

True2Form:

3D Curve Networks from 2D Sketches via Selective Regularization

Baoxuan Xu UBC

William Chang UBC

Alla Sheffer UBC

Adrien Bousseau INRIA

James McCrae U of T

Karan Singh U of T

Start from a single descriptive sketch...

.. generate a 3D curve network

Follow by surfacing and texturing

True2Form Goal

- Uncover geometric cues guiding creation and perception of concept sketches
- Use cues to compute plausible 3D reconstructions

Related work: Sketch-based modeling

- Dominated by multi-view frameworks
 - Incremental rotate &draw paradigm

- True2Form: Single view focus
 - Mimic traditional artist workflow
 - Extends to multi-view

Related work: Single View

 Leverage additional user input: [Gingold'09, Schmidt'09, Shtof'13]

 Use annotated subset of descriptive curves (cross-sections) [Andre'11; Shao'12]

 CAD drawing interpretation leverage straight & orthogonal lines [Tian'09,Wang'09]

True2Form: Key Principles

- Generate 3D by using properties of descriptive sketch curves
- Fidelity: sketches reflect 3D geometry
 - Satisfied by flat interpretation
- Regularity: curves frequent satisfy 3D regularity constraints
 - This lifts curves to 3D
 - Regularity is context-based

Fidelity: 2D reflects 3D

 Projection accuracy: 2D curves are (approximate) projection of 3D curves

Fidelity: 2D reflects 3D

- Projection accuracy: 2D curves are (approximate) projection of 3D curves
- Minimal variation: shape of 2D curves close to their shape in 3D
 - 2D/3D curves locally affine invariant
 - Small foreshortening

Regularity

• Selective (context-based) preference for regular

3D structures

- Orthogonality
- Parallelism
- Symmetry
- Curve planarity

Selective Regularization

- Given known regularity set can generate 3D
 - optimize fidelity subject to regularity constraints
- Challenge: Applicable regularities unknown a priori

Naïve: Soft regularity across the board

Inaccurate regularity sets result in poor reconstruction

Our Solution: Progressive Regularization

- Cast regularity applicability as variable to solve for
- Determine optimal values via progressive rounding

1. Initial reconstruction

Fidelity + orthogonality at smooth crossings

- 1. Initial reconstruction
- 2. Compute continuous regularity likelihoods L(lpha)

- 1. Initial reconstruction
- 2. Compute continuous regularity likelihoods $L(\alpha)$
- 3. Solve with weighted regularity terms $\sum L(\alpha)C_{reg}^2$

- Initial reconstruction
- 2. Compute continuous regularity likelihoods L(lpha)
- 3. Solve with weighted regularity terms

$$\sum L(\alpha)C_{reg}^2$$

4. Update regularity likelihoods

- Initial reconstruction
- 2. Compute continuous regularity likelihoods $L(\alpha)$
- 3. Solve with weighted regularity terms

$$\sum L(\alpha)C_{reg}^2$$

- 4. Update regularity likelihoods
- 5. Rounding for applicability

$$L(\alpha) = 0.9$$

- Initial reconstruction
- 2. Compute continuous regularity likelihoods $L(\alpha)$
- 3. Solve with weighted regularity terms
- $\sum L(\alpha)C_{reg}^2$

- 4. Update regularity likelihoods
- 5. Rounding for applicability

Results & Validation

Ground Truth Validation

Ground truth

True2form output

Artist creation vancouver SIGGRAPH2014

Perceptual Validation

Results (over-sketching)

Results (over-sketching)

Results (drawn with out UI)

Comparison to annotation [Schmidt'09]

Comparison with multi-view framework [Bae et al. 2008]

Conclusion

- Designers use descriptive curves to convey 3D information & trigger perceptual cues that aid viewers in inferring complex shapes
- True2Form mimics this 3D shape inference by:
 - formulation of fidelity principles and regularity properties
 - progressive detection of regularity cues
- Reconstructs complex 3D shapes from single sketch

Thank you!

