
Real-Time Dynamic Wrinkling of Coarse Animated Cloth

Russell Gillette and Craig Peters∗, Nicholas Vining, Essex Edwards and Alla Sheffer
University of British Columbia

Figure 1: Coarse game-level cloth animation augmented with realistic looking wrinkles in real-time.

Abstract

Dynamic folds and wrinkles are an important visual cue for creat-
ing believably dressed characters in virtual environments. Adding
these fine details to real-time cloth visualization is challenging, as
the low-quality cloth used for real-time applications often has no
reference shape, an extremely low triangle count, and poor tempo-
ral and spatial coherence. We introduce a novel real-time method
for adding dynamic, believable wrinkles to such coarse cloth ani-
mation. We trace spatially and temporally coherent wrinkle paths,
overcoming the inaccuracies and noise in low-end cloth animation,
by employing a two stage stretch tensor estimation process. We
first employ a graph-cut segmentation technique to extract spatially
and temporally reliable surface motion patterns, detecting consis-
tent compressing, stable, and stretching patches. We then use the
detected motion patterns to compute a per-triangle temporally adap-
tive reference shape and a stretch tensor based on it. We use this
tensor to dynamically generate new wrinkle geometry on the coarse
cloth mesh by taking advantage of the GPU tessellation unit. Our
algorithm produces plausible fine wrinkles on real-world data sets
at real-time frame rates, and is suitable for the current generation of
consoles and PC graphics cards.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.8
[Computer Graphics]: Applications—;

Keywords: cloth animation, wrinkle augmentation, computer
games, real time cloth

1 Introduction

Plausible cloth deformation and wrinkling provides important vi-
sual cues necessary for believable characters in virtual environ-

∗Joint First Authors

ments. Recent advances in GPU technology and parallelism have
now made coarse cloth animation possible for real-time applica-
tions; however, these low-end cloth animations operate on meshes
with low triangle counts and lack the fine wrinkling patterns ex-
hibited by real-world cloth. Running a sufficiently accurate cloth
simulation to capture fine wrinkling behaviours is both too compu-
tationally expensive for real-time and challenging to solve numer-
ically even in offline production rendering. We introduce a new
method for achieving plausible wrinkling on low end, coarse cloth
for games and virtual environments with real-time performance
(Figure 1).

Cloth animation for games is not typically generated by a pure
physics simulation; the shape of a garment on a character reacts
to player input and is driven by a combination of coarse simulation,
inverse kinematics, and animation blending from multiple sources
[Lander 1999]. Rather than trying to capture fine wrinkling in the
simulation, we are motivated by offline approaches for adding wrin-
kling and folds to high-quality cloth simulation as a post-process
[Müller and Chentanez 2010; Kavan et al. 2011; Rohmer et al.
2010b], Figure 2, top. These post-processing methods are moti-
vated by the key observation that cloth is incompressible [Hu 2004].
We can measure whether or not cloth is compressed by comparing
its shape to a known reference shape, which is free of compression
and stretch. Since cloth is effectively incompressible, any compres-
sion observed in the animated cloth with respect to the reference
shape is thus viewed as due to insufficient animation resolution.
The post-process therefore resolves the compression and accounts
for the excess material by forming wrinkles perpendicular to the
direction of the compression.

Cloth meshes for video games are generated without a meaningful
reference shape [Enqvist 2010], thus we have no ground truth to
measure compression with respect to. We therefore construct an
approximate frame of reference, in the form of a local per-triangle
reference shape, which is accurate enough with respect to recently
observed frames of animation to create temporally plausible wrin-
kles. This reference shape is allowed to change and evolve over
time as animation is seen by the viewer, and is progressively up-
dated as new frames are processed in response to user input and
intrinsic changes in triangle shape are measured. In each frame, we
then compute the compression of the current triangle with respect
to the per-triangle reference shape, and use this information to seed
and modify wrinkles.

Accurately determining a plausible per-triangle reference frame on
the fly from newly generated frames of animation requires us to
overcome the inaccuracies and noise often present in typical tar-
geted real-time animation; specifically, triangle compression mea-
sured with respect to the previous input frame is noisy. To update
the local per-triangle reference shape in a temporally coherent fash-
ion, we first employ a graph-cut segmentation technique to reliably
detect intrinsic deformation patterns in the animation, then use the
detected deformation patterns to compute and update the individ-
ual triangle reference shapes. Our motion analysis ensures that the
compression and stretch tensors with respect to the per-triangle rest
pose, as well as the generated wrinkles, are spatially consistent be-
tween adjacent triangles and temporally consistent across consec-
utive animation frames. We then use the current reference shape
to compute a surface compression field in the current frame, mod-
ifying it as new animation becomes available. This technique for
compression measurement runs in real-time, handles low triangle
count meshes, and requires no pre-processing.

We use the per-triangle compression field to trace wrinkle paths
across areas of high compression. We directly operate on the piece-
wise constant tensor data, placing wrinkles in areas of high com-
pression and solving for spatially and temporally smooth wrinkle
paths that are well aligned with the desired fold directions. As our
input meshes are coarse and not capable of capturing wrinkle de-
tail, we use programmable GPU tessellation to adaptively generate
wrinkle geometry and normals on the GPU. Taking advantage of
programmable hardware in this fashion enables us to generate cloth
wrinkle animations on low-end animations at a sustained framerate
of 60 frames per second, making it ideally suited for game environ-
ments.

Our key technical contributions are three-fold. First, we introduce
a method for generating a temporally adaptive reference shape for
typical video game cloth animation sequences, consisting of low-
triangle count, hand-animated meshes. Our approach makes no as-
sumptions about cloth developability, does not rely on a parameter-
ization of the underlying mesh, has no specific authoring require-
ments, and does not rely on training data sets that require updating
for every new garment. Our second contribution is a method for
dynamically seeding and evolving wrinkle paths on a coarse cloth
mesh following a piecewise constant per-triangle compression field.
Finally, we show how to generate and render wrinkle geometry on
cloth in real-time, taking full advantage of GPU tessellation and
shading capabilities for parallelism.

We demonstrate our method on a variety of animated garments
taken from real-world video game titles. We validate our approach
by comparing it to alternative approaches and artist drawn static
texture-level folds.

2 Related Work

Realistic cloth simulation has long been an area of interest in the
graphics research community, starting with the foundational work
of [Baraff and Witkin 1998], and is of key importance in film, ani-
mation, and virtual environments [Choi and Ko 2005]. Many of the
issues addressed by cloth simulation, such as collision handling, are
outside the scope of this paper. Our work falls in the category of
“wrinkle augmentation” research, which attempts to refine a coarse
cloth simulation with fine details.

In mechanics, the wrinkling effect of a physical compressive force
applied to a thin sheet of textile material is known as buckling and
is particularly apparent in sheets that strongly resists stretch and
compression, where out-of-plane buckling is energetically favor-
able to almost any in-plane deformation. Typical formulations of
cloth simulation with buckling produce a stiff set of equations due

(b)

(a)

Figure 2: (a) Off-line wrinkling of simulated clothing using a user-
provided reference shape [Rohmer et al. 2010b]. (b) Our method
adds wrinkles to a coarse cloth mesh typical of real-time applica-
tions, where no reference shape exists and where the animation is
too coarse to capture fine intrinsic motion.

to the strong penalty on stretch and compression that are both unsta-
ble and highly non-linear [Choi and Ko 2002]. To address the prob-
lem of small time steps, Baraff and Witkin [1998] use an implicit
integration approach. Choi and Ko [2002] build upon this work us-
ing a non-linear formulation of bending energy which overcomes
the “post-buckling instability” of previous work. The problem of
buckling has led to novel approaches such as using non-conformal
elements to eliminate stretch and compression during simulation
[English and Bridson 2008] and building strain limits directly into
a continuum-based deformation model [Thomaszewski et al. 2009].
Wrinkle augmentation research has attempted to sidestep these
problems by adding wrinkling and fine detail to cloth after the ini-
tial simulation is complete.

Offline Wrinkle Augmentation Bergou et al. [2007] use con-
strained Lagrangian mechanics to add physically-based details such
as wrinkles to an artist animated thin shell, such as cloth; this idea
was later refined by Rémillard and Kry [2013] to simulate the de-
tailed deformation of a thin shell on the surface of a deformable
solid. Rohmer et al. [2010b; 2010a] compute a smooth stretch ten-
sor field between the animation frames and a reference garment
shape and use model wrinkles to follow paths traced on this field
in areas of high compression. They assume the underlying anima-
tion to be sufficiently smooth in time and space to result in visually
coherent wrinkles. We are inspired by this work in our use of a
stretch tensor field on the mesh to measure deformation; however
we do not assume the existence of a valid reference frame nor ex-
pect the garment motion to be smooth. In contrast to these offline
approaches our method is fast enough to provide real-time perfor-
mance for interactive applications.

Data-Driven Approaches A range of data-driven approaches
wrinkle cloth meshes by utilizing information gained from of-
fline physical simulations. Guan et al. [2012] combine a database
of simulated fine garments with a parametrization of the under-
lying physical body to generate visually appealing results. Kim
et al. [2013] use a novel compression scheme to make the traver-
sal of over 33 gigabytes of cloth training data tractable in real
time. Zurdo et al. [2013] compute a physical simulation on high-
resolution meshes offline and simplify it to a coarser mesh in real
time. Kavan et al. [2011] use a learning method to “upsample”
coarse cloth simulations in real-time, using harmonic basis func-
tions learned offline on sample animations. Wang et al. [2010] pro-

(a) (b)

(c) (d)

(e) (f)

Figure 3: Algorithm components: (a) input animation frames; (b) compression(blue)/stretch(red)/neutral(green) labeling; (c) local stretch
tensors shown by oriented ellipses; (d) temporally coherent wrinkle paths; (e) final wrinkled cloth rendered at real-time without and (f) with
texture.

duce impressive results using an example-based approach, merging
data from a wrinkle database indexed by joints on the human body.
This work is only suitable for tight-fitting clothing, and does not
support loose clothing such as dresses or skirts. Hahn et al. [2014]
combine machine learning with a dynamically updated subspace
basis to produce impressive wrinkling and torsional folds, but this
approach is not fast enough for real-time applications; it requires
close-fitting clothing rigged to a skeleton, a reference shape, and
a set of training simulations. The data-driven methods are most
suited for wrinkling garment animations with similar design and
motion to the training data. Adding a new piece of a garment typi-
cally requires the construction of new training sets. Our framework
does not require training data or a reference shape.

Real-Time Cloth Animation and Wrinkling Real-time cloth
simulation for games typically uses a mass and spring system on a
coarse mesh [Lander 1999], connecting vertices with simple springs
designed to apply shearing and bending forces while maintaining
garment structure. These mass and spring systems form a series of
differential equations that are typically integrated using a stable in-
tegration method, e.g. [Verlet 1967]. A detailed example of a cloth
simulation in a commercially available video game is discussed by
Enqvist [2010]. Typical real-time cloth simulation is very coarse
and crude (e.g. 600 to 800 vertices [Wang et al. 2010]), and does
not address wrinkling or buckling in any part of the simulation.

Adding dynamic wrinkles in video games typically favours simple
strategies. Oat [2007] introduces artist-painted wrinkle maps de-
signed to fade-in along key areas of the mesh as cloth stretches and
compresses. Wrinkle maps are easy to implement, but are static
and cannot simulate dynamic wrinkle evolution or react to move-
ment not anticipated by the artist. A similar idea was presented by
Hadap et al. [1999], who deform a user-defined wrinkle pattern in
response to animation. Müller and Chentanez [2010] attach a high-
resolution “wrinkle mesh” to a coarse cloth simulation and run a
static solver in parallel with the motion of the base mesh to animate
the fine-grained wrinkles. This approach requires a reliable refer-
ence shape and assumes the coarse cloth motion to be spatially and
temporally smooth, which is rarely the case for game-type cloth
animations.

3 Overview

Our method addresses the creation of believable, real-time wrinkles
on top of low-quality animations of coarse meshes. In this setup we
can no longer rely on the surface animation to correctly capture

Rest Pose

Figure 4: Typical game animation frames with intrinsic deforma-
tion (stretch) tensor computed with respect to the first (top) and
previous (bottom) frame. The shape of the tensor shows compres-
sion stretch magnitude ratio and color reflects the larger between
the eigenvalues (blue for compression, red for stretch). Using com-
pression on the top tensor as cue for wrinkling, will generate no
wrinkles on the left knee (an inverse reference pose will generate
no wrinkles on the right). The local tensor (bottom) provides better,
but noisy cues.

even the coarse intrinsic surface motion, and have no expectation
that the mesh will exhibit coherent, temporally and spatially smooth
deformation with respect to some static reference frame [Rohmer
et al. 2010a; Müller and Chentanez 2010] (see Figure 4, top). Since
we focus on believability rather than correctness, we assume that
humans largely rely on local movement when predicting wrinkle
appearance on surfaces. Surfaces lacking wrinkles appear plausi-
ble as long as the intrinsic geometry is largely unchanged, and hu-
man observers expect wrinkles to show up when the surface visibly
contracts and expect these to dissolve when a surface stretches fol-
lowing contraction. Real-life wrinkles are also persistent - appear-
ing, moving and disappearing gradually. We therefore can expect
that humans will anticipate similar behavior from virtual wrinkles
- expecting them to evolve gradually, and to stay in place absent
underlying surface motion.

Following these observations, we are motivated to analyze lo-
cal intrinsic surface deformation to predicting wrinkle appearance.
While local deformation across the model shows clear contrac-
tion/stretch patterns (Figure 4, bottom), this deformation is both
spatially and temporally noisy when evaluated on a per-triangle ba-
sis. We denoise this data by using a two step stretch tensor extrac-
tion process (Section 4). First we use a graph-cut based approach to
detect coherent contraction and stretch patterns (Section 4.1, Figure
3, b); then, to maintain wrinkle persistence across time we construct
a temporally local per-triangle reference shape (Section 4.2). As
new frames are rendered, we smoothly change the reference trian-
gles over time to ensure that the tensors – and the wrinkles subse-

Figure 5: On coarse meshes smoothing the piece-wise constant
tensor field (left) to generate a piece-wise liner one (right) leads to
loss of details, such as the compression on the shoulder and across
the chest (left) which are no longer distinguishable on the right.

(b) (c)(a)

Figure 6: Left to right: per-triangle stretch tensor with respect to
previous frame (red to blue shows stretch to compression ratio);
raw deformation classification (blue - compression, red - stretch,
green - rest); spatially and temporally coherent classification.
quently computed from them – exhibit smooth temporal behaviour.

We use the compression component of the stretch tensor field to
trace wrinkle paths on the input garment surfaces (Section 5, Fig-
ure 3, d) generating both more and deeper wrinkles in areas where
the compression is larger. The computed stretch tensor is constant
per-triangle, but due to the coarseness of our meshes converting
it into a piece-wise linear tensor field by first averaging adjacent
tensors at mesh vertices and then using barycentric interpolation
(as suggested by [Rohmer et al. 2010b], for instance) results in
a loss of information (Figure 5, b). We therefore cannot lever-
age field smoothness to obtain temporally persistent and spatially
smooth wrinkle paths. Instead, we directly optimize the shape of
the individual wrinkle paths, balancing alignment with compres-
sion directions against spatial and temporal smoothness (Figure 9).
Our optimization generates spatially smooth wrinkle paths that are
both well-aligned with the compression field and persistent over
time. Finally, we smoothly wrinkle the garment surface along the
traced paths in real-time (Section 7, Figure 3, e). Existing wrin-
kling methods directly modify the animated mesh; to capture fine
wrinkles they either require the input mesh to be sufficiently fine to
represent wrinkle geometry, or perform on-the-fly mesh refinement
to adequately capture the wrinkles [Rohmer et al. 2010b; Müller
and Chentanez 2010]. Both approaches require significant memory
and time overhead. Instead, we employ the tessellation shader to
generate high-resolution wrinkle geometry on the GPU. We further
improve the believability of the wrinkles by computing normals in
the fragment shader to correctly shade the wrinkled material at an
even higher resolution than the tessellated geometry. The combined
method generates believable wrinkles (Figure 3, f) at a real-time
speed of over 60 frames per second on typical inputs (Section 8).

4 Compression Field Construction

4.1 Compression Pattern Extraction

As discussed earlier, the first step in computing a reliable stretch
tensor field suitable for wrinkle tracing is to locate the regions on
the surface which undergo noticeable compression or stretch (Fig-
ure 6). The first indication of such changes occurring is the purely
local deformation of an individual triangle within any given frame
with respect to the previous frame; we may classify this behaviour
as compressing, stretching, or resting. The strongest cue for this

classification is given by the stretch tensor of the affine transfor-
mation between the two triangles (Section 4.1.1); the indicated
amounts of compression and stretch provide a local measurement
of surface behavior. However, while real-life cloth deformation is
typically both spatially and temporally smooth, meshes for video
games are typically coarse and the animation may be noisy, with
artifacts such as inter-surface penetration and jitter. On such inputs,
these raw measurements are an unreliable indicators of global sur-
face behavior (Figure 6, b). Therefore rather than using the stretch
and compression magnitudes directly to classify the current state
of the mesh triangles, we use this data as input to a more sophisti-
cated labeling process which balances these measurements against
a preference for spatially and temporally continuous labels (Figure
6, c).

4.1.1 Triangle Stretch Tensor

Given a pair of current and reference triangles we measure the
stretch and compression of the transformation between them us-
ing the stretch tensor from continuum mechanics [Bonet 1997].
Given a current triangle with edge vectors (u1 = (v1 − v0),u2 =
(v2 − v0)), and reference edge vectors (ū1, ū2), expressed as 2D
edge vectors with respect to the local frames of the current and ref-
erence triangles, we define the Deformation Gradient as,

F = [u1,u2][ū1, ū2]−1. (1)

The stretch tensor is then defined as

U =
√
FTF . (2)

The 2x2 matrix U is symmetric positive definite, has eigenvec-
tors pointing in the directions of maximal stretch and compression,
and has eigenvalues λmax and λmin indicating the ratio of current
length to rest length for stretch and compression respectively. We
define and employ λ̃min = 1/λmin through the rest of the paper,
as we find it more natural to work with. λ̃min is 1 when there is
no compression, and approaches grows as the triangle compresses.
Similarly, λmax is 1 when there is no stretch, and grows as the tri-
angle stretches.

4.1.2 Graph Cut Formulation

We formulate the problem of triangle labeling using a graph-cut
framework. We solve for a label l ∈ (C, S,R) per triangle whereC
indicates compression, S indicates stretch, andR indicates a neutral
rest state. We construct a graph G = (N,E) in which each node
i ∈ N is a tuple (f, t) where f is a face and t is a time step. Each
node has three spatial neighbors (the three adjacent triangles in the
mesh at time t) and two temporal ones (f in frames t−1 and t+1).
Triangles along mesh boundaries as well as those in the first or last
frames have fewer adjacencies.

For each node n we compute a unary cost for assigning it a partic-
ular label ln, and for each pair of adjacent nodes we define a label-
compatibility cost for each pair of label combinations assigned to
them. We then find a labeling that minimizes the following discrete
functional: ∑

i∈N

A(i, li) +
∑

(i,j)∈E

B(li, lj) (3)

where A(i, li) is the cost of assigning the label li to node i, E is
the set of edges in G, and B(li, lj) is the binary cost of assigning
labels li and lj to nodes i and j.

Our unary costs are functions of the stretch tensor magnitudes λ̃imin
and λimax over each triangle i (Figure 7). The rest label’s cost is
designed to be low when λ̃min and λmax are both near 1, and grow

λ̃min

λ
m
a
x

Compression Cost

0.9 1 1.1 1.2 1.3
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

λ̃min
λ
m
a
x

Rest Cost

0.9 1 1.1 1.2 1.3
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

0

0.2

0.4

0.6

0.8

1

Figure 7: The unary cost functions for label assignment depend on
λ̃imin and λimax. Left: A(i, C), Right: A(i, R). These eigenvalues
measure deformation between two frames, not to the rest frame.

as they move away from 1 and is set using a symmetric Gaussian
function,

A(i, R) = 1− e−‖(λ̃
i
min−1,λi

max−1)‖21/2σ
2

. (4)

The stretching and compressing costs are defined symmetrically us-
ing the auxiliary function c(a, b):

c(a, b) =

{
(H − h)e−(1

2
(a−b)2)/2σ2

+ h, a > b
b
a

(H − 1) + 1, a < b
(5)

H = e−α(a−1), h = e−βa

A(i, C) = c(λ̃imin, λ
i
max) (6)

A(i, S) = c(λimax, λ̃
i
min) (7)

We empirically set σ = 0.05, α = 9, β = 90. The motivation for
this design of the cost function is as follows. We want the cost of
the compression label to be large when λ̃imin ≤ 1, and want it to
decrease both when λ̃imin increases and when it increasingly domi-
nates λimax (i.e. when λ̃imin−λimax grows). We want a symmetric
behavior for the cost of the stretch label.

The goal of the binary term B(li, lj) is to penalize label changes
between adjacent faces. It depends only on the labels and is zero
when li is equal to lj , and is positive otherwise. As we expect the
animation to be gradual, triangles should not immediately transi-
tion from compression to stretch without at some point resting; we
therefore assign a higher cost of 0.4 for assigning C and S labels
to adjacent triangles and a lower cost of 0.2 for assigning them the
R and either C or S labels.We use the same costs for both temporal
and spatial adjacencies. We solve the labeling problem using the
solver of Boykov, Komolgorov, et al. [2001; 2004; 2004], which
efficiently minimizes Equation 3.

As designed, the framework can be applied to a frame sequence of
any length. In a scenario where an entire coarse animation sequence
is available in advance, we can therefore label it all at once. In a
real-time application where the animation is on the fly, we apply
this framework using a one-lookahead window: given each new
animation frame we fix the labels for the previously displayed frame
and solve the optimization problem for the current frame, while
taking the binary cost across the temporal edges linking the current
frame to the fixed, previous, one into account. For the first frame
in the animation this binary cost is treated as zero. This strategy
allows for real-time labeling update and is sufficient to overcome
temporal noise in all the animations we tested our method on.

4.2 Local Reference Triangles

To generate a stretch tensor that guides our wrinkle formation we
require a local reference shape. Since no such shape is provided a

Figure 8: Evolution of reference triangles (bottom) throughout the
animation process.

priori we compute one on the fly as the animation progresses. Intu-
itively, for a perfect incompressible cloth animation, for each indi-
vidual triangle in the mesh its most stretched, or largest instance in
the animation sequence provides the ideal reference shape. How-
ever, in real-life data triangles can and do stretch due to noise and
animation inaccuracy. Our on the fly-rest triangle estimation (Fig-
ure 8) is designed around these observations.

In the first frame of the animation, we set the reference triangles
to be identical to the current one, as we have no other sources of
information as to the plausible reference shape of the garment. The
reference triangles are then smoothly updated as more information
becomes available, with the update strategy reflecting the triangle’s
intrinsic motion as reflected by our labeling:

Compression. If a triangle is labeled as compressed we theoreti-
cally could leave its reference triangle unchanged. However, we an-
ticipate some noise in our reference triangle estimation, and in par-
ticular want to avoid it reflecting outlier stretched triangles. Thus
we choose to dampen the reference triangle size, relaxing it toward
the current mesh triangles as these undergo compression. In order
for our tensor field to remain smooth and consistent with previous
frames, this relaxation must preserve the tensor eigenvectors, while
smoothly changing the eigenvalues. We therefore directly modify
the eigenvalues of the stretch tensor, and then solve for reference
triangles that generate the updated stretch tensor, as follows.

Let F = AΣBT be the singular value decomposition of the de-
formation gradient (Equation 1) of the transformation from the ref-
erence to the current triangle. Then, the stretch tensor U can be
written as BΣBT , with the eigenvectors encoded by B and the
eigenvalues on the diagonal Σ. We compute new eigenvalues, that
lie closer to 1 by setting Σ′ = 0.95Σ + 0.05I , here I is the identity
matrix. We construct a new Deformation Gradient F ′ = AΣ′BT

and compute the new reference triangles as

[ū′1, ū
′
2] = F ′−1[u1,u2] = BΣ′−1AT [u1,u2].

Stretching. We expect a stretching label to reflect a dissolving
compressed, or wrinkled, triangle. In this configuration if both
eigenvalues of the stretch tensor from the reference to the current
triangle are larger than one they indicate a stretch beyond the cur-
rent reference triangle. We interpret this configuration as dissolving
of previously undetected compression wrinkles. We consequently
replace the previous reference triangle with this, new, less com-
pressed one. Since we aim to enrich the rendered garments, we pre-
fer to err on the side of overestimating the reference triangle size,
thus we use no smoothing or averaging in this scenario.

Resting. If a triangle is currently labeled as being in a rest state,
we leave its reference triangle as is with no adjustment. This choice
results in wrinkles that persist unchanged through periods of the an-
imation with little deformation, such as a character holding a fixed
pose.

5 Wrinkle Path Tracing

The first step in creating wrinkles is tracing their paths on the mesh
surface based on the computed stretch tensor computed with respect
to the local reference shape. Our computation builds on many of the
ideas described by Rohmer et al. [2010b]; however, in contrast to
their formulation that assumes that the tensor field is piecewise lin-
ear and smooth, we modify the framework to operate directly on a
piecewise constant field. The reason for the change is illustrated in
Figure 5: since the meshes we operate on are exceedingly coarse,
converting the per-triangle tensors into a piece-wise linear field (av-
eraging the tensors at the vertices using tensor arithmetic [Rohmer
et al. 2010b] and then using barycentric coordinates to define values
across triangles) smooths out critical details. We refer the reader
to [Rohmer et al. 2010b] for fine details on the wrinkle path trac-
ing and here focus on the overall process and the main points of
difference between the two algorithms.

5.1 Wrinkle Initialization

Wrinkles are traced in areas of high compression and are placed
orthogonally to the direction of maximal compression. At each
time step in the animation, we seed new wrinkles at random lo-
cations within highly compressed triangles (where λ̃imin is greater
than compression threshold τ), keeping the seeds at least a wrinkle
width away from previously generated paths. (The computation of
wrinkle width is discussed in Section 6). We then initialize the path
by propagating a polyline across the mesh surface orthogonal to the
maximal compression direction within each triangle. The propaga-
tion terminates once the compression magnitude drops below the
compression threshold τ . It also terminates if the propagated path
intersects another wrinkle path. The parameter τ is set to reflect the
desired fabric stiffness [Rohmer et al. 2010b]; the expectation is
that thinner fabrics, e.g. silk, will be more sensitive to compression
and will also exhibit more and longer folds than thicker and stiffer
materials such as wool or leather [Hu 2004].

A theoretical possibility is that the stretch tensor may have equal,
high compression along both directions; this could occur when a
surface region contracts simultaneously in all dimensions, in which
case the choice of tracing direction is ill-posed. We have not en-
countered such situations in practice and expect them to be exceed-
ingly rare. We believe that the best solution in this scenario would
be to avoid seeding wrinkles in such triangles, and maintaining the
previous wrinkle direction if a wrinkle reaches such a triangle dur-
ing tracing.

While real wrinkles lie on the garment sur-
face and hence follow the local curvature of
this surface, they typically have low curva-
ture in the tangential space of the garment.
To mimic this behavior and eliminate unde-
sirably sharp changes in wrinkle direction,
we apply one iteration of tangential Lapla-
cian smoothing to each path after tracing it,
moving each intersection of a path with the mesh edges along this
edge toward the shortest geodesic between the adjacent intersec-
tions (see inset).

5.2 Temporal Persistence

Real-life wrinkles are persistent, changing their shape and position
gradually over time. To mimic such persistence instead of regen-
erating wrinkle paths in each frame from scratch, we first adjust
existing wrinkles accounting for both the extrinsic and intrinsic de-
formation the garment undergoes between frames (Figure 9), and
only then add new wrinkles away from the evolved ones.

Frame i Frame i+1 Frame i+1

Figure 9: Wrinkle paths generated independently per frame vary
significantly in both direction and length as highlighted when ren-
dering both current and previous paths (center); our temporally co-
herent wrinkle paths change gradually across all modalities (right).

A light-weight approach used by Rohmer et al. [2010b] is to
move wrinkle seed points based on changes in the stretch ten-
sor field and then repropagate the wrinkle paths from scratch.

However on coarse meshes using this ap-
proach can drastically move the traced wrin-
kles following even minor directional change
in the field (see inset). To achieve the de-
sired temporal persistence while accounting

for changes in the stretch field directions and magnitudes we em-
ploy a global optimization framework.

We represent each wrinkle path as a polyline whose vertices lie on
the edges of the garment mesh, and encode them as linear combi-
nations of the edge end vertices:

pi = v1i ti + v2i (1− ti). (8)

We optimize the shape of the path balancing three terms: orthogo-
nality to compression direction, preservation of relative path vertex
positions on the mesh, and wrinkle shape preservation:

E = α

n−1∑
i=1

((pi+1 − pi) · ei)2 +

n∑
i=1

‖ti − t̄i‖2 +

n∑
i=0

‖pi − (pi−1 + pi+1)/2− (p̄i − (p̄i−1 + p̄i+1)/2)‖2 (9)

p−1 ≡ p1, pn+1 ≡ pn−1at endpoints

where p̄i and t̄i encode the absolute and relative positions of the
wrinkle control point from the previous frame, and ei is the direc-
tion of maximal compression in the triangle shared by pi and pi+1.
The optimization is over just the small number of ti variables, as we
represent pi as a function of ti. Since our computation is dominated
by persistence we use a relatively small α = 0.4. Persistence re-
quires both position and shape preservation: preserving shape alone
allows wrinkles to slide uncontrollably, while preserving positions
alone leads to artifacts when the underlying mesh triangles undergo
significant deformation.

While the solve constrains the vertices to
lie on the straight line defined by their cur-
rently associated edges, we avoid explicitly
constraining ti to the [0, 1] interval as we
want to allow wrinkle paths to slide along
the mesh. If and when a computed ti lands
outside the [0, 1] interval, we locate the best
position for the vertex on the mesh as fol-
lows, and then update the the polyline ac-
cordingly. To compute the vertex position
we parameterize the umbrella around the relevant edge endpoint
(v1i if ti < 0 and v2i if ti > 1) and place pi using the continua-
tion of the edge projection using Equation 8 but constraining it to

the umbrella triangles. We then compute the geodesic paths from
the previous/next vertices (vi−1, vi+1) to the new location and use
the path’s intersections with the mesh edges as new wrinkle path
vertices (see inset).

Lastly, if and when more than one wrin-
kle path vertex lies in the immediate
vicinity of a single mesh vertex (ti <
0.1 or ti > 0.9) we use only one of
these vertices in the optimization above
and then use mesh geodesics to update
the new set of intersection (see inset). Without this modification,
the locations of the vertices become over constrained as a move-
ment in their individually preferred directions would lead to path
self-intersection.

Length Update As a cloth garment deforms, wrinkles can grow
and shrink in length. To replicate this process for each frame in
the animation, we extend or trim all existing wrinkles based on
the magnitude of the underlying stretch field, using the same com-
pression threshold τ . To maintain temporal continuity, we do not
change the length of a wrinkle by more than 15% per frame.

6 Wrinkle Shape Parameters

To generate actual wrinkle geometry from the traced wrinkle paths,
we need to assign a target wrinkle height and width to each point
along a path and generate appropriate cross-sectional geometry
across it. We follow Rohmer et al. [2010b] in our computation
of wrinkle height and width, using a formula that accounts for the
material properties and the amount of compression along the wrin-
kle. Intuitively, the more flexible the material the higher the wrin-
kles are expected to be, and the higher the amount of compression
the larger the ratio between the cross-section length and the cross-
section width should be. Given a user-specified minimal wrinkle
radius Rmin the radius of a wrinkle as a function of compression
magnitude is set to (1−2/π)/λ̃minRmin. The wrinkle local width
and height are then expressed via the radius as described by Rohmer
et al. [2010b].

Our framework differs from Rohmer et
al.’s, in that the compression field we op-
erate on is piece-wise constant instead
of piece-wise linear. Using pointwise
magnitudes on this input results in dis-
continuous wrinkle dimensions. Instead
we use the maximal compression along
a wrinkle path to obtain the maximal wrinkle perimeter and height,
and the corresponding width (see inset; here the width is 2r and the
perimeter is 2r/(1 − λmin)). We then use these values as wrin-
kle parameters at its mid-point. At the wrinkle end points we set
the width to be equal to the perimeter, and smoothly interpolate the
width along the rest of the wrinkle path. We then use these width
values to compute pointwise wrinkle height. Note that when the
width is equal to the perimeter (at the end points) the height is, by
construction, zero. This computation leads to smooth naturally dis-
solving wrinkle shapes along each path.

While the use of circular
arcs to represent wrinkles
is well suited for wrinkle
height and width estima-
tion, real-life wrinkle profiles, or cross-sections, deviate from this
shape and smoothly blend with the surrounding surface. To achieve
this effect we define wrinkle cross-sections using a quadratic B-
spline (see inset). We also smooth out the path of each wrinkle, re-
placing the linear segments within each mesh triangle with Bezier

Figure 10: Left to right: wrinkles rendered using only normal
maps; tessellated wrinkle region; wrinkles rendered using displace-
ment (tesselation) and normal maps.

Figure 11: Projection of a point p to the winkle segment vivi+1.

paths whose tangents across triangle edges are set to the average of
the line segment tangents in the adjacent triangles. For efficiency
this computation is done on the GPU in parallel per triangle, and
each Bezier segment is discretized using a polyline.

7 Fast GPU-Based Wrinkle Modeling

Embedding fine wrinkles in the actual garment mesh requires a very
high mesh resolution. Storing and rendering such a mesh would
significantly slow the animation display and gameplay. We avoid
modifying the underlying surface mesh or animating a finer mesh
in parallel by modeling wrinkles, at render-time, directly on the
GPU; specifically, we use the OpenGL tessellation shader to create
coarse wrinkle geometry in real time and use the fragment shader to
compute per-pixel wrinkle normal maps to increase rendered wrin-
kle believability. The combined method creates realistic looking
wrinkles and is very efficient, allowing on-the-fly wrinkle model-
ing at 60 frames per second, when the rendered characters occupy
the majority of the screen on a standard computer monitor. While
using normal maps alone is clearly even faster, the results do not
appear as realistic as the rendered frames lack inter-wrinkle occlu-
sions and characteristic changes in character contours (Figure 10).
Our approach which leaves the original mesh unchanged allows for
wrinkle rendering to be enabled or disabled as the character moves
further away from the viewer.

Wrinkle Geometry We use the tessellation shader to subdivide
each mesh triangle that falls within the radius of influence of a wrin-
kle path (Figure 10, b). We upload a list of wrinkles affecting each
triangle in each frame, and a triangle is tessellated only if it has a
non-empty wrinkle list. We use a uniform tessellation scheme, and
a target edge length that is half of rmin. We then offset each vertex
in the direction of the triangle normal according to the cross-section
height at that point. To compute the height at a point p we project
that point on to the wrinkle path, evaluate the wrinkle height and
width at that point, then use the B-spline shape function to deter-
mine the offset at p.

Projecting to the wrinkle path using the Euclidean closest-point is a
discontinuous operation in the vicinity of the medial axis of the path
(Figure 11 top), leading to discontinuities in the offsets. We avoid
such discontinuities by using a modified projection (Figure 11). To
find the projection of a point p onto a wrinkle path, we compute an

Figure 12: Result without (left) and (with) wrinkle blending.

approximate geodesic Voronoi diagram of the path edges. Within
each Voronoi cell, p is projected parallel to the wrinkle edge vivi+1

onto the Voronoi facets to find points qi and qi+1. We find the
barycentric coordinates α and β of p with respect to these projected
points, and then construct the final projection pn on to the wrinkle
path using the same barycentric coordinates along the wrinkle edge.

Wrinkle Normals In the fragment shader, we use the method
above to obtain the projected path points and corresponding widths
on adjacent wrinkle paths, and use the B-spline formula to obtain an
analytic normal. We shade the wrinkles using Phong shading, using
this computed normal in the fragment shader and directly evaluat-
ing the lighting equation per-pixel. Other shading methods, such as
Minneart shading and physical based rendering models, could be
computed on the same normal data.

Blending One of the main challenges when modeling wrinkles is
to believably handle cases where wrinkles come close by or over-
lap. We found that the following simple heuristic generates visibly
believable results while avoiding time consuming explicit geometry
blending (Figure 12). For each tessellation vertex which is within
the radius of influence of multiple wrinkle paths, we compute the
offset independently for each path and then use the maximum of
the offsets as the new offset. For each pixel which is within the ra-
dius of influence of multiple wrinkle paths, we compute both offsets
and normals independently per path. We generate the final normal
by averaging these per-path normals using the computed offsets as
weights.

8 Results

We demonstrate our method on a range of meshes and animation
sequences, most of which are taken from currently shipping video
game titles. Our method plausibly adds believable, temporally co-
herent wrinkles to low-resolution character meshes and geometry
(Fig. 15 and elsewhere in the paper.). The skirt example (Fig. 15)
was provided courtesy of Kavan et al. [2011] and is created using
coarse physics-based simulation.

Parameters The two tunable parameters in our system are com-
pression sensitivity τ and minimal wrinkle width Rmin. Both are
linked to the expected material properties – how easily the mod-
eled fabric bends and how wide the wrinkles are expected to be.
Compression sensitivity may also depend on the quality of the ani-
mation – one may choose to use a higher sensitivity threshold if the
animation is more noisy and exhibits more spurious tangential mo-
tion. Figure 13 shows the impact of changing the parameter values.
Table 1 list the numbers used for the animation sequences shown in
the paper.

Performance Table 1 shows the run-time performance of our al-
gorithm on various meshes, as well as the mesh triangle counts and
wrinkle parameters used. All times are computed on an Intel Core
i7-3930K CPU running at 3.2 GHz, with 32 GB of RAM and an
NVIDIA GeForce GTX 670 graphics card. Frames were rendered
at a resolution of 1920x1080.

τ = 1.15
Rmin

= 0.5%
τ = 1.25
Rmin= 0.5%

τ = 1.15
Rmin= 1%

τ = 1.25
Rmin= 1%

time = 69ms time = 33ms time = 22ms time = 12ms

Figure 13: Impact of different choices of parameter values τ and
Rmin.

(a) (b) (c)

Figure 14: Left: Artist drawn static texture and our wrinkles with-
out (center) and with same texture (right).

Figure 13 reports the impact of the choice of parameters on perfor-
mance. As expected, performance decreases as the number of wrin-
kles increases (τ decreases) and their width increase; however, we
maintain interactive performance throughout. The majority of our
time per-frame is spent in the fragment shader, computing wrinkle
normals in real time; in a real world scenario such as a first-person
action game where models occupy smaller portions of the screen,
performance increases accordingly.

Comparison to Alternative Strategies We validate our algo-
rithmic choices against those used by previous work throughout the
paper. Figure 4, (top) highlights the infeasibility of employing one
of the frames in an animation sequence as a reference shape. Meth-
ods such as [Rohmer et al. 2010b; Müller and Chentanez 2010]
heavily rely on the existence of such reference shape. Figure 5
motivates our use of a path tracing strategy designed to operate
on piecewise-constant instead of smoothed piecewise linear stretch
tensor fields [Rohmer et al. 2010b]. Our combined method is dra-
matically faster than that of Rohmer et al. who report speeds of over
a second per frame.

We also compare our method against the use of artist drawn wrin-
kles (Figure 14). We generate temporal motion-driven wrinkles,
such as those on the chest, where static wrinkles would be mean-
ingless, and place wrinkles at many concave joints (elbow, ankle,
pelvis) where artist placed similarly shaped wrinkles. Since our
method is motion based, if part of the anatomy remains fixed we
will not generate wrinkles in that area; thus our method lacks wrin-
kles under the arms where the artist chose to place some.

9 Conclusion

We present a practical method for adding real-time wrinkling to
cloth surfaces. Our method operates in real-time, on arbitrary cloth
meshes and animations, and is suitable for interactive wrinkling of
cloth and fabrics for video games on current-generation and next-
generation consoles and hardware.

Future work involves improvements to both performance and ren-
dering quality, as well as applying the technique on other wrinkling
surfaces, e.g. human skin. Our method has a few limitations that

(a) (b)

(c) (d)

(e) (f)

Figure 15: Some wrinkling results: input frames on top, wrinkled below.

Animation τ Rmin # avg # avg. ref. shape avg. path avg. modeling total frame
tri. wrinkles computation time tracing time time time

Fig. 15 (a) 1.4 0.5% 734 22.75 1.69ms 5.33ms 8.30ms 12.45ms
Fig. 15 (b) 1.3 0.5% 602 5.60 1.69ms 3.92ms 5.53ms 11.69ms
Fig. 15 (c) 1.4 0.5% 534 5.89 1.74ms 2.46ms 4.68ms 7.39ms
Fig. 15 (d) 1.4 0.5% 628 11.80 1.57ms 3.77ms 6.55ms 10.67ms
Fig. 15 (e) 1.2 1% 356 10.57 0.92ms 4.84ms 8.95ms 13.19ms
Fig. 15 (f) 1.4 0.5% 602 19.03 1.72ms 5.69ms 9.78ms 14.66ms

Table 1: Performance statistics for various models processed with our algorithm. Rmin computed as percent of character height. All times
in milliseconds.

merit further research. Our work addresses dynamic wrinkles - i.e.
those whose presence is hinted at by the cloth motion, we do not
address static wrinkles which humans often expect to be present in
areas of negative Gaussian curvature. Our method, like most previ-
ous work, generates outward bulging wrinkles - well suited for tight
garments. Future work should explore automatic selection of wrin-
kle direction consistent with human expectations. Additionally, our
method does not currently handle stretch wrinkles, and incorporat-
ing this wrinkling is a source for future investigation.

Acknowledgements. This work was supported by NSERC and
GRAND NCE. The skirt model was provided courtesy of Kavan
et al. [2011]. Other models shown in the paper are taken from the
video game Clockwork Empires, and are used with permission of
Gaslamp Games.

References

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simu-
lation. In Proc. Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’98, 43–54.

BERGOU, M., MATHUR, S., WARDETZKY, M., AND GRINSPUN,
E. 2007. TRACKS: Toward Directable Thin Shells. ACM Trans.
Graph. (SIGGRAPH) 26, 3, 50:1–50:10.

BONET, J. 1997. Nonlinear continuum mechanics for finite element
analysis. Cambridge university press.

BOYKOV, Y., AND KOLMOGOROV, V. 2004. An experimental
comparison of min-cut/max-flow algorithms for energy mini-
mization in vision. IEEE Transactions on Pattern Analysis and
Machine Intelligence 26, 1124–1137.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approxi-
mate energy minimization via graph cuts. IEEE Transactions on
Pattern Analysis and Machine Intelligence 23, 1222–1239.

CHOI, K.-J., AND KO, H.-S. 2002. Stable but responsive cloth.
ACM Trans. Graph. 21, 3, 604–611.

CHOI, K.-J., AND KO, H.-S. 2005. Research problems in clothing
simulation. Computer Aided Design 37, 6, 585–592.

ENGLISH, E., AND BRIDSON, R. 2008. Animating developable
surfaces using nonconforming elements. ACM Trans. Graph. 27,
3, 66:1–66:5.

ENQVIST, H. 2010. The secrets of cloth simulation in Alan Wake.
Gamasutra (Apr.).

GUAN, P., REISS, L., HIRSHBERG, D., WEISS, A., AND BLACK,
M. J. 2012. Drape: Dressing any person. ACM Trans. on Graph-
ics (Proc. SIGGRAPH) 31, 4 (July), 35:1–35:10.

HADAP, S., BANGERTER, E., VOLINO, P., AND MAGNENAT-
THALMANN, N. 1999. Animating wrinkles on clothes. In

Proceedings of the Conference on Visualization ’99: Celebrat-
ing Ten Years, IEEE Computer Society Press, VIS ’99, 175–182.

HAHN, F., THOMASZEWSKI, B., COROS, S., SUMNER, R. W.,
COLE, F., MEYER, M., DEROSE, T., AND GROSS, M. 2014.
Subspace clothing simulation using adaptive bases. ACM Trans.
Graph. 33, 4, 105:1–105:9.

HU, J. 2004. Structure and Mechanics of Woven Fabrics. Wood-
head Publishing Series in Textiles. Elsevier Science.

KAVAN, L., GERSZEWSKI, D., BARGTEIL, A., AND SLOAN, P.-
P. 2011. Physics-inspired upsampling for cloth simulation in
games. ACM Trans. Graph. (SIGGRAPH) 30, 4, 93:1–93:9.

KIM, D., KOH, W., NARAIN, R., FATAHALIAN, K., TREUILLE,
A., AND O’BRIEN, J. F. 2013. Near-exhaustive precomputation
of secondary cloth effects. ACM Transactions on Graphics 32,
4, 87:1–7. Proc. SIGGRAPH.

KOLMOGOROV, V., AND ZABIH, R. 2004. What energy functions
can be minimized via graph cuts. IEEE Transactions on Pattern
Analysis and Machine Intelligence 26, 65–81.

LANDER, J. 1999. Devil in the blue-faceted dress: Real-time cloth
animation. Game Developer Magazine (May).

MÜLLER, M., AND CHENTANEZ, N. 2010. Wrinkle meshes. In
Proc. Symposium Computer Animation, SCA ’10, 85–92.

OAT, C. 2007. Animated wrinkle maps. In SIGGRAPH Courses,
SIGGRAPH, 33–37.

RÉMILLARD, O., AND KRY, P. G. 2013. Embedded thin shells for
wrinkle simulation. ACM Trans. Graph. 32, 4, 50:1–50:8.

ROHMER, D., HAHMANN, S., AND CANI, M.-P. 2010. Active
geometry for game characters. In Motion in Games, vol. 6459 of
Lecture Notes in Computer Science. 170–181.

ROHMER, D., POPA, T., CANI, M.-P., HAHMANN, S., AND
SHEFFER, A. 2010. Animation Wrinkling: Augmenting Coarse
Cloth Simulations with Realistic-Looking Wrinkles. ACM
Trans. Graph. (Proc. SIGGRAPH ASIA) 29, 5.

THOMASZEWSKI, B., PABST, S., AND STRAER, W. 2009.
Continuum-based strain limiting. Computer Graphics Forum 28,
2, 569–576.

VERLET, L. 1967. Computer experiments on classical fluids. i.
thermodynamical properties of lennard-jones molecules. Physi-
cal Review 159, 1, 98.

WANG, H., HECHT, F., RAMAMOORTHI, R., AND O’BRIEN, J. F.
2010. Example-based wrinkle synthesis for clothing animation.
ACM Trans. Graph 29, 4, 107:1–8.

ZURDO, J. S., BRITO, J. P., AND OTADUY, M. A. 2013. Animat-
ing wrinkles by example on non-skinned cloth. IEEE Transac-
tions on Visualization and Computer Graphics 19, 1, 149–158.

