possible threat. Our three tasks were:

Task 1—Peak Detection: Amongst all small multiple
glyphs, participants had to select the glyph that contained the
highest data value (Figure 1). This task, thus, involved scan-
ning all glyphs for its highest value and comparing across
glyphs using length (LIN, STA) or saturation (STR, CLO)
judgements.

Task 2—Temporal Location: Among all small multiples,
participants were asked to select the glyph with the highest
value at a predefined time-point. This time-point was textu-
ally shown to the participant in advance (e.g. “3am”). This
task, thus, involved first identifying the location of a time-
point by making positional (LIN, STR) or angular judgements
(STA, CLO) and then comparing the peaks as in Task 1.

Task 3—Trend Detection: Among all small multiples, par-
ticipants had to select the glyph with the highest value de-
crease over the whole displayed time period (Figure 2). This
task, thus, involved first detecting all decreasing trends and
then comparing the first and the last value.

Data Density

In order to test the scalability of each glyph in terms of the
number of datapoints it can encode, we tested two data den-
sities. The smaller density consisted of 24 data values (1 for
each hour), and the larger of 96 data values (1 for each 15
minutes). The rendered size of the glyphs holding these data
points was not varied between each density (Figure 3).

Hypotheses
We previously conducted two exploratory pilot studies with
similar glyphs and tasks. From these and the related literature
[10, 35] we derive the following hypotheses:
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Graphical Perception of Multiple Time Series
Waqas Javed, Student Member, IEEE, Bryan McDonnel, Student Member, IEEE, and Niklas Elmqvist, Member, IEEE

(a) Simple line graph. (b) Braided graph.

(c) Small multiples (d) Horizon graphs.

Fig. 1. Four visualization techniques for multiple time series. This example shows the same four time series (200 data points).

Abstract—Line graphs have been the visualization of choice for temporal data ever since the days of William Playfair (1759–1823),
but realistic temporal analysis tasks often include multiple simultaneous time series. In this work, we explore user performance
for comparison, slope, and discrimination tasks for different line graph techniques involving multiple time series. Our results show
that techniques that create separate charts for each time series—such as small multiples and horizon graphs—are generally more
efficient for comparisons across time series with a large visual span. On the other hand, shared-space techniques—like standard line
graphs—are typically more efficient for comparisons over smaller visual spans where the impact of overlap and clutter is reduced.

Index Terms—Line graphs, braided graphs, horizon graphs, small multiples, stacked graphs, evaluation, design guidelines.

1 INTRODUCTION

When William Playfair (1759–1823) invented the line graph in
1786 [24] to help people understand time series data, he can hardly
have imagined the repercussions his work would have on posterity.
Now hailed as the father of statistical graphics [11], Playfair—a Scot-
tish engineer—used his line, bar, pie, and circle graphs to communi-
cate political and economical data [12]. Line graphs are today one of
the most common types of statistical data graphics [3], and are used
to visualize temporal data in a wide array of domains such as finance,
politics, science, engineering, and medicine.

However, while standard line graphs can easily deal with a few
time series simultaneously, common tasks involving time series data
often involve many concurrent series [17]. Consider a stock analyst
surveying the history of a set of stocks in an effort to find the next
investment. This comparison will have to be conducted across each
of the time series representing each individual stock. While recent
work [16] investigated the performance of a novel time series visual-
ization technique—horizon graphs [26]—for different chart sizes, this
study only involved two time series at all times. Other similar graph-
ical perception work tend to only involve discrimination and estima-
tion between two charts as well [27]. Lam et al. [20] studied multiple
(more than two) time series, but focused on multi-resolution visualiza-
tion techniques. Thus, there exists little data on graphical perception
for multiple time series as a function of different line graph techniques.

In this paper, we address this lack of knowledge by rigorously eval-
uating graphical perception for different tasks involving multiple time
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series through controlled laboratory experiments. The main motiva-
tion for this work is to provide guidelines for designers who need to
find a suitable method when building a temporal visualization applica-
tion. Beyond studying simple line graphs [24], we also include small
multiples [28] and horizon graphs [26] in our experiment. In addition,
to aid perception of multiple color-coded time series, we include a
novel visualization technique that we call a braided graph where filled
areas are sorted in depth order for each position along the time axis.

Our results could influence a wide range of disciplines where tem-
poral data are viewed and analyzed. However, there is a limit to the
perceptual abilities of the human analyst, and thus there comes a point
when the graphical perception task becomes impossible due to too
many concurrent time series and to the correspondingly high visual
clutter [8]. For these situations, we need alternative methods such as
temporal queries [17], hierarchical aggregation [9], or temporal clus-
tering [19]. While these methods are outside the scope of this paper,
we are also interested in finding the point where the graphical percep-
tion of a typical user breaks down for the above techniques.

2 RELATED WORK

Evaluation of graphical perception for statistical data graphics has a
long history, originating from even before there were computers and
graphics to turn charts into interactive visualizations. The pioneering
work by Eells [7] set the stage for comparing different types of graph-
ical representations. Croxton et al. compared bar charts with circle
diagrams and pie charts [6], and also discussed the relative merits of
bars, squares, circles and cubes to perform the comparison tasks [5].
Peterson et al. [23] measured the accuracy of reading values from eight
different graphical representations of statistical data.

Early work to find the effectiveness and merits of different graph
types later came under the umbrella of graphical perception of sta-
tistical graphics [4]. Graphical perception is defined as the ability of
users to comprehend the visual encoding and thereby decode the infor-
mation presented in the graph [22]. Simkin and Hastie [27] compared
the accuracy of judgment while using simple bar charts, divided bar
charts, and pie charts based on the comparison and estimation tasks,
but they only involved two charts at a time.
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series through controlled laboratory experiments. The main motiva-
tion for this work is to provide guidelines for designers who need to
find a suitable method when building a temporal visualization applica-
tion. Beyond studying simple line graphs [24], we also include small
multiples [28] and horizon graphs [26] in our experiment. In addition,
to aid perception of multiple color-coded time series, we include a
novel visualization technique that we call a braided graph where filled
areas are sorted in depth order for each position along the time axis.

Our results could influence a wide range of disciplines where tem-
poral data are viewed and analyzed. However, there is a limit to the
perceptual abilities of the human analyst, and thus there comes a point
when the graphical perception task becomes impossible due to too
many concurrent time series and to the correspondingly high visual
clutter [8]. For these situations, we need alternative methods such as
temporal queries [17], hierarchical aggregation [9], or temporal clus-
tering [19]. While these methods are outside the scope of this paper,
we are also interested in finding the point where the graphical percep-
tion of a typical user breaks down for the above techniques.

2 RELATED WORK

Evaluation of graphical perception for statistical data graphics has a
long history, originating from even before there were computers and
graphics to turn charts into interactive visualizations. The pioneering
work by Eells [7] set the stage for comparing different types of graph-
ical representations. Croxton et al. compared bar charts with circle
diagrams and pie charts [6], and also discussed the relative merits of
bars, squares, circles and cubes to perform the comparison tasks [5].
Peterson et al. [23] measured the accuracy of reading values from eight
different graphical representations of statistical data.

Early work to find the effectiveness and merits of different graph
types later came under the umbrella of graphical perception of sta-
tistical graphics [4]. Graphical perception is defined as the ability of
users to comprehend the visual encoding and thereby decode the infor-
mation presented in the graph [22]. Simkin and Hastie [27] compared
the accuracy of judgment while using simple bar charts, divided bar
charts, and pie charts based on the comparison and estimation tasks,
but they only involved two charts at a time.
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(a) Simple line graph. (b) Braided graph.

(c) Small multiples (d) Horizon graphs.

Fig. 1. Four visualization techniques for multiple time series. This example shows the same four time series (200 data points).

Abstract—Line graphs have been the visualization of choice for temporal data ever since the days of William Playfair (1759–1823),
but realistic temporal analysis tasks often include multiple simultaneous time series. In this work, we explore user performance
for comparison, slope, and discrimination tasks for different line graph techniques involving multiple time series. Our results show
that techniques that create separate charts for each time series—such as small multiples and horizon graphs—are generally more
efficient for comparisons across time series with a large visual span. On the other hand, shared-space techniques—like standard line
graphs—are typically more efficient for comparisons over smaller visual spans where the impact of overlap and clutter is reduced.

Index Terms—Line graphs, braided graphs, horizon graphs, small multiples, stacked graphs, evaluation, design guidelines.

1 INTRODUCTION

When William Playfair (1759–1823) invented the line graph in
1786 [24] to help people understand time series data, he can hardly
have imagined the repercussions his work would have on posterity.
Now hailed as the father of statistical graphics [11], Playfair—a Scot-
tish engineer—used his line, bar, pie, and circle graphs to communi-
cate political and economical data [12]. Line graphs are today one of
the most common types of statistical data graphics [3], and are used
to visualize temporal data in a wide array of domains such as finance,
politics, science, engineering, and medicine.

However, while standard line graphs can easily deal with a few
time series simultaneously, common tasks involving time series data
often involve many concurrent series [17]. Consider a stock analyst
surveying the history of a set of stocks in an effort to find the next
investment. This comparison will have to be conducted across each
of the time series representing each individual stock. While recent
work [16] investigated the performance of a novel time series visual-
ization technique—horizon graphs [26]—for different chart sizes, this
study only involved two time series at all times. Other similar graph-
ical perception work tend to only involve discrimination and estima-
tion between two charts as well [27]. Lam et al. [20] studied multiple
(more than two) time series, but focused on multi-resolution visualiza-
tion techniques. Thus, there exists little data on graphical perception
for multiple time series as a function of different line graph techniques.

In this paper, we address this lack of knowledge by rigorously eval-
uating graphical perception for different tasks involving multiple time
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series through controlled laboratory experiments. The main motiva-
tion for this work is to provide guidelines for designers who need to
find a suitable method when building a temporal visualization applica-
tion. Beyond studying simple line graphs [24], we also include small
multiples [28] and horizon graphs [26] in our experiment. In addition,
to aid perception of multiple color-coded time series, we include a
novel visualization technique that we call a braided graph where filled
areas are sorted in depth order for each position along the time axis.

Our results could influence a wide range of disciplines where tem-
poral data are viewed and analyzed. However, there is a limit to the
perceptual abilities of the human analyst, and thus there comes a point
when the graphical perception task becomes impossible due to too
many concurrent time series and to the correspondingly high visual
clutter [8]. For these situations, we need alternative methods such as
temporal queries [17], hierarchical aggregation [9], or temporal clus-
tering [19]. While these methods are outside the scope of this paper,
we are also interested in finding the point where the graphical percep-
tion of a typical user breaks down for the above techniques.
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long history, originating from even before there were computers and
graphics to turn charts into interactive visualizations. The pioneering
work by Eells [7] set the stage for comparing different types of graph-
ical representations. Croxton et al. compared bar charts with circle
diagrams and pie charts [6], and also discussed the relative merits of
bars, squares, circles and cubes to perform the comparison tasks [5].
Peterson et al. [23] measured the accuracy of reading values from eight
different graphical representations of statistical data.

Early work to find the effectiveness and merits of different graph
types later came under the umbrella of graphical perception of sta-
tistical graphics [4]. Graphical perception is defined as the ability of
users to comprehend the visual encoding and thereby decode the infor-
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However, while standard line graphs can easily deal with a few
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surveying the history of a set of stocks in an effort to find the next
investment. This comparison will have to be conducted across each
of the time series representing each individual stock. While recent
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series through controlled laboratory experiments. The main motiva-
tion for this work is to provide guidelines for designers who need to
find a suitable method when building a temporal visualization applica-
tion. Beyond studying simple line graphs [24], we also include small
multiples [28] and horizon graphs [26] in our experiment. In addition,
to aid perception of multiple color-coded time series, we include a
novel visualization technique that we call a braided graph where filled
areas are sorted in depth order for each position along the time axis.

Our results could influence a wide range of disciplines where tem-
poral data are viewed and analyzed. However, there is a limit to the
perceptual abilities of the human analyst, and thus there comes a point
when the graphical perception task becomes impossible due to too
many concurrent time series and to the correspondingly high visual
clutter [8]. For these situations, we need alternative methods such as
temporal queries [17], hierarchical aggregation [9], or temporal clus-
tering [19]. While these methods are outside the scope of this paper,
we are also interested in finding the point where the graphical percep-
tion of a typical user breaks down for the above techniques.
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graphics to turn charts into interactive visualizations. The pioneering
work by Eells [7] set the stage for comparing different types of graph-
ical representations. Croxton et al. compared bar charts with circle
diagrams and pie charts [6], and also discussed the relative merits of
bars, squares, circles and cubes to perform the comparison tasks [5].
Peterson et al. [23] measured the accuracy of reading values from eight
different graphical representations of statistical data.

Early work to find the effectiveness and merits of different graph
types later came under the umbrella of graphical perception of sta-
tistical graphics [4]. Graphical perception is defined as the ability of
users to comprehend the visual encoding and thereby decode the infor-
mation presented in the graph [22]. Simkin and Hastie [27] compared
the accuracy of judgment while using simple bar charts, divided bar
charts, and pie charts based on the comparison and estimation tasks,
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Validation in the field  
(rather than in a controlled experiment)
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domain convention
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Line charts = energy demand 
Line charts for derived data verboten!
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outline: design process

1. analyzing the work domain 
2. identifying data and task abstractions 
3. visual encoding sandbox prototyping 
4. eliciting feedback on vis. encoding designs 
5. prototyping workflows 
6. production development by collaborator
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outline: design process

1. analyzing the work domain 
2. identifying data and task abstractions 
3. visual encoding sandbox prototyping 
4. eliciting feedback on vis. encoding designs 

• custom tailored design specs sent in advance 
• 4 interviews (2 new energy workers) 

5. prototyping workflows 
6. production development by collaborator
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matches & mismatches

26

Task Design choice Match?

Overview

Faceted bar charts ✖

Bump plot ✖

Bar + bump plot ?

Time-series matrix ?

Map ✖

Juxtaposed matrix and boxplots ✔

Drill Down

Faceted bar charts ✔

Faceted boxplots ✖

Faceted line graphs ✔

Roll Up
Stacked bar chart ✔

Stacked area chart ✔
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faceting (small multiples)

27

Task Design Choice Match?

Overview Faceted bar charts ✖

Drill Down Faceted bar charts ✔

Aggregate values not 
trusted
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faceted boxplots
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a match {4} for the Drill Down (T2) task. Faceted bar charts were
among the first designs that we considered, especially after one energy
worker provided us with his own mockup of such a design. However,
if an energy worker has dozens or hundreds of buildings in their port-
folio, faceting is unlikely to scale [21]. We determined that it was a
poor match for the Overview (T1) task, though a match for the Drill
Down (T2) task, provided that the energy worker has already filtered
down to a smaller group of buildings, such as filtering a university
portfolio to show only the “laboratory” buildings. In addition, one
of the power user energy workers lamented that bar charts only show
coarse aggregate values, typically an average or a sum, and as a re-
sult of this loss of detail, they do not show other aggregate values of
interest, such as ranges or extreme values.
Faceted boxplots: a mismatch {6} for the Drill Down (T2) task. We
expected that faceted boxplots would allow energy workers to com-
pare ranges, distributions, and extreme values for multiple buildings
at different points in time, such as in Figure 3. However, despite the
long history of boxplots [45] and support from influential visualization
practitioners [12], we found that most energy workers are not familiar
with boxplots, except for a minority who had taken a post-secondary
statistics course. Furthermore, comparisons in faceted boxplots are
more difficult than in faceted bar charts, where positions are aligned to
each facet’s baseline; with faceted boxplots, the observer must com-
pare multiple positions and widths across separate facets. Our design
was therefore a daunting introduction to boxplots for those unfamiliar
with them and a poor match for the Drill Down task.

Fig. 3. Faceted boxplots that encode aggregate area-normalized en-
ergy demand distributions for 12 buildings across four months, sorted in
descending order according to the average demand value for this four
month period. A mismatch {6} for the Drill Down task (T2). Building
names are blurred to sanitize real client portfolio data.

Faceted line charts: a match {4} for the Drill Down (T2) task.
Faceted line charts are a good match when observing non-derived con-
tinuous quantitative time series values such as energy demand; an ex-
ample is shown in Figure 7 (bottom). They are a scalable alternative
to superimposed line charts [21] and the line chart encoding is already
very familiar to energy workers. As mentioned above in Section 3,
line charts are not appropriate for derived and aggregated values such
as energy consumption or intensity.

7.2 Rank-Based Overview Visualizations
As faceting seemed unlikely to be effective for the Overview (T1) task,
we considered non-faceted visualizations of aggregate values. Recall
how the sortable table in Energy Manager’s portfolio dashboard (Fig-
ure 1a, bottom) was never used for the Overview task; it contained
only coarse aggregate values for each item, providing little detail about
temporal variation. We therefore experimented with encodings for dis-
playing rank as well as rank change over time.
Bump plots: a mismatch {6} for the Overview (T1) task. Bump plots
encode rank and rank change; they incorporate a familiar line encod-
ing across equally-spaced temporal intervals [41]. However, as with
superimposed line charts, it becomes difficult to distinguish individual
items using colour. One possible solution is to highlight items that
vary in rank, rather than requiring the observer to locate these items.
Another problem is that bump plots only show relative rank and rank
change, whereas the absolute values that produce these ranks are not

shown. As a result this a loss of detail, the bump plot is also a poor
match for the Overview task.

Bump + bar plots: a potential match {?} for the Overview (T1)
task. We next considered an encoding that incorporates relative rank,
rank change, and absolute value, by adding bars to each series in the
bump plot, as shown in Figure 4. This approach is similar to two re-
cently proposed techniques that encode both relative rank and absolute
value [16, 20]. With this design, we still face the scalability problem
associated with colour discriminability. A combination of interaction
and highlighting rank variation may facilitate this discriminability; in
Figure 4, rank variation is encoded using the alpha channel, so the pink
series that varies considerably over time is most salient.

Fig. 4. A bar + bump plot of energy intensity, encoding rank change
for the top 7 building groups (buildings aggregated by tag) across four
seasons. The alpha channel encodes rank variation to highlight incon-
sistent buildings. A potential match {?} for the Overview task (T1).

Energy workers responded positively to this visualization, as it is
comprised of familiar bar and line encodings. However, despite this
positive response, we discovered that ranks as derived values are actu-
ally infrequently considered during energy analysis, and that they tend
to be more appropriate for annual planning and presentation activities,
such as determining how to prioritize energy conservation projects,
and less so for recurring analysis and monitoring activities. Thus, the
hunt for a match for the Overview (T1) task continued.

7.3 Matrix-Based Overview Visualizations

Time series matrix: a potential match {?} for the Overview (T1)
task. Matrix encodings are scalable and space-efficient [15, 17], as can
be seen in the center of Figure 2. Matrix encodings allow us to display
observed as well as differential values, allowing an energy worker to
review energy savings relative to predicted or historical values; a ma-
trix displaying differential energy data is shown in Figure 5. Most of
the energy workers that we interviewed were unfamiliar with this form
of encoding, except one who routinely made such visualizations in Ex-
cel. As a result, it took more effort to convince our collaborators of the
value of these matrix-based encodings for the Overview task.

We also learned that energy workers found matrices with diverg-
ing colour scales easier to interpret than than those with unidirectional
colour scales. Finally, we found that while red is fine for use in di-
verging colour scales, as it has a negative connotation, it is inappro-
priate for unidirectional colour scales in this context. As a result of
this mixed response to matrix-based encodings, we realized that more
work needed to be done.

Calendar matrix: a potential match {?} for the Overview (T1) task.
We altered our matrix encoding by partitioning the cells correspond-
ing to months into calendars (Figure 5), a design decision inspired
by previous work [23, 42]. Energy workers responded positively to
this encoding, which helped to resolve the unfamiliarity of the more
generic matrix encoding. However, months and days are not the only
time granularities of interest, so this encoding may not be appropriate
for all time ranges.

Task Visualization Idiom Match?

T2: Drill Down Faceted boxplots ✖

Unfamiliar encoding; comparisons are perceptually difficult
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time-series matrix
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Task Design Choice Match?

Overview Time-series matrix ?

Time

Buildings

Unfamiliar 
encoding
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outline: design process

1. analyzing the work domain 
2. identifying data and task abstractions 
3. visual encoding sandbox prototyping 
4. eliciting feedback on vis. encoding designs 
5. prototyping workflows 
6. production development by collaborator
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matrix + auxiliary boxplots

31

Boxplots easier to read than faceted design; reinforced by matrix encoding 
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Task Design choice Match?

Overview Juxtaposed matrix and boxplots ✔

Persevere despite unfamiliarity: 
Positive response to juxtaposition and linking two unfamiliar encodings
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outline: design process

1. analyzing the work domain 
2. identifying data and task abstractions 
3. visual encoding sandbox prototyping 
4. eliciting feedback on vis. encoding designs 
5. prototyping workflows 
6. production development by collaborator 

• commitment of development resources 
• 10+ developers working on project since summer 2014

34
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MATRIX + BOXPLOTS: consumption

MATRIX + BOXPLOTS: demand

FACETED BAR CHARTS: consumption

FACETED LINE CHARTS: demand

STACKED BAR CHART: consumption

STACKED AREA CHART: demand

OVERVIEW ( T1 ) DRILL DOWN ( T2 ) ROLL UP ( T3 )
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conclusion

An industry visualization design study success story.  
 
Matches and mismatches between task and data abstractions 
to visual encoding and interaction design choices.  

Reflecting on methods for visualization design studies. 
• work domain analysis + artefact collection 
• custom design specs featuring real client data 
• interactive sandbox for visual encoding design exploration
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Multiple-View Workflows for Energy Portfolio Analysis
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• interactive sandbox design environment + git repo
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work domain analysis
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Normative, descriptive, formative 
perspectives. Workers’ use of tools, their 
work context, workarounds. 

Hierarchical and sequential task analysis. 
 
Resources:  
- Vicente’s Cognitive Work Analysis (CRC, 1999)  
- McNamara et al.’s VIS ’14 tutorial materials.  
- Brehmer et al on pre-design empiricism for InfoVis (BELIV ’14) 
- Winters et al. on characterizing domain problems (BELIV ’14)
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design documentation
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sample documentation slides
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portfolio energy analysis

Goals:  
– oversee energy behaviour of portfolios of buildings 
– reduce energy costs / conserve energy 
– ensure comfort and safety of building occupants 

Activities:  
– assess behaviour following energy conservation 
measures  
– determine which building(s) require these measures 
– find (and diagnose) anomalous energy behaviour 
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Trends

Actions

Analyze

Search

Query

Why?

All Data

Outliers Features

Attributes

One Many
Distribution Dependency Correlation Similarity

Network Data

Spatial Data
Shape

Topology

Paths

Extremes

Consume
Present EnjoyDiscover

Produce
Annotate Record Derive

Identify Compare Summarize

tag

Target known Target unknown

Location 
known
Location 
unknown

Lookup

Locate

Browse

Explore

Targets

Why?

How?

What?
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Task 1: Overview
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Energy Domain 
Activities Scope Abstraction

Example 
Question

determine which 
building(s) require 
energy conservation 
measures  
 
find anomalous 
energy behaviour

The entire 
portfolio of 
buildings 
 
coarser time 
periods

discover 
trends, outliers  

lookup and 
summarize 
distributions, 
extremes, 
similarities

“How did my 
building 
portfolio 
perform this 
past year?” 
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TASK 2: DRILL DOWN
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Energy Domain 
Activities Scope Abstraction

Example 
Question

assess behaviour 
following energy 
conservation 
measures  
 
diagnose anomalous 
energy behaviour

Groups within 
the portfolio of 
buildings 
 
finer time 
periods

discover, 
locate, and 
compare 
trends, outliers, 
features

“Are my 
restaurants in 
Chicago 
performing 
better this 
October than 
they did last 
October?” 
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Task 3: roll up
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Energy Domain 
Activities Scope Abstraction

Example 
Question

find and diagnose 
anomalous energy 
behaviour

Groups within 
the portfolio of 
buildings 
 
finer time 
periods

discover, 
locate, and 
identify 
trends, outliers, 
features, 
dependencies

“what 
proportion of a 
university’s 
energy 
consumption is 
consumed by its 
computer 
science building 
over time?”
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Task Name Energy Domain Activities Abstraction Example Question

Overview

determine which 
building(s) require energy 
conservation measures  
 
find anomalous energy 
behaviour

discover 
trends, outliers  

lookup and 
summarize 
distributions, 
extremes, similarities

“How did my building portfolio 
perform this past year?” 

Drill Down

assess behaviour 
following energy 
conservation measures  
 
find and diagnose 
anomalous energy 
behaviour

discover, locate, 
and compare 
trends, outliers, 
features

“Are my restaurants in Chicago 
performing better this October 
than they did last October?” 

Roll Up
find and diagnose 
anomalous energy 
behaviour

discover, locate, 
and identify 
trends, outliers, 
features, 
dependencies

“what proportion of a university’s 
energy consumption is consumed 
by its computer science building 
over time?”
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existing tool
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Limited filtering, no filtering items by shared attributes 
“show only restaurants”  

Limited aggregation, no aggregating items by shared 
attributes 
“all restaurants in Chicago vs. all restaurants in New York” 

No faceting (juxtaposed views, small multiples)

analysis of Energy Manager

48
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analysis of Energy Manager

Data routinely exported and imported into Excel. 

Little trust in predicted derived values based on 
statistical models. A preference for comparing 
against historical data. 

Aggregate derived values (sums, averages) too 
coarse (loss of detail, lack of trust).
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vis in the energy domain

  

consumption by similar homes – e.g., 10 identically 
outfitted homes in Florida – showed large variations in 
electricity use, with one home using 2.6 times as much 
electricity as another. [14] 

ECF systems use a variety of techniques to encourage 
conservation, including feedback (on a household’s energy 
use), incentives (points, prizes, differential pricing), 
comparisons (between individuals or groups), goal-setting 
(e.g., explicitly deciding to achieve a conservation goal), 
and commitment (eliciting a public commitment to 
achieving particular goals). An example that includes all 
but the last two approaches is Petersen et al’s [15] energy 
conservation contest in which real time electricity 
consumption feedback provided the backbone for a contest 
among dorms that resulted in short term reductions of 30 – 
55%. More generally, and over longer periods, it is 
generally agreed that ECF systems can lead to reductions in 
consumption ranging from 5 to 15% (e.g., Darby [5];  
Fischer [10]).  

However, work on ECF systems has been the subject of an 
increasing number of critiques. One is that ECF systems 
may set a rather low goal by legitimizing current regimes of 
energy use. Thus, building an energy monitor into a clothes 
drier to enable load shifting may suggest that using the drier 
is OK; more generally, ECF systems may legitimize a 
baseline level of usage: Pierce, et al. [17] observed that 
individuals using such systems would attempt to avoid 
greatly exceeding their baseline usage, but never spoke of 
trying to lower it. A second critique is that ECF assumes 
rational individuals who are making considered choices 
about their energy usage, whereas in reality much energy 
consumption is unconscious and habitual (e.g., [18, 20]). A 
third critique is that ECF’s focus on individual behavior vis 
a vis simple metrics ignores social and political factors (cf. 
Brynjarsdottir, et al. [3], Dourish [8], DiSalvo et al. [7]).   

While these critiques of HCI’s approach to sustainability 
are valuable, the system we discuss in this paper falls 
squarely in the ECF camp. This is simply a matter of 
pragmatism: we are studying a real system being deployed 
in a real city. While the ECF approach has much to 
criticize, it is nevertheless out in the world and examining 
how people use and react to it is important. In particular, 
Froelich, et al. [11] call attention to a gap in the literature. 
They note that work in HCI has primarily focused on the 
design of systems for supporting energy conservation, but 
provides little in the way of field studies (especially for 
longer periods). In contrast, environmental psychology has 
carried out numerous field studies, but devotes little 
attention to the design of the systems, which often use 
rudimentary forms of display and presentation. Thus, there 
is a need for field studies that can guide the design of such 
systems, investigating the types of information and 
presentation that are most effective in influencing 
conservation behavior. This paper aims to address this gap. 

BACKGROUND: SITE, SYSTEM, PORTAL, PILOT 

The Site  
The Electricity Portal was deployed in Dubuque Iowa, a 
city of about sixty thousand in the midwestern U.S. The 
choice of Dubuque was opportunistic: Dubuque had 
established a strong sustainability agenda; the City had 
received grants to deploy smart electricity meters; and the 
researchers’ organization had a good working relationship 
with the City. Dubuque was also the site for a water 
consumption feedback system we deployed in 2010 [9] (in 
the discussion we will compare the use of the two systems). 

The System 
The system worked as follows: smart meters recorded 
consumption every 15 minutes and transmitted the data to a 
gateway. Data was stored and uploaded to a cloud-based 
repository the next day. There it was analyzed, and the 
results were fed back to individual households via a web-
based Portal. The Portal used well-known techniques – 
feedback, incentives, comparisons and goal-setting – to 
encourage conservation. The system was not able to track 
individual device use, although it estimated the proportion 
of electricity used by high, medium and low load devices. 

The Electricity Portal User Interface: A Quick Overview 
The user interface (Figure 1) is arranged in six bands. Band 
1 identifies the Portal, shows the date, and provides menu 
access to Alerts, Chat, Password and Profiles. Band 2 
shows the user name, usage to date and an estimate of the 
month’s entire usage, and three incentive mechanisms: 
trend (for self comparison), rank (relative to 30 similar 
households), and “green points” (awarded for activities 
such as completing one’s profile). Band 3, with the long bar 
graph, shows daily electricity use for the last year in kWh 
or dollars. Band 4 has two components: a graph of a single 
day’s electricity use (selected by dragging the green 
‘thumb’ at the right of Band 3), and a changing series of 
five “consumption insights” that provide textual 
comparisons (e.g., the users’ consumption last month 
relative to others). Band 5 also has two components. The 

 
Figure 1. The Electricity Portal user interface. 
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Figure 5. Cluster analysis of power demand by ECN

model. Model parameters can subsequently be estimated by
a regression method, and a statistical analysis of the model
residuals will indicate the validity of the model. Adopting
this procedure in the study of ECN energy consumption, a
linear model was identified which could accurately predict
the power consumption from the sunlight intensity and the
number of employees [7]. We used different packages for
this, integration of such methods in a single tool would be
highly effective.
In conclusion, we think that our cluster and calendar

based analysis is a useful method to explore and visualize
large quantities of univariate time series data, and provides
a sound basis for a general analysis tool.
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faceted bar charts
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Task Design choice Match?

Overview Faceted bar chart ✖

Drill Down Faceted bar chart ✔
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portfolio level: rank groups of spaces based on multiple measures of performance, sub-rank within groups. 
Compare changes in rank over time.

UCB lab 
spaces
weekdays in 
2013 faceted 
by season

work-in-
progress, a  
“data sketch”

portfolio sandbox data sketch (Dec 6 screenshot)

KN: could line 
width be scaled 
with rank? 
upward changes 
in rank as 
widening line? 
(redundant visual 
encoding)

bumps plots
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Task Design choice Match?

Overview Bump plot ✖
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bumps + bars
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a match {4} for the Drill Down (T2) task. Faceted bar charts were
among the first designs that we considered, especially after one energy
worker provided us with his own mockup of such a design. However,
if an energy worker has dozens or hundreds of buildings in their port-
folio, faceting is unlikely to scale [21]. We determined that it was a
poor match for the Overview (T1) task, though a match for the Drill
Down (T2) task, provided that the energy worker has already filtered
down to a smaller group of buildings, such as filtering a university
portfolio to show only the “laboratory” buildings. In addition, one
of the power user energy workers lamented that bar charts only show
coarse aggregate values, typically an average or a sum, and as a re-
sult of this loss of detail, they do not show other aggregate values of
interest, such as ranges or extreme values.
Faceted boxplots: a mismatch {6} for the Drill Down (T2) task. We
expected that faceted boxplots would allow energy workers to com-
pare ranges, distributions, and extreme values for multiple buildings
at different points in time, such as in Figure 3. However, despite the
long history of boxplots [45] and support from influential visualization
practitioners [12], we found that most energy workers are not familiar
with boxplots, except for a minority who had taken a post-secondary
statistics course. Furthermore, comparisons in faceted boxplots are
more difficult than in faceted bar charts, where positions are aligned to
each facet’s baseline; with faceted boxplots, the observer must com-
pare multiple positions and widths across separate facets. Our design
was therefore a daunting introduction to boxplots for those unfamiliar
with them and a poor match for the Drill Down task.

Fig. 3. Faceted boxplots that encode aggregate area-normalized en-
ergy demand distributions for 12 buildings across four months, sorted in
descending order according to the average demand value for this four
month period. A mismatch {6} for the Drill Down task (T2). Building
names are blurred to sanitize real client portfolio data.

Faceted line charts: a match {4} for the Drill Down (T2) task.
Faceted line charts are a good match when observing non-derived con-
tinuous quantitative time series values such as energy demand; an ex-
ample is shown in Figure 7 (bottom). They are a scalable alternative
to superimposed line charts [21] and the line chart encoding is already
very familiar to energy workers. As mentioned above in Section 3,
line charts are not appropriate for derived and aggregated values such
as energy consumption or intensity.

7.2 Rank-Based Overview Visualizations
As faceting seemed unlikely to be effective for the Overview (T1) task,
we considered non-faceted visualizations of aggregate values. Recall
how the sortable table in Energy Manager’s portfolio dashboard (Fig-
ure 1a, bottom) was never used for the Overview task; it contained
only coarse aggregate values for each item, providing little detail about
temporal variation. We therefore experimented with encodings for dis-
playing rank as well as rank change over time.
Bump plots: a mismatch {6} for the Overview (T1) task. Bump plots
encode rank and rank change; they incorporate a familiar line encod-
ing across equally-spaced temporal intervals [41]. However, as with
superimposed line charts, it becomes difficult to distinguish individual
items using colour. One possible solution is to highlight items that
vary in rank, rather than requiring the observer to locate these items.
Another problem is that bump plots only show relative rank and rank
change, whereas the absolute values that produce these ranks are not

shown. As a result this a loss of detail, the bump plot is also a poor
match for the Overview task.

Bump + bar plots: a potential match {?} for the Overview (T1)
task. We next considered an encoding that incorporates relative rank,
rank change, and absolute value, by adding bars to each series in the
bump plot, as shown in Figure 4. This approach is similar to two re-
cently proposed techniques that encode both relative rank and absolute
value [16, 20]. With this design, we still face the scalability problem
associated with colour discriminability. A combination of interaction
and highlighting rank variation may facilitate this discriminability; in
Figure 4, rank variation is encoded using the alpha channel, so the pink
series that varies considerably over time is most salient.

Fig. 4. A bar + bump plot of energy intensity, encoding rank change
for the top 7 building groups (buildings aggregated by tag) across four
seasons. The alpha channel encodes rank variation to highlight incon-
sistent buildings. A potential match {?} for the Overview task (T1).

Energy workers responded positively to this visualization, as it is
comprised of familiar bar and line encodings. However, despite this
positive response, we discovered that ranks as derived values are actu-
ally infrequently considered during energy analysis, and that they tend
to be more appropriate for annual planning and presentation activities,
such as determining how to prioritize energy conservation projects,
and less so for recurring analysis and monitoring activities. Thus, the
hunt for a match for the Overview (T1) task continued.

7.3 Matrix-Based Overview Visualizations

Time series matrix: a potential match {?} for the Overview (T1)
task. Matrix encodings are scalable and space-efficient [15, 17], as can
be seen in the center of Figure 2. Matrix encodings allow us to display
observed as well as differential values, allowing an energy worker to
review energy savings relative to predicted or historical values; a ma-
trix displaying differential energy data is shown in Figure 5. Most of
the energy workers that we interviewed were unfamiliar with this form
of encoding, except one who routinely made such visualizations in Ex-
cel. As a result, it took more effort to convince our collaborators of the
value of these matrix-based encodings for the Overview task.

We also learned that energy workers found matrices with diverg-
ing colour scales easier to interpret than than those with unidirectional
colour scales. Finally, we found that while red is fine for use in di-
verging colour scales, as it has a negative connotation, it is inappro-
priate for unidirectional colour scales in this context. As a result of
this mixed response to matrix-based encodings, we realized that more
work needed to be done.

Calendar matrix: a potential match {?} for the Overview (T1) task.
We altered our matrix encoding by partitioning the cells correspond-
ing to months into calendars (Figure 5), a design decision inspired
by previous work [23, 42]. Energy workers responded positively to
this encoding, which helped to resolve the unfamiliarity of the more
generic matrix encoding. However, months and days are not the only
time granularities of interest, so this encoding may not be appropriate
for all time ranges.

visual 
encodings 
that display 
derived rank 
with original 
quantitative 
value:  
Gratzl et al’s 
LineUp (2013),  
Hur et al’s 
SimulSort 
(2013)

Task Design choice Match?

Overview Bar + bump plot ?
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stacked area / bar
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Task Design choice Match?

Roll up
Stacked bar chart ✔

Stacked area chart ✔
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McGill Energy Map (2014)saveheat.co (2014)
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Task Design choice Match?

Overview Map ✖
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stacks & facets, juxtaposed + linked 
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on trust

Auxiliary visualizations to combat information loss: 
derived aggregate values hide data: 
complement averages with representations of 
range and distribution.
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on trust

Promote agency over derived values: provide 
energy worker more agency over aggregation, 
unit selection, and normalization.
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future work

Post-deployment evaluation: track usage over an 
extended period of time, follow-up with additional 
interviews and focus groups.
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