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Abstract 

We present a predictive model of human behaviour when tracing paths through a node-link 

graph, a low-level abstract task that feeds into many other visual data analysis tasks that 

require understanding topological structure. We introduce the idea of a search set, namely 

the paths that users are most likely to search, as a useful intermediate level for analysis that 

lies between the global level of the full graph and very local level of the shortest path 

between two nodes. We present potential practical applications of a predicted search set in 

the design of visual encoding and interaction techniques for graphs. Our predictive model is 

based on extensive qualitative analysis from an observational study, resulting in a detailed 

characterization of common path-tracing behaviours. These include the conditions under 

which people stop following paths, the likely directions for the first hop people follow, the 

tendency to revisit previously followed paths, and the tendency to mistakenly follow 

apparent paths in addition to true topological paths. We verified the prominence of a 

previously proposed tendency that people follow the closest-to-geodesic branch between a 

node and the goal, but found complex interactions between this tendency and others we 
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observed, including the impact of path continuity on behaviour. The algorithmic 

implementation of our predictive model is robust to a broad range of parameter settings. 

We provide a preliminary validation of the model through a hierarchical multiple regression 

analysis comparing graph readability factors computed on the predicted search set to factors 

computed globally and for the shortest-path solution. The tested factors included edge-edge 

crossings, node-edge crossings, path continuity, and path length. Our approach provides 

modest improvements for predictions of response time and error using search-set factors. 

We also found key differences in the relative weighting of the importance of the factors that 

affect response time versus error.   

Keywords  
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aesthetic criteria, models. 

Introduction 

We present a characterization of human behaviour during the visual data analysis of graphs 

that are visually encoded as nodes connected by edges. This characterization arises from an 

extensive qualitative analysis from an observational study that focused on the low-level 

task of tracing paths through the graph, a task abstraction that underlies the many higher-
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level analysis tasks that entail understanding topological structure. In the study, 12 

participants completed path-tracing tasks by demonstrating their search progress on a tablet. 

The detailed characterization of common path-tracing behaviours was the base for a 

predictive model of paths that users are likely to search.  

Our model is built around the concept of a search set, which we propose as a way to 

capture an important facet of human behaviour: it is the set of all paths that a user follows 

while attempting to find the shortest path between a source and goal node. The search set 

provides a scope of analysis that lies in between the global level of the entire graph and the 

local level of the shortest-path solution to the path-tracing problem. Our model predicts this 

set of paths that participants are most likely to search as ordered discrete groups of paths 

that are equivalence classes, where within each group all of the paths are postulated to be 

equally likely paths.   

Much of the previous work on characterizing human behaviour during the visual 

analysis of graphs has been devoted to understanding what factors affect the quality of the 

layout. Many factors have been proposed, such as the number of edge-edge crossings, the 

total curvature of edge bends, and the total area of the drawing. Early work1–4 simply 

proposed factors and then immediately incorporated them into optimization-based layout 

algorithms. The factors were considered as constraints to minimize or maximize, and thus a 
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major emphasis was on factors that are amenable to automatic computation. Subsequent 

work5–12 has since begun to determine graph readability – whether and how properties of 

graph layouts, including these longstanding factors and more recently proposed ones, 

directly affect human graph reading behaviour and their understanding of graph structure 

in the context of specific tasks. This initial work has yielded some intriguing preliminary 

results, but the characterization of human behaviour during the visual analysis of graphs is 

far from complete.  

The search set concept can be applied to this quality assessment problem by calculating 

these factors on only the subsets of the graph encountered during a specific tracing task; we 

hypothesized that accounting for the paths most relevant to the user’s search would 

improve upon previous work that has measured factors across the entire graph globally, or 

on the solution path locally. As a demonstration of this application of the search set, and as 

a preliminary validation of our predictive model, we conducted a careful comparison of 

graph readability factors through a hierarchical multiple regression analysis. Our results 

show a modest benefit of measuring factors on the search set over previous work. 

Our work has two primary contributions: (1) a detailed characterization of path-tracing 

behaviours based on observational data of human subjects, and (2) a predictive model of 

the search set. We also provide two secondary contributions: (3) the introduction of the 
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concept of the search set itself, as an intermediate level for behavioural analysis that lies 

between the full global graph and the narrow solution path considered in some previous 

work; and (4) a multiple regression analysis that provides preliminary support for the 

predictive model. A more detailed articulation of each of these contributions is provided in 

the later Discussion and Future Work section. 

The paper begins with motivation, background, and the research questions that guided 

our work. We continue with the related work on observation of human graph reading 

behaviour and evaluating factors for graph readability, Next, we describe our user study, 

which included observation of users completing a path-tracing task. For clarity, we present 

our analysis in three separate sections. First, we present our qualitative analysis approach, 

and provide descriptions of common human path-tracing behaviours that we identified. 

Second, we discuss our predictive behavioural model for the search set. Third, we conduct 

a preliminary validation of our search set model by comparing the effectiveness of 

measuring factors at the solution-path, search-set and global levels for predicting path-

tracing difficulty. We conclude with a discussion of the implications of our findings 

regarding human path-tracing behaviour and the search set concept, the value of our 

methodology for untangling the importance of different graph readability factors, the 

practical applications of a predictive model of the search set in terms of implications for the 
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design of visual encoding and interaction techniques for graphs, the limitations of our study 

and analyses, and our plans for future work. 

Motivation and background 

We first discuss six considerations that motivated this work: why characterizing behaviour 

benefits the information visualization community, why path tracing is an interesting 

abstract task to study, why we conjecture that the search set would be a useful scope to 

investigate, what behaviours have already been identified, how a predictive search set 

model could be used in practice, and why to analyze with multiple regression.   

Why characterize behaviour? 

Characterizing human behaviour during visual data analysis is the underlying goal of most 

experimental work in visualization. This characterization is useful in its own right as a 

theoretical foundation to visualization knowledge.13 It directly informs the subsequent use 

of the exact techniques for visual encoding and interaction that are studied.14 More broadly, 

this kind of empirical work often spurs the design of new techniques15,16 and supports the 

development and refinement of quantitative metrics for the quality of a visual encoding that 

better correspond to human judgments of its utility.12,17  
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Why path tracing? 

The abstract task18 of path tracing is a canonical low-level task that serves as a building 

block for the many higher-level tasks that involve understanding topological structure of 

graphs.19 Path tracing has been widely studied7–9,11,20–25 because it underlies many real-

world use cases for visual data analysis with graphs.19,26,27 A concrete example is a medical 

investigator generating a hypothesis about disease transmission in a graph where nodes 

represent people and edges represent known contact between them, who is checking 

whether a short path exists between one infected individual and another. 

The low-level task of path tracing tasks for graphs laid out as node-link diagrams is 

similar in spirit to the low-level task of quantity judgement for tabular data. Many 

experiments to characterize the accuracy of length, angle, and area judgements have been 

conducted for table layout techniques such as bar charts and line graphs13,28, scatterplots29, 

and horizon charts14; in contrast, graph techniques are less well characterized. 

Why introduce a search set? 

The common evaluation of factors for laying out a graph is global; that is, one or more 

factors would be measured across the entire graph. Recent work suggests that for path-

tracing tasks a local approach is better. Ware et al.23 investigated the effect of factors 
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measured along the solution path; that is, the specific path that is the correct solution for a 

specific path-tracing problem. They showed that this approach was effective for predicting 

path-tracing difficulty, and found no additional benefit from including globally measured 

factors. The intuition behind this result is that global measurements take into account too 

much of the graph: a graph that scores poorly globally for a set of factors may nevertheless 

have paths that are easy to trace in regions of minimal clutter.  

However, just as global measurement may consider too much of the graph, we suspect 

that measuring local factors only on the solution path does not take enough of the graph 

into account. We propose that an even better solution lies between these two extremes, 

where the full subset of the graph that is relevant for the task at hand is considered; we 

name this subset the search set. Specifically, we hypothesize that the prediction of path-

tracing difficulty can be improved by accounting for the impact of important factors on the 

search set: in this case, all of the paths that a user follows during the tracing task before 

encountering the solution. Our logic is that if crossings on the solution path slow a user 

down, then so should other crossings on paths investigated before the solution path is 

found.  

Search set factors may also be more broadly applicable than solution-path factors 

because some instances of path-tracing tasks do not have solutions. In a disconnected 
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graph, for example, a solution path between two points may not exist, but it is possible to 

calculate a set of paths that a user is likely to follow while making that determination. 

What behaviours are already identified? 

A previous study from Huang et al. identified the geodesic tendency;7 that is, when 

attempting to trace a path from a source node to a goal node, people have a tendency to 

follow the branch that is the closest-to-geodesic from the current node to the goal. A 

geodesic is the geometric straight line between two points.  

Figure 1 -When tracing a path from A to G, the geodesic tendency predicts that a user 
would first follow the incorrect path A–B–C–D that is closer to the straight line between 
A and G, before following the solution-path A–E– F–G.  

Redrawn from Huang et al.7  
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 Figure 1 shows an example: users looking for the path from A to G would likely start by 

following the series of closest-to-geodesic branches from A to B to C to D. They would 

next deviate from the closest-to-geodesic and follow A to E, before returning to following 

the closest-to-geodesic branches from E to F to G. In this case, the solution path was the 

second path explored.  

Our initial investigations showed us that the geodesic tendency concept is a clear step 

in the right direction, but lacks sufficient predictive power for a complete model of human 

behaviour characterization. We noted that a corollary of the geodesic tendency is that 

certain paths are unlikely to be followed, either because they are not on a closest-to-

geodesic branch, or because they would naturally fall after the solution path in an 

exploration sequence. For example, in Figure 1 AEFH would not be followed because the 

solution path AEFG is already found. Our definition of the search set is exactly the likely 

set of paths that a person would search along the way to finding the solution path. In this 

case, the set is the paths ABCD and AEFG.  

What are the uses of a predictive search set model? 

A predictive search set model could be used for factor measurement, for general salience 

measurement, for interaction techniques that dynamically adjust layouts, and for static 

layout algorithms. 
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Factor measurement: Our original motivation for developing a predictive model of path 

tracing was to predict the difficulty of path tracing in the context of experimental design. 

We noted this open problem when designing a controlled experiment to investigate 

different visual encoding techniques for graphs, and found no reliable way to control for or 

measure path tracing difficulty despite the significant previous work on graph readability 

factors; it was a confounding variable that distorted our experimental results. Our 

preliminary validation of the model addresses exactly this application. 

Salience measurement: A predictive model provides a salience measure for an edge that is 

targeted with respect to a specific query of two nodes. Given a layout of the entire graph 

and the two specific nodes as input, a predictive model of the search set provides an 

ordered list of paths (or sets of equivalence classes of paths) as output. The ranking of a 

particular path against that set can be checked: does it appear early in the list, late in the list, 

or not at all? This list can then be used as a black box by any visual encoding or interaction 

technique that takes a path or an edge as input and provides a rank as output. 

Jänicke and Chen30 discuss many uses of visual salience within a general comparison 

framework. They proposed an image-space salience metric that is guided by observations 

of low-level human visual perception but is agnostic to the data type. A predictive search 

set model offers an alternative way to gauge the salience that is informed by human 
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behaviour and dataset semantics in terms of topological structure, in addition to the 

geometric layout of the visual encoding. Search-set salience can be used in all of the 

applications that they propose, and also as a core primitive for graph layout in any context 

that requires measuring layout quality or changing a layout with respect to a subset rather 

than all of the graph. 

Interaction techniques: Interaction approaches that rearrange a subset of the nodes, such as 

the Bring and Go31 technique, typically minimize the cognitive impact of disruption to an 

original layout by maintaining spatial consistency; search-set salience could guide the 

movement to be aligned with behavioural tendencies. Search-set salience might also 

support new techniques that affect a larger portion of the graph by suggesting relatively 

subtle local changes rather than extreme rearrangements. 

It could also be useful for permanent rearrangement. For example, if the user interactively 

indicates that a small set of nodes are important to emphasize, the graph could be 

rearranged so that paths between them are easier to follow according to the model's 

prediction. A search-set model could also guide prioritizing specific paths deemed to be 

important according characterized behaviours; for example, the predicted direction of the 

first hop in the path. 
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Static layout: Layout techniques that measure the quality of multiple layout alternatives 

and choose the best result, as with Design Galleries32, could use search-set salience as a 

black box. Search-set salience provides interesting possibilities in guiding multilevel layout 

techniques that achieve speed and quality improvements with multi-pass approaches that 

act on subsets of the nodes separately, such as incremental refinement from coarse to fine 

levels of a compound graph hierarchy.33 Search-set salience would support subsets that are 

not spatially localized to a contiguous geometric region because it is based on topology. It 

could also be used to develop new global post-processing layout improvement techniques 

in a similar spirit to node overlap removal.34 A novel family of two-pass layout approaches 

could optimize for search-set salience as a second pass with respect to a small set of 

important nodes or edges identified in a first pass using an appropriate importance 

measure35 such as a centrality metric for social network analysis.36  

Why use multiple regression? 

Evaluative studies of factors affecting graph readability have predominantly relied on 

significance testing to conclude that a factor is important or not. A handful of studies have 

further attempted to create priority lists of factors based on their relative importance, but 

these have largely been based on significance testing21,37 or human judgements.38,39 Such 

approaches are limited in their ability to untangle how different factors interact40 and the 
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magnitude of the effects are rarely reported. In their study of factors on the solution path, 

Ware et al. introduced the use of multiple regression for evaluating the impact of factors on 

task difficulty23, and argued for its further use in evaluation of graph readability factors. 

Multiple regression inherently provides a measure of effect size, and has the additional 

benefit of assigning quantitative weights to factors, which can be useful when considering 

the importance of one factor over another. 

To our knowledge, only one other study, by Huang and Huang8, has used multiple 

regression for untangling the relative contributions of factors: they examine the relative 

impact of global edge-edge crossings and global crossing angles on four different measures 

of task difficulty. We differ from previous work in our focus on the incremental validity of 

these factors. Incremental validity is a concept from clinical psychology that focuses on 

“the degree to which a measure explains or predicts a phenomenon of interest, relative to 

other measures,”41  and on the utility of variables in terms of cost and efficiency.42 

Although the term incremental typically has negative connotations in discussions of 

research contributions, we note that here it is being used in a specific technical sense of 

determining whether useful information has been added beyond what is already available. 

In particular, we show that factors measured on the search set show modest improvements 
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over what can be explained with previously studied factors measured on the solution-path 

and global levels. 

Related work 
We discuss the previous work most closely related to the behavioural analysis that we 

conducted to build our predictive model, and to the factor-based analysis that we use to 

validate it. 

Descriptions of human graph-reading behaviour 

Our work is situated within two veins of evaluative studies that have looked to human 

behaviour to assess and explain graph readability: studies using eye tracking to gather data 

while humans read graphs, and studies focused on human behaviour when manually 

arranging graphs.5–7,11,12,24,25,43,44 

Several studies have used eye tracking towards the goal of understanding and 

describing how users actually read graphs. Pohl et al. 6 found that force-directed layout 

outperformed orthogonal and hierarchical layout on a set of 5 tasks, one of which was 

identifying a path between two points. For each task, the authors used eye-tracking data to 

briefly explain their results in terms of observed behaviours, but did not dig into untangling 

the relationship between behaviours and the characteristics of the different layout styles. 
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Burch et al.5 similarly used eye tracking to study visual exploration behaviours of 

participants when solving a typical hierarchy exploration task in traditional, orthogonal, and 

radial hierarchical layouts. Their results are also primarily descriptive, and the authors are 

only able to make limited recommendations for layout creation based on their findings.  

Huang et al.7,25 used eye tracking to study users completing path-tracing tasks, with the 

goal of actually observing the effect of edge-edge crossings on the user’s gaze. This work is 

the most similar to our own in terms of goals: they identify and provide evidence for the 

existence of a specific behavioural tendency, the geodesic tendency, which strongly affects 

path tracing. We build on the observational approaches just described to complete a deeper 

study and characterization of human graph reading behaviours through a full model of path 

tracing, where the geodesic tendency is clarified and extended in the context of additional 

tendencies, and show that it is possible to predict a set of paths that a group of users is 

likely to follow 

From a detailed analysis of eye-tracking data, Körner9,24 developed a sequential model 

of graph comprehension and examined the impact of factors at its different stages. This 

cognitive model is intended to disambiguate between potential underlying mechanisms of 

visual cognition within a high-level framework. In contrast, our work provides a behaviour-
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based model specific enough to be used for measuring factors, and we do not attempt to 

provide any explanations for the cognitive mechanisms.  

In contrast to this work using eye tracking, we asked users to illustrate their search 

progress and demonstrate their thinking by tracing their paths on a tablet. This approach 

follows a second vein of observational studies where users were asked to manually generate 

or arrange graphs, and then their behaviour and the resulting graphs were analysed to reveal 

what factors and criteria they used.11,12,43,44. When tasked with creating understandable 

graphs, the participants in one study by Purchase et al.44 favoured minimizing edge 

crossings and maximizing orthogonality. Van Ham and Rogowitz12  asked users to create 

layouts that best represented the structure of a data set with distinct clusters found that users 

also sought to minimize edge-crossings, but also tended to create distinct convex hulls to 

delineate clusters as distinct perceptual groups. Our work is similar in its emphasis on 

behavioural analysis through observation of user process and interaction with graphs. While 

this previous work led to a refined understanding of the impact of existing factors, the 

described behaviours are primarily about graph creation tasks and do not attempt to model 

the behaviours exhibited in completing tasks that require reading the graphs.  
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Evaluation of factors for graph layouts 

Many studies have sought to evaluate the impact of factors on human understanding of 

graphs. Factors studied include edge bends,20,21 edge length,12,23 orthogonality,11,21,44 

angular node resolution,21,37 edge crossing angles,8,45 clustering,12 node spacing,11,37 edge 

stress,11 and edge-edge crossings.8,9,11,12,21,23,24,37,44 More recent studies explored the effects 

of visual features on memorability46 and on mental map preservation using dynamic 

layouts.47 However, many factors that are commonly incorporated into layout algorithms 

remain unexamined by controlled experiments. One such factor is node-edge crossings, 

which we evaluate for the first time in our analysis.   

Impacts of layout style and factors on task performance: Some previous work has shown that 

some factors may have a varying impact depending on the task that a user must perform 

with a graph. Purchase21 used a shortest path identification task, as well as two tasks related 

to graph connectivity, in a study that concluded that edge-edge crossings are the most 

important factor. However, in a study of factors impacting sociogram use, Huang et al. 37 

concluded that edge-edge crossings are only important for path-tracing tasks. Similarly, in 

his study of eye movements, Körner24 found evidence that edge-edge crossings have no 

impact during 'search' tasks, but do have significant impact during the 'comprehension' 

tasks that involve considering the edges between nodes. Conversely, Dwyer et al. 11 found 



19 

no effect of edge-edge crossings for either path-tracing or connectivity tasks. These 

analyses focus on global layout and do not discuss trade-offs or implications of factors. In 

our study, we focus specifically on untangling the factors that effect path-tracing task 

difficulty. We find that the concept of search set may shed some light on the underlying 

reasons for the mixed results in previous work, as covered in the later Discussion and 

Future Work section.  

Measuring factors at local, search set and global levels: The prior studies that we have discussed 

thus far have all focused on globally measured factors, with only one exception; Ware et 

al.23 studied factors measured on the solution path. In exploring the effectiveness of factors 

for predicting response time in a shortest path identification task, they identified a new 

factor of path continuity, and found significant effects of solution-path length, path 

continuity, total and average line length of the path, total branches on the path, average 

crossing angle on the path and total edge-edge crossings on the path. Further, they showed 

that with only four of these factors – solution-path length, continuity, edge-edge crossings 

and branches - they could account for 78.4% of the variance of response time in their study, 

and they identified path length and continuity as having the largest contributions. A crucial 

finding was that the globally measured edge-edge crossings did not account for any 

additional variance on top of the solution-path factors. To our knowledge, only one other 
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study8 compares the effect of graph readability factors measured locally in addition to 

globally on response time. We are the first to do so for error. Our study is also the first 

investigation of factors for either time or error at three different levels: we introduce the 

search-set level in addition to the global and solution-path levels.   

Untangling factor importance across measures: In examining different tasks, the most common 

measure of graph readability used in previous work has been response time. Some studies 

have also examined the relationships of factors to measures such as error, user preference, 

and (less commonly) cognitive load.48 While previous work has recognized that, for 

example, the factors that make a task take longer do not necessarily correspond to those that 

increase the likelihood of error, little work has examined the relative difference of factor 

importance for different measures of difficulty. In our later discussion, we provide a 

nuanced discussion of the ways that several factors affect response time and error in 

varying ways.  

User study design 
We collected data through a lab-based observational user study with 12 participants, who 

were asked to complete 144 unique path-tracing trials over two sessions, while using a 

Wacom Cintiq tablet to demonstrate the paths that they followed.  
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Research questions 

Our study design was guided by a set of initial questions about the plausibility of the search 

set concept, and its use as a basis for measuring factors that impact path-tracing difficulty: 

(Q1) can we identify distinct path-tracing behaviours and evidence of the search set? (Q2) 

how common are these path-tracing behaviours? (Q3) can we predict the search set based 

on observed path-tracing behaviours? and (Q4) how much improvement over previous 

work is gained by calculating factors for graph layout on a predicted search set? To answer 

these questions we performed an extensive analysis, which we present in multiple parts in 

subsequent sections. We answered Q1 and Q2 through observation and characterization of 

path-tracing behaviours. We then explored Q3 by incorporating these observed behaviours 

into the development of a simple predictive behavioural model for the search set. Finally, 

we focused on answering Q4 through a hierarchical multiple regression analysis to compare 

factors measured on the solution-path, search-set, and global levels. 

Our intention to observe and characterize path-tracing behaviours to explore the search 

set concept guided our choice of a tablet interface for recording the participants’ search 

process. The study was predominantly designed to support the planned hierarchical 

multiple regression presented later, which influenced the design of the task, the graphs 

used, the procedure, and the number of trials.  
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Piloting and rationale 

In designing the study, we were particularly concerned with how easily users would be able 

to physically trace their search process, in tuning the difficulty of the experimental task, and 

in ensuring that the interface was useable without interaction.  

We began by piloting the study with 6 participants recruited from the authors’ 

department, who were available for extensive piloting but who had little previous 

knowledge of the research project. The sessions lasted about 30 minutes. Participants were 

tasked with finding the shortest path (of length 2 to 5 hops) between two nodes in graphs 

printed out on paper. The graphs had either n = 50, 75 or 100 nodes (where the number of 

edges = 2n, as dictated by the Watts Strogatz model described later in this section). During 

the task, participants were asked to trace their search progress by pointing at the nodes that 

they considered with a capped pen. One of the authors observed participants during the 

session, and also videotaped the pen movements from above for later review. For the final 

design of the observational sessions we chose to display the graphs on an interactive tablet 

screen in order to support data logging for later analysis.  

Physically tracing vs. eyetracking: One goal of piloting was to investigate whether having 

users physically trace their search process would allow us to adequately capture the paths 
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that users directly reasoned about during that process; we concluded that this design would 

indeed suffice for the exploratory nature of our investigation.  

Although eye tracking has been widely used in previous work, it entails high-overhead 

analysis for targeted questions; our goal was to analyze low-level data quickly to focus on 

broader considerations in later analysis phases. Moreover, it was important for our study 

that we be able to identify exact nodes that users were considering in very dense regions of 

the graph. We were concerned that that eye tracking would not guarantee sufficient 

resolution because of limitations of precision of both the data that can be collected and of 

the common methods for visualizing the data: heat maps, for example, cannot show 

progression of paths over time, and gaze plots often suffer from overplotting.49 Further, we 

wanted to generate a dataset that could eventually be analyzed statistically as part of our 

model development and validation, which meant that we needed records of paths that could 

be compared to the predicted paths our model would produce. While there are methods and 

algorithms for extracting and comparing scanpaths, it would have required considerable 

extra development and analysis effort in order to match the eye-gaze data to predicted 

paths. In contrast, having participants point directly at nodes on the tablet allowed us to 

capture exactly which nodes they were considering and store the paths directly – we were 

then able to both visualize this data in time series plots, as well as use this data for 



24 

comparison against the output of our predictive model, with minimal massaging or 

transformation required.  

We observed from the pilot sessions that, with a small amount of practice, participants 

became accustomed to moving the pen at the same time that they were searching and this 

tracing functioned much as a think-aloud observation equivalent. We did not observe any 

problems arising from occlusion of the screen by the participants’ hand, but we did note 

that participants did not always hover over nodes that they could reason about with their 

peripheral vision. The inability to pick up peripheral vision is also a known constraint of 

eye tracking.50  

Tuning task difficulty: Another goal of piloting was to tune the difficulty of our 

experimental task. Because we were interested in overall path tracing behaviour, we wanted 

to have a combination of trials that would span the range of difficulty from easy to hard – 

but not impossible – to achieve a good mix of both success and failure cases to study. In 

real life, if a task is impossible users will simply give up, a tendency that can confound 

controlled experiments. Ware and Bobrow51 report an example where the difficult tasks 

were too difficult and had shorter times than the easier tasks because the users gave up.  

In our piloting, we found that 5 hop paths were often too difficult for the graph sizes 

and density we used – our participants frequently gave up without completing the task, and 



25 

often became discouraged. Thus, for the final design of the observational session, we chose 

to use 2, 3 and 4 hop paths only, with 4 hops being the maximum that we felt users could 

reasonably complete without any additional technique support.  

We found that a graph size of 75 nodes and 150 edges graph reliably produced trials in 

the target range of difficulty. While this size may appear small compared to many real-

world datasets, our experiments with larger graphs of up to 100 and 200 edges resulted in 

trials that were too difficult. We carefully tuned the complexity of the visual appearance to 

approximate the information density of complex situations while still allowing for 

controlled experimentation, and we succeeded in surpassing the 42-node size used by the 

previous study of local path tracing.23 A major constraint on graph size was the size of 

tablet screen – nodes had to be large enough to be easily acquired with the tablet pen.  

Finally, we also noted that a subset of our pilot participants would search for a long 

time (up to 5 minutes) before giving up, and their search behaviour became less consistent 

and more chaotic over time. In the final experiment, we capped search time at 90 seconds. 

This cap ensured that the experiment could be finished within reasonable length of time, 

and that we would be capturing common behaviours in a realistic situation.  

Avoiding interaction: Our final goal was to ensure that the interface was usable for the 

tracing task without any scaffolding in the form of interactive techniques. Many interactive 
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techniques are used in practice for highlighting, navigation, and rearrangement. Examples 

include simple colour highlighting of the segment underneath the cursor (the combination 

of an edge and the two nodes that it attaches to), highlighting using alternate channels such 

as oscillating motion,51 highlighting larger topologically connected sets such as all 1-hop 

neighbours of a node,52 more elaborate interaction techniques such as Bring and Go31 that 

rearrange the layout temporarily, navigation support for zooming and panning, and 

allowing users to manually rearrange nodes and edges to disambiguate occlusion. This 

experiment is designed to understand what humans do in the static case, which we consider 

to be the natural baseline. As we argue above, one possible use of a predictive model is 

exactly to determine when these scaffolding techniques are necessary and when they could 

be dispensed with, either globally or locally. Moreover, many of these techniques would 

introduce a confounding effect of interaction time.  

We observed that participants struggled with node-edge crossing ambiguities to the 

point where the task was too difficult. To provide purely static support for resolving node-

edge crossing ambiguities, in the final version of the interface each node was drawn with a 

small white halo around it, as shown in Figure 2: edges terminating at that node would pass 

on top of the halo and connect directly to the node, but unconnected crossing edges were 

drawn underneath the halo, resulting in a small gap between the edge and the node.  
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Participants 

We recruited 12 participants using fliers posted on campus (4 female, aged 20 – 33, M = 

23.4). All were students with normal or corrected-to-normal vision and regular colour 

vision. They each received $10 per hour of participation, and a bonus $5 for returning to 

complete both sessions.  

Task  

We used a shortest-path identification task. In each experimental trial, participants were 

shown a graph with a source and a goal node coloured red and blue respectively, and were 

asked to find the shortest path through the graph from the red node to the blue node. The 

remaining nodes were coloured black. Participants were told explicitly that the path would 

always be 2, 3, or 4 hops in length. Participants were also asked to complete the task as fast 

as they could while also trying to avoid making unnecessary errors.  

Figure 2 - Example of a halo drawn around a node to support identification of node–edge 
crossings. The near- horizontal edge crosses the node. The four other edges, which pass 
through the halo, connect to the node.  
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While searching for the path, participants were asked to use the tablet pen to hover 

over the nodes in the paths that they considered. Nodes became highlighted when hovered 

over by the tablet pen. Figure 3 shows an example of a graph displayed on the tablet.  

 

Figure 3 -Example of the user study interface. Graphs were displayed on a Wacom 
Cintiq tablet screen, and participants hovered over nodes with the pen to 
demonstrate their search process as they completed the study task. The FOUND 
IT! and OK buttons are indicated with the pink labels and are present on both sides 
of the screen.  

 



29 

Each trial consisted of two phases. In the search phase, participants were given a 

maximum of 90 seconds to find the shortest path and then press a button labelled FOUND IT! 

located on the side of the screen. In the answer phase, participants were given 20 seconds to 

demonstrate the path that they had found by selecting each node in the path with the tablet 

pen, and then press OK to submit their answer. To select or deselect a node, participants 

were required to hover over it and then press a button on the side of the pen. Time 

remaining in each phase was displayed at the top of the screen, and the colour of the node 

highlighting changed depending on the phase: orange highlighting for the search phase, 

green highlighting for the answer phase. If participants ran out of time in the answer phase, 

the nodes selected at the time-out point were automatically taken as the participant’s 

answer.  

Participants were asked to limit their search for the answer to the search phase. During 

piloting we noted that participants sometimes realized during the answer phase that they 

had not actually found the correct answer, and sometimes felt pressured to keep trying to 

find it even though the search phase was over. To address this issue in the actual 

experiment, we told study participants during training that we wanted to know about such 

mistakes, and instructed to them to select the nodes they had originally thought made up the 
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answer if this occurred. Finally, each trial concluded by showing participants the correct 

answer to the trial, before prompting them to begin the next trial.  

Dataset and graphs 

We generated 144 graphs for use in the user study and subsequent analysis. We also 

generated an additional 9 practice graphs, which were only used for practice by participants 

and were not included in later analysis.  

Sample size: The sample size of 144 graphs was deliberately chosen to provide enough 

graphs to create two discrete subsets, a training set (24 graphs) and a validation set (120 

graphs). Set sizes were determined by a power analysis (described later). The size of each 

set was determined by the needs of our planned analysis evaluation, as well as a maximum 

number of trials that we could expect participants to complete in a single session. These 

sets are used in two separate stages of analysis:  

• a qualitative analysis of human path-tracing behaviours and development of a 

predictive model. 

• a regression analysis that acts as an example application of the search set, and as 

validation of the predictive model.  

This type of approach, using a training set and a disjoint validation set, is commonly used 

in the machine learning communities for model selection and validation53, and was 
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intended to support testing whether or not the model derived from the training set 

generalized to the validation set.  

Graph generation: To support both reproducibility and analysis, we generated the graphs 

and layouts in advance of the experiment. We used the Watts-Strogatz model54 to create 

graphs with small-world properties, following the argument of Auber et al. and others that 

these represent realistic models of networks from many application domains.55 The Watts-

Strogatz algorithm parameters were tuned during pre-piloting experimentation; we used 

degree-4 edges in the initial circle lattice, and a 15% probability of random reattachment. 

We selected a graph size of 75 nodes and 150 edges as the best balance between density 

and difficulty from those tested in piloting, as discussed above; this edge density ratio of 2 

falls well within the limits discussed by Melançon for synthesis of realistic graphs.56  

We then laid out the graphs by running the force-directed placement included in the 

Prefuse toolkit for 5 seconds to lay out each graph, and saved only graphs with an aspect 

ratio of 0.8–1.12 to ensure that nodes would appear at a similar size on the screen. We use a 

layout with straight edges because this representation is by far the most common in real 

world applications. 

A unique shortest path was selected for each graph. To generate the paths, each of the 

graphs was randomly assigned a source node, and then breadth-first search was performed 
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to assign a goal node to create a single shortest path of 2, 3 or 4 hops. An equal number of 

graphs for each of these solution-path lengths were generated. The coordinates of the pre-

generated laid-out graphs, along with the assigned solutions, were stored as XML files for 

later use. 

Interface 

The Cintiq tablet was inclined to a slight angle, about 25 degrees from the horizontal. The 

OK and FOUND IT! input buttons used in the task appeared on both sides of the screen, to 

support both left handed and right handed users. These buttons were configured to accept 

input only during the relevant stages of the trial to reduce the incidence of mistakes.  

Apparatus 

The experiment was conducted on a Wacom Cintiq 12WX direct input pen tablet, which 

featured a 12” screen, and was connected to a 13" 2.7 GHz Intel Core i7 Mac Book Pro 

with 8 GB of RAM and Mac OS X Lion 10.7.2. The experiment software was coded in 

Java using the Prefuse toolkit.57  

For each trial the system recorded a log of the participants’ pen movements, the graph 

nodes that had been hovered over (computed as any intersection between the cursor 

position and the node geometry), the task completion time, and the final answer.  
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Procedure 

The total experiment length was over 2 hours and thus was split across two sessions to 

avoid participant fatigue. The first session took between 1-1.5 hours, and the second 

session took ~1 hour. Participants were able to complete the experiment on the same day, 

but were required to wait a minimum of one hour between sessions.  

In the first session, participants were asked to confirm at this time they had normal or 

corrected-to-normal vision and regular colour vision, and then completed a brief 

questionnaire on their background. The experimenter demonstrated the tablet and the task, 

and then walked the participant through a series of steps to configure the tablet. The tablet 

was configured to use the participant’s dominant hand. Participants then completed the 

built-in calibration utility until both the experimenter and participant were satisfied with the 

pen tip cursor alignment. When returning for the second session, participants repeated the 

tablet configuration and were reminded of all instructions. Before starting experimental 

trials, participants completed an equal number of practice trials of each possible solution-

path length – 6 practice trials in the first session (two of each length), 3 in the second 

session (one of each length) – and the experimenter provided feedback to ensure they 

understood the task.  
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For each trial, participants completed the task with one of the 144 pre-generated 

graphs. The presentation order of the graphs was randomized across both sessions, while 

the practice graphs were shown in the same order. Participants completed 6 blocks of 12 

trials at a time, for a total of 72 trials per session. Between each block, participants were 

required to take a one-minute break. Each session contained an equal number of graphs 

with each possible solution-path length – 24 each of the 2, 3 and 4-hop graphs – but these 

were not controlled for within blocks. The use of blocks in the experiment was only to 

ensure that participants took consistent breaks. 

After each session the participants rated the task on a Likert scale from 1-low to 7-high 

according to the overall difficulty, and the mental and physical effort required. A post-

experiment interview followed the second session. The Likert scale data did not reveal any 

interesting trends and thus did not factor into our analyses; we do not report on it any 

further in this article. 

Qualitative analysis of path tracing behaviours 
The focus of the first part of our analysis for the user study pertains to our first two 

questions concerning the search set concept: (Q1) can we identify distinct path-tracing 

behaviours? and (Q2) how common are these path-tracing behaviours?   
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We began with a preliminary analysis of the nodes hovered over by participants during 

the study trials, and visualized that data to explore what each participant’s search set looked 

like. This early exploration motivated the central qualitative analysis described below. First, 

we manually identified and described paths from the hovered-over nodes in a subset of the 

study trials. From that analysis, we characterized a number of common path-tracing 

behaviours. Once we were able to describe how participants traced paths, we could then 

develop a predictive behaviour model of the search set. 

Preliminary node-based analysis of search set 

We began with a preliminary analysis of the data collected, focusing on the overlap 

between the total set of nodes that each participant hovered over at least once during the 

trial for each of the 144 graphs.  

The success rate for the user study trials was low. On average, participants successfully 

completed 58.7% of the trials (SD = 11.7%, min = 34.7%, max = 79.2%). Not surprisingly, 

the success rate decreased substantially as the length of the path became longer. The 2-hop 

paths had a 76.2% success rate (SD = 8.4%, min = 62.5%, max = 91.7%), the 3-hop paths 

had a 60.8% success rate (SD = 13.1%, min = 35.4%, max = 79.2%), and the 4-hop paths 

had a 32.8% success rate (SD = 17.3%, min = 6.3%, max = 68.8%). We felt that this level 
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was appropriate for our study given our desire to analyze both successful and unsuccessful 

attempts, and represented a diverse range of cases from easy to hard.  

On average, only 6.1% of the nodes for a given graph that were hovered over by at 

least one participant were also hovered over by the 11 other participants (min = 0%, max = 

25%), and these often included the nodes on the correct path for the trial. While we had 

expected to see some individual variability, we were nevertheless surprised by the extent of 

this apparent lack of overall commonality given the previous work on geodesic tendency, 

and so we chose to dig deeper to into the question of what behaviours dictated participants’ 

search patterns.   

Visualization of node hover overlap. We generated a number of visualizations of the node 

hover data to further explore how the overlap varied. In this section we present views from 

one of the visualizations that we created. Additional details about these views, and all the 

visualizations developed for this analysis, can be found in the Supplementary Material.  

The visualization we discuss here shows a graph and all of the nodes that were hovered 

over by participants for the corresponding experimental trials. The visualization included 

twelve small multiple views, each of which displayed the nodes hovered over by a single 

participant in the trial. The graph for a trial was laid out as in the experiment, with the  
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Figure 4 - Example of small-multiple visualizations of all the hovered-over nodes for one 
graph trial. There is one small multiple per participant, labelled by the participant number 
in the top left. Hovered nodes are coloured in orange, with the remaining nodes shown in 
white. The source and goal nodes are coloured red and blue, respectively; hovers on these 
nodes are not shown.  
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Figure 5 - Example of an aggregate visualization showing all nodes hovered over by 
all participants on one graph trial. Node colour changes from light grey to dark as the 
frequency with which the node was hovered increases. The source and goal nodes are 
coloured red and blue, respectively. The convex hull of the source node and goal node 
and their 1-hop neighbours (annotated with purple circles) are shaded in light green.  
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nodes in each small multiple coloured according to whether or not they had been hovered 

over by that particular participant, as shown in Figure 4. A different view, shown in Figure 

5, aggregated the hovers of all participants onto a single view of the graph, with the 

frequency of hovers encoded in grey-scale  

By examining these visualizations we noticed that subsets of the participants’ hovered-

over nodes would often overlap, even though the total overlap across all participants was 

small. When we incorporated the frequency with which each node was visited, we saw that 

the most frequently hovered-over nodes tended to fall in a convex hull around the red and 

blue nodes and their respective 1-hop neighbours, as shown in Figure 5. Three participants 

alluded to this convex hull behaviour in the post-experiment interview, stating for example 

that they “often tried to look in the area between the red and blue nodes” (P11). On 

average, 93% of the total node hovers for a given graph fell inside the convex hull (min = 

73.1% max = 100%). This consistency suggested to us that although the participants’ 

approaches were not identical, there were in fact some similarities in how participants were 

tracing paths. 

Qualitative analysis method 

Motivated by the findings in the preliminary node-based analysis, we moved from 

considering the data simply in terms of node hovers to reconstructing the paths searched by 
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the participants. By looking at the progression of paths over time, we hoped to characterize 

common human path-tracing behaviours. 

Given the variability we observed in the node-based analysis, we did not feel that we 

had a deep enough understanding to extract the paths through computation alone. Instead, 

we chose to manually extract paths from the node hover data using qualitative coding after 

applying some algorithmic filtering. The data was then manually transformed from hovers 

to steps, which were then coded as paths. One investigator performed all of this qualitative 

analysis. 

Data sample.  The training set was made up of 8 graphs for each of the 3 possible hop 

lengths, for a total of 24 graphs. These were selected randomly from the total set of 144 

graphs. We analyzed all 12 participant trials from the user study for each of these graphs, 

for a total of 288 trials. We reserved the larger validation set (of the remaining 120 graphs) 

for a hierarchical regression analysis that served as a validation of our predictive 

behavioural model, and which we discuss in a later section. 

Data preparation and visualization. The raw data in the log files were hovers over a node, as 

described earlier. Some of these hovers were deemed to be spurious and were eliminated 

from further consideration. Some were automatically filtered out based on a quantitative 

threshold, while others were discarded as a result of the qualitative analysis process 
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described below. In the automatic filtering, hovers lasting less than 5ms were discarded. 

This threshold was derived from a combination of quantitative analysis and observation 

while building the visualization; we found that less than 5ms was an unrealistically short 

length of time to hover over a node while actually tracing a path. Most discarded hovers 

seemed to be caused inadvertently when participants transitioned their search from one area 

of a graph to another.  

After the initial automatic filtering, we manually transformed the hover data into a 

sequence of steps. Initially a step was created for each individual node hover, in temporal 

order. From these steps, the investigator could then compose a path: a complete sequence 

of nodes that constituted an intended single path-tracing attempt on the part of the 

participant. In order to assist the investigator in identifying topological paths, the automatic 

filtering consolidated two or more successive node hovers into the same step when they 

were connected by edges. 

Despite this automatic process, a path could still be split across multiple steps for 

several different reasons. First, some paths consisted of a combination of topological and 

apparent connections between nodes. We saw many examples where participants followed 

apparent paths that were not true topological connections (there was no edge in the graph 

between consecutive hovers), but these were mistaken for a true topological connection 
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because of node-edge crossings. Second, some paths were split across multiple steps 

because of spurious hovers in the log that the investigator judged to be incidental to what 

the participant was actually considering at the time. These were typically nodes crossing or 

near to a path that the participant followed repeatedly, or nodes hovered over during 

transitions between different parts of the graph.  

To support our analysis, we designed a visualization in which the first 20 steps were 

directly visible as small-multiple views of the trial graph with some nodes and edges 

coloured to show hover activity. Figures 6 and 7 show an example of the small multiples 

used in the visualization. The first node in an automatically determined topological 

sequence was coloured light orange, with subsequent nodes coloured dark orange, and 

edges along the topological path between them also coloured orange. As additional visual 

support for the analysis, we included an aggregate view similar to the one used in the 

preliminary analysis (Figure 5), and when the investigator hovered over a node, it was 

highlighted in every small-multiple view and its node ID was shown in a tooltip. An 

example of the entire visualization can be found in the Supplementary Material. We chose 

to stop analysis after a maximum of 20 steps because our initial exploration showed that, 

just as we observed in piloting, later steps tended to be more chaotic and less representative 

of common behaviours. 
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Figure 6 - Example of the small-multiple visualization of discrete steps used to 
support the qualitative coding process; each step is labelled in the top left. The first 
node in an automatically determined sequence is coloured light orange and 
subsequent nodes coloured dark orange; edges along the topological path between 
them are also coloured orange.  
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Figure 7 - Example of the small-multiple visualization of discrete steps used to support 
the qualitative coding process; each step is labelled in the top left. The first node in an 
automatically determined sequence is coloured light orange and subsequent nodes 
coloured dark orange; edges along the topological path between them are also coloured 
orange.  
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Coding process. All of the steps in a trial, up to the maximum of 20 visualized, were described 

with at least one code. The paths identified by the investigator were coded as a sequence of 

node IDs, in addition to a number of other attributes, which we describe next. 

First, a path could be either a true topological path or an apparent path. Second, the 

investigator coded the target node that the path was going towards, which could be the 

source node (red), the goal node (blue), or some other node in the graph. Third, the anchor 

node that the path started from was identified, which again could be the source node (red), 

goal node (blue), or some other node in the graph.  

The final two attributes for a path were used to describe the branches that the 

participant followed for each hop of that path. One was the direction (forward, right angle, 

or backward) with respect to the target, of each branch in a path. The investigator used her 

approximate judgement rather than exact angles in determining whether a branch went 

towards the target, at a right angle from it, or away from it (i.e., whether the branch went 

closer to the target, kept roughly same distance from it, or went away from it). The last 

attribute was whether the branch at a particular hop was the closest-to-geodesic branch 

from the associated node to the current target. We did not expect participants to be skilled 

at judging very small differences in angles, and observed this to be the case in early 

exploration of the data. Thus, when the difference between two branches on either side of 
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the geodesic straight line to the target was very small, or if those branches overlapped, the 

investigator recorded both as having the closest-to-geodesic property.  

In addition to describing paths, the investigator generated codes for other types of 

movements by participants that emerged during the coding process as being potentially 

important. These were jumps between nodes, switches of a target and/or anchor, checks of 

nodes or node-edge crossings, and doublebacks over paths just traced. The investigator 

used the same attributes described above in these other codes as appropriate.  

Finally, the investigator also coded incidental node hovers. These were hovers over 

nodes that occurred between two nodes in a coded path or during some other movement, 

but were judged to not signify the node a participant was actually considering at the time. 

Example of a coded trial. To illustrate the coding process, we next walk through one 

example of the codes and the attributes used to code one participant trial. Figure 8 and 

Figure 9 demonstrate the paths identified from all of the steps in the example. Where a path 

spanned multiple steps, we show these steps collapsed into a single image; the red and blue 

nodes are labelled R and B respectively.  The 20 steps coded for this trial are also shown 

without annotation in Figure 6 and Figure 7, as the investigator saw them during the coding 

process. 
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Figure 8 - Paths 1–6 extracted from steps 8–13 and collapsed into single 
images. Steps 8–12 are shown in Figure 6, while step 13 can be found in 
Figure 7.  
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Figure 8 shows the first six paths. In PATH 1 (R-C-B, steps 1 – 2, anchor = red, target = 

blue), the participant follows two hops in the closest-to-geodesic direction; the hop from R-

C is a true topological path, but the second hop is apparent, because no edge exists between 

C-B. In PATH 2 (B-D, steps 2 – 3, anchor = blue, target = red) the participant follows one 

hop in the closest-to-geodesic direction. The node I1 is coded as incidental even though it 

connects to D with an edge, because B is also connected to D. In PATH 3 (R-C, steps 4 – 7, 

anchor = red, target = blue) the participant again follows one hop along the closest-to-

geodesic branch, repeating part of PATH 1. C1 and C2 from steps 5 and 6, respectively, are 

examples of checks around node C, to which the participant returns in step 7.  

PATH 4 (B-E-F-G-R, steps 8 – 9, anchor = blue, target = red) is another example of an 

apparent path, because there is no edge between F-G. The first hop B-E goes in a right 

angle direction. The remaining hops all take the closest-to-geodesic branch. PATH 5 (R-G-

F-E, steps 9 – 11, anchor = red, target = blue) is a doubleback of the previous path, PATH 4. 

In PATH 6 (E-F-H, steps 11 – 13, anchor = E, target = red) the participant again retraces part 

of PATH 4, but deviates to follow a true topological connection between F-H, which is in the 

closest-to-geodesic direction. Step 12 shows another incidental hover, I2; it seems clear that 

the participant is following the E-F edge, and thus would probably not think I2 is connected 

to either E or F.  
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Figure 9 - Paths 7–10 extracted from steps 14–19, shown in Figure 7. Where a path 
spanned multiple steps, it has been collapsed into a single image.  
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PATHS 7 – 10 are shown in Figure 9. In PATH 7 (R-I, step 14, anchor = red, target = blue), 

the participant follows one hop in the backward direction. In PATH 8 (R-J-G, step 15, 

anchor = red, anchor = blue), the participant follows a different branch in the backward 

direction for the first hop, and then follows the closest-to-geodesic branch for the second 

hop. Between PATHS 8 and 9, another incidental hover occurs in step 16, which is not 

shown.  In PATH 9 (R-K, steps 17 – 19, anchor = red, target = blue), the participant follows 

another branch in the backward direction. Finally, in PATH 10 (R-I-L, step 19, anchor = red, 

target = blue), the participant follows the same hop as in PATH 7 before following the 

closest-to-geodesic branch for the second hop. Between each of the paths from PATH 1 to 

PATH 6, we observe switching, whereas for PATHS 7 – 10, the participant continues to search 

around the red source node. 

Final coded data set. We eliminated 11 of the 288 trials during the coding process because 

participants entered the answer phase of the trial without hovering over any nodes in the 

search phase. The investigator ultimately classified 95.8% of the steps in the remaining 277 

trials with at least one code. 

The remaining 4.2% of steps could not be made sense of in the context of our coding 

scheme, and were coded as unclassified. We suspect that some of these unclassified trials 

were caused by incomplete data, for example, if a participant missed a node with the pen tip 
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despite looking at it. We had anticipated this limitation of the tablet, but decided that this 

number was small enough to be acceptable. In addition, some of the unclassified steps may 

have been deliberate but uncommon types of movements that we simply did not see often 

enough to classify with a unique code. 

Results 

We now describe the behaviours that emerged during the coding process, and from 

subsequent analysis of the final code set. Some of these findings stem from differences 

between specific graphs and the common cases we observed, whereas others hold across all 

graphs.  

Choice and use of anchors for searching. Although participants were instructed to search from 

the red node to the blue node, we found that they often searched from blue to red, 

especially when the task was more difficult. On average, the majority of paths coded across 

the 24 training graphs used either red or blue as the starting or anchor node (M = 86.9%, SD 

= 10.4%, min = 64.8%, max = 100.0%). We had expected that participants would also 

frequently use intermediate nodes that were part of the way along promising paths as 

anchors, for example, following one or two promising hops, and then choosing a node to 

search out from. However, we were surprised to find that this behaviour was not very 

common. Instead, we observed that participants were much more likely to give up 
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following a path and restart from a red or blue node, even if this meant immediately 

retracing the path they had just followed. The extracted paths in Figure 8 demonstrate this 

behaviour; the participant switches anchor and target before beginning each path from 

PATHS 1 – 6, searching back and forth in alternating directions between red and blue. The 

participant only uses an intermediate node once as an anchor, in PATH 6 (node E). 

Prevalence of the closest-to-geodesic tendency. Participants preferentially followed paths along 

nodes forming closest-to-the-geodesic branches, suggesting strong evidence of a geodesic 

tendency. On average, the majority of the identified paths for a given graph (M = 65.5%, 

SD = 9.7%, min = 49.0%, max = 81.3%) fell along the closest-to-geodesic branches either 

for all hops (M = 39.4% SD = 10.7%, min = 15.8%, max = 56.3%), or for all but the first or 

last hop in the path (M = 26.2%, SD = 8.2%, min = 15.8%, max = 47.4%). In the post-

experiment interviews, eight participants explicitly described strategies involving the 

closest-to-geodesic path. 

We also examined how common it was for the very first branch followed in a trial to 

be the closest-to-geodesic branch for the starting anchor. The majority of participants began 

trials with the closest-to-geodesic branch (M = 60.3%, SD = 25.2%, min = 16.7%, max = 

91.6%), which again points to the strength of the geodesic tendency. However, for six of 

the graphs in the training set, this number was well below 50%, and as low as 16.7%, which 
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suggests that other factors occasionally override this tendency or impact its strength. In 

particular, we noted that as the angle between the closest-to-geodesic branch and the 

straight line to the target increased to 90° or larger, it became more likely that the 

participant would pick a different branch. This observation suggests that the tendency 

decreases in strength the further the closest-to-geodesic branch is from the actual straight 

line to the target; that branch may diverge significantly. Figure 10 shows an example.  

For this graph, only three participants started by following the closest-to-geodesic 

branch from red or blue, which in both cases went to A. Another interfering factor we 

observed was the length of the closest-to-geodesic branch with respect to the target 

Figure 10 - Example of a portion of a graph from the study, with a 2-hop 
solution, where most participants did not follow the closest-to-geodesic branch in 
either direction (B–A or R–A) for their first hop at the beginning of the trial (the 
red and blue nodes are labelled R and B, respectively). We attribute this 
divergence from the geodesic tendency to the large angle size approaching 90°.  
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distance; if the target was far away and the closest-to-geodesic branch was much shorter 

than surrounding branches, or if the target was very close and the closest-to-geodesic 

branch went past the target, then the closest-to-geodesic branch seemed less likely to be 

searched at all. 

Likely directions of search. Despite the prevalence of the geodesic tendency, participants did 

spend considerable time searching along other branches. Typically, the likelihood of 

expanding to nodes that were not along the closest-to-geodesic branch increased with the 

amount of time a participant spent on a trial. We saw the largest divergence from the 

geodesic tendency for the first hop of paths emanating from red or blue. However, 

participants were likely to return to the closest-to-geodesic branch for subsequent hops. 

Our analysis did not suggest that there was a fully continuous ordering of the 

likelihood of searching in a particular direction for the first hop. For example, branches did 

not simply become decreasingly likely as the size of the angle with the geodesic straight 

line to the target increased in a directly continuous way. However, the order was also far 

from random: we observed similar likelihoods within discrete groups of branch directions.  

As shown in Figure 11, we loosely grouped directions of the first hop into four ordered 

groups more specific than those we used in coding - we did not strictly define these groups 

in terms of exact angles. The first is directly towards, meaning a small angle with respect to 
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a line straight towards the target; next is towards, up to slightly beyond a right angle. We 

noted in our analysis of the coded data that when the angle of the first hop was just larger 

than a right angle, the likelihood was still similar other hops that were more clearly going 

toward the target, thus this definition. The third group is away, for even larger angles; the 

last and least likely category is directly away, for angles that were essentially in the 

opposite direction from the target. Participants had a roughly similar likelihood of selecting 

a branch within each group, starting with directly toward, and earlier groups were more 

likely to be searched to exhaustion before later ones were begun.  

This grouping of branches into likely groups also extends to intermediate nodes along 

Figure 11 - Illustration of the ordered groups of similarly likely candidates for the 
first hop, coloured in greyscale in decreasing order of likelihood and named by their 
directionality with respect to the target: directly towards, towards, away and directly 
away.  



56 

promising paths, but the range of angles describing similarly likely branches at such nodes 

was much larger. The second hop in a path was more likely to go towards or directly 

towards the target than away, and paths where users went two subsequent hops away from 

the target were uncommon. 

It appeared that participants tended to exhaust the options around red and blue before 

exhausting the options around nodes two or three hops along a path. This phenomenon 

partially explains our observation that participants tended to return to closest-to-geodesic 

candidates for subsequent hops in paths. It also provides some explanation for the 

relationship between the angle of the closest-to-geodesic branch and the likelihood that it 

would be followed first in a trial. When the closest-to-geodesic branch goes directly 

towards the target, it becomes very likely it will be followed first. But as the angle increases 

to 90° or larger, it becomes more likely that the participant would follow any other branch 

in the same group. We suspect that in these instances, other factors, such as path 

straightness, begin to take precedence.  

Use of apparent and topological paths. Participants primarily followed topologically 

connected paths, but apparent paths created by node-edge crossings did sometimes cause 

significant distraction. Despite the fact that all users were trained to use the halos to identify 

node-edge crossings, some reported that it required extra effort to realize that they were 
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looking at a crossing. Such paths were a common source of error, especially when they lay 

on top of a branch directly connected to the red or blue nodes. We see examples of this in 

PATHS 1 and 3, and PATHS 4 and 5 in Figure 8. The participant examines node C in both 

PATHS 1 and 3, even though it forms an apparent path, presumably because it seems so 

promising. Similarly in PATHS 4 and 5, the participant repeatedly follows the apparent path 

between nodes G and F, taking considerable time to determine that there is a node-edge 

crossing before trying a different route from F in PATH 6.  

Revisitations. We observed that participants often revisited the same path again and again. 

This repetitive behaviour took two forms. We saw many instances of doublebacks, where 

participants would retrace a path one or more times immediately after tracing it the first 

time. We also saw that participants would return to a path after tracing others, even if they 

had followed it multiple times before. This finding is not surprising in light of the known 

limits of working memory for remembering the results of previous searches 27. P2 admitted 

that he would often “look at a path more times than was helpful.” Some participants also 

related this behaviour to the tendency to search within the convex hull and along closest-to-

geodesic path. P6 explained that “I would try to counteract and look for different paths, but 

the [closest-to-geodesic path] was more natural, and it was harder to force myself to look 

away.”  
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Path stopping conditions. Contrary to what might be expected, participants often did not 

follow every path that they started until they reached the maximum length possible in the 

study (4-hops). However, we did observe some commonalities in when participants were 

likely to stop following a path. Some stopping conditions were largely dictated by the 

experimental tasks and common sense: participants typically stopped a path when the 

number of hops equaled the maximum of four, they had cycled to reach a node already in 

the current path, or they had reached the target. Other stopping conditions were less 

obvious. We found that participants actually tended to stop when the number of hops was 

one less than the maximum path length in the task. We also saw that they frequently 

stopped when their current path took them past, or nearly past, the target with respect to the 

starting anchor. We defined past the target generally as the line through the current target 

that was at a right angle to the geodesic straight line between the path anchor and the 

current target as illustrated in Figure 12 – Left, where the geodesic is the dashed green line 

and the perpendicular through the blue target is the solid green line; a user tracing from red 

(R) to blue (B) would likely trace R-C-D, stopping at D, which is just past the blue node, 

and not get to E. Consistent with other observations we have described, we note that this 

definition is not exact, but is dependent on participants ability to judge angles. In this case, 
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we noted that when the current node was very far away from the target, the past the target 

condition seemed to be met at an angle narrower than 90°.   

 

There were two exceptions that we sometimes observed to the final two conditions of 

stopping at the maximum less one or going past the target. Figure 12 – Right illustrates an 

example of these exceptions for the past the target condition. A participant tracing from R 

to B along the path R-C-D would be less likely to stop at D as in the previous example if: 

Figure 12 - Example of the past the target stopping condition. (a) A user would 
typically stop a path at the first node past the target with respect to the starting 
anchor, where past the target is the line through the current target that was 
perpendicular (solid green line) to the geodesic straight line between anchor and 
target (dashed green line). A user tracing from red (R) to blue (B) would likely 
trace R–C–D and stop without going to E. (b) Exceptions to this condition (and of 
the stopping condition of maximum hops minus 1) were when the next hop went 
directly towards the target (D–G) or in a straight line from the previous hop (D–
F).  
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(i) the next hop formed a nearly straight line with the previous hop (as in D-F), (ii) or the 

next hop went directly towards the target (as in D-G). We suspect that these exceptions 

occurred for different reasons. In the case of the first exception (i), we suspect that the close 

to straight line created a continuous path that encouraged users to go straight from C to F, 

with less consideration of D. In the case of the second exception (ii), we suspect that 

participants were relying on peripheral vision to determine that a suitable candidate was not 

present, and only considered the path promising enough to keep following if the next hop 

went in the direction of the target.  

Continuity and geodesic tendency. In previous work, Ware et al. 23 found continuity, namely 

the straightness of the path, to be a very important factor. Huang et al.7 avoided variation in 

continuity in order to avoid confounding their results on the geodesic tendency, and 

conjectured that geodesic tendency takes precedence over path continuity. We often 

observed that continuity can take precedence over the geodesic tendency, refuting their 

conjecture; however, we also saw examples of precedence in the other direction. In fact, 

interaction between path continuity and geodesic tendency is quite complex, and cannot 

simply be reduced to one of these factors taking precedence over the other  
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We found that in many instances participants would follow straight paths for more 

hops than they would “bendy” paths, and that straight paths could distract participants by 

causing them to miss a branch connecting to the solution. Figure 13 shows an example, 

where R-A-B was the solution. In this graph, three participants who followed the branch 

from R to A, next followed the branch from A to C, and missed the branch from A to the 

blue node (B). Only one of the three participants detected the solution in the steps that 

immediately followed. In such instances, we suspect that the Gestalt principle of 

continuity27 sometimes contributes to participants perceiving the straight line formed by 

multiple nodes as a single hop, causing them to skip over interconnected nodes without 

Figure 13 - Example in which a straight line appeared to interfere with geodesic 
tendency (the red and blue nodes labelled R and B, respectively). Some participants 
followed R–A–C and missed the solution path of R–A–B.  
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considering their branches. We suspect that this principle also contributed to the straight-

line exception to some stopping conditions that we previously described.  

Summary 

Through the coding process described in this section, we determined that it is possible to 

identify distinct path-tracing behaviours, addressing Q1. Further, we were able to 

characterize and describe a number of common path-tracing behaviours exhibited by our 

participants, addressing Q2. The behaviours include the use of both topological and 

apparent paths, the conditions under which participants stop following paths, the likely 

directions for the first hop in a path, and the tendency to revisit previously followed paths. 

Unexpected behaviours included the strategy of frequent switches between source and goal 

nodes as the anchors in the search, and infrequency of using intermediate nodes as anchors. 

We verified the prominence of the previously proposed geodesic tendency, but found 

complex interactions between it and the other tendencies that we observed, including the 

impact of path continuity on behaviour, providing a more nuanced understanding of issues 

raised in previous work.7  

All of these findings are useful in their own right as descriptions of human path-

following behaviours when interacting with visual representations of graphs. They were 

also crucial in helping to develop a predictive behavioural model of search set, which we 



63 

present in the next section.  While many of the behaviours that we observed could play out 

in different ways for different participants, enough commonalities exist to allow us to make 

informed guesses about the likely set of paths that a group of users may search.  

A behavioural model to predict the search set 
This section is devoted to our third research question: (Q3) can we predict the search set 

based on observed path-tracing behaviours? To explore this question, we developed a 

simple predictive model of the search set based on the strongest common behaviours that 

we described in the previous section. We next briefly describe the predictive model, and 

discuss our preliminary validation of its effectiveness in predicting the search set and as a 

basis for measuring factors for predicting task difficulty. We look at further validation 

approaches in the next section. A more detailed description of the model components, the 

algorithmic implementation, and parameter selection can be found in the Supplementary 

Material.  

The search set model 

Briefly, the model takes as input a network graph with a defined solution between two 

points, which are used as anchors to explore likely paths. The model is designed to predict 

the set of paths that a group of users would be likely to search, rather than the set of paths 
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that one individual user would use. The model output is an ordered set of discrete groups, 

where paths within each group are unordered and considered to be similarly likely; 

together, these paths compromise the search set.   

The model begins by selecting a batch of likely candidate branches from each anchor 

to comprise the first hop in a path, and then follows the closest-to-geodesic branch between 

each of these candidates and the target. The search set contains one copy of each path 

followed. The conditions that determine when a model stops following a path are directly 

based on the common stopping patterns that we characterized in the previous section. Once 

all the candidates in a batch are eliminated, the model takes the next most likely set of 

candidate branches, and begins the path following process once again. The entire process 

stops once the solution path has been added to the search set (in either direction from either 

anchor), or all likely batches of candidates are exhausted and the task is judged to be too 

difficult to reasonably complete.  

Validation of search set prediction  

We ran the algorithmic implementation of our behaviour model to predict search sets for 

each of our 144 study graphs. The predicted search set produced by the algorithm 

contained, on average for each graph, 87% of all of the node hovers made by participants in 

the study. Conversely, on average for each graph, 86% of the predicted nodes were hovered 
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over at least once during the study. We consider these results to be an appropriate fit for a 

first attempt at developing a predictive behavioural model.  

Using the search set to predict task difficulty 

Finally, we conducted a preliminary exploration into whether or not factors measured on 

the search set would be effective predictors of path-tracing task difficulty.  We selected the 

factor of edge-edge crossings, given its prevalence in previous work and our intention to 

use it in the hierarchical regression analysis described later. We measured search-set edge-

edge crossings for each of the 24 training set graphs by summing the crossings on each path 

in the set (M = 330.4, SD = 298.7, min = 37, max = 1166) and we measured difficulty both 

by response time and by total errors.  

We used bivariate Pearson correlations to examine the individual effect of search-set 

edge-edge crossings on average participant response time in seconds (M = 42.5, SD = 22.5, 

min = 10.6, max = 86.1), and total errors (M = 5.5, SD = 3.3, min = 0, max = 12) for the 

training set graphs. Response time was measured as the time the participant spent in the 

search phase, before pressing FOUND IT!. We found strong positive correlations of search
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Figure 14 - Scatterplots with linear line of best fit showing relationships between search-set 
edge-edge crossings and our dependent variables on the training set graphs (n=24). Top: 
Average response time (s) per participant. Bottom: Total errors across participants.  
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set edge-edge crossings with response time (r = 0.765, p < 0.01), and with error (r = 0.605, 

p < 0.01). In general, |r| > .10 is considered to be a weak correlation, |r| > .30 a moderate 

correlation, and |r| > .50 a strong correlation.58 Scatterplots of these relationships are shown 

in in Figure 14, along with the line of best fit. 

Summary 

With respect to our third research question, Q3, our results suggest that it is possible to 

accurately predict the search set for a group of users by using the human path-tracing 

behaviours that we characterized in the previous section. Further, our exploration into the 

use of the factors measured on the search set for predicting response time and total errors 

yielded promising results, encouraging us to perform the more in-depth validation that we 

present next. 

Measuring graph readability factors using the search set  

The focus of the last stage of our analysis is on answering our final question: (Q4) how 

much improvement over previous models is gained by calculating factors for graph layout 

on a predicted search set? This analysis was intended to serve as a validation of our 

predictive behavioural model as well as an example of how the search set might be used. 

To do this, we compared the relative importance of factors measured at three levels: the 



68 

solution path, the search set, and globally. As a part of our analysis, we also evaluated the 

impact of node-edge crossings, which had not been previously investigated in a user study. 

We present results that show a modest improvement of measuring factors on the search set 

over measuring on just the solution path. More crucially, we also identify important 

differences in the relative contributions of these factors in predicting response time and 

error. 

Method 

Our methodology follows directly from Ware et al.23 and Huang and Huang.8 We measured 

a selection of factors on different levels of the graph, which we call predictors in 

accordance with the literature on regression analysis. We use bivariate correlations to 

examine the individual effects of these predictors on user performance, and to determine 

which factors have any significant impact. We then use hierarchical multiple regression to 

factor out the internal relationships between the predictors, in order to examine the relative 

contributions of each factor in predicting performance. This approach allows us to examine 

the total percentage of variance in performance accounted for by the predictors, as well as 

any overlaps in what the predictors explain. The use of hierarchical regression follows 

recommendations from the literature on incremental validity42 and on the benefit of 
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requiring the researcher to reason about and justify the order in which variables are entered 

into a regression model.   

Data sample. Our sample consisted of the 120 graphs in the validation set, which were 

those that that remained after we removed the 24 graphs for the training set used in the 

earlier analysis.  This number was determined through a power analysis using the following 

parameters: R2 = 0.13, alpha = 0.05, and 9 independent variables. This analysis gave us a 

power level > 0.80 for 120 graphs, which is conventionally considered to be an acceptable 

level.58 From this level of power we expected to be able to detect medium and large effects, 

where R2 = 0.02 is a small effect, R2 = 0.13 is a medium effect, and R2 = 0.26 is a large 

effect.58  

The sample consisted of an equal number of graphs with each possible solution-path 

length: 40 graphs each of lengths 2, 3 and 4 hops.  

Dependent measures. We measured user performance on each of the 120 graphs with two 

dependent variables: average response time (RT) and the number of incorrect user 

responses (error). We chose these measures because we were interested in the impact of the 

predictors on both correct and incorrect answers – it is important to understand how long a 

user might spend only to find an incorrect answer.  
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Response time (RT) was recorded as the average time to complete the search phase for 

each trial for all 12 participants, between 0 – 90 seconds. Error was calculated as the total 

number of incorrect responses by participants for each graph, between 0 – 12.  

Predictor variables. We selected nine different factors to measure on each of the 120 

graphs in the validation set, which we used as predictor variables. A subset of our 

predictors were those found to be most important by Ware et al, all of which were 

measured on the solution path23: the length of the path in hops (sp-ln); the continuity of the 

path, calculated as the sum of the angles in degrees at each step (sp-cn); the total edge-edge 

crossings on the path (sp-ex); and the sum of the branches on each node on the path (sp-br). 

For comparison, our analysis also looked at factors that were not measured on the 

solution path. We selected edge-edge crossings as a factor to measure on the search-set and 

global levels because edge-edge crossings are often cited as the most important metric. We 

measured the sum of the edge-edge crossings on the entire graph (gl-ex) and on each path 

on the search set (ss-ex).  

We chose node-edge crossings as a second factor to compare at our three levels of 

interest. Node-edge crossings are widely allowed in many layout algorithms, but to our 

knowledge have not previously been evaluated with user studies. Our qualitative analysis 

results regarding apparent paths indicate that node-edge crossings might also be important 
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for understanding errors. We measured the sum of the node-edge crossings at each level of 

interest: on the solution path (sp-nx), on each path in the search set (ss-nx), and globally 

across the entire graph (gl-nx).  

Hypotheses. Our hypotheses were as follows: 

H1. Solution path node-edge crossings (sp-nx) will account for additional variance in 

performance beyond other factors on the solution path. We expected that solution-

path node-edge crossings would explain variance not accounted for by the other 

factors of length, continuity, branches, and edge-edge crossings measured on the 

solution path. 

H2. Search set (ss-) factors will account for additional variance in performance beyond 

all of the solution path factors. We expected that search-set factors would explain 

additional variance beyond the solution-path factors (sp-), because they account for 

factors on all the paths that a user might search. 

H3. Search set (ss-) factors will predict performance more efficiently than solution-path 

(sp-) factors. The search set typically overlaps the solution path, so we suspected that 

search-set factors might predict more variance with fewer (or the same number) of 

variables. 
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H4. Global factors (gl-) will not account for additional variance in performance beyond 

the solution path and search set factors. We expected from previous work that global 

levels would not add additional explanation to what can be explained by the more 

task-relevant levels. 

Our hypotheses focused on the incremental validity of factors measured on the search 

set, and on node-edge crossings on the solution path, neither of which had been evaluated 

by previous research. Although we do not make formal hypotheses about the individual 

effects of the factors, we expected to see some positive correlation of all factors with both 

dependent variables. In other words, as any of these factors increases in number for a 

particular graph, so should the average response time and the total number of errors made 

by participants. This expectation includes replicating the results of Ware et al. 23 that global 

edge-edge crossings, and solution-path length, continuity, branches and edge-edge 

crossings would be positively correlated with response time. We also expected to find 

significant contributions of the factors studied by Ware et al. when used in regression 

models.  

Linear correlations for individual effect 

Descriptive statistics for response time (RT) and error, as well as the predictor variables, 

are shown in Table 1. Upon inspection, the distributions for response time and error were  
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Pearson Correlation Coefficients (r) 

 gl-ex gl-nx ss-ex ss-nx sp-ex sp-nx sp-ln sp-cn sp-br 

RT -.046 -.092 .772* .721* .528* .495* .816* .753* .807* 

Error .006 -.018 .699* .672* .407* .447* .661* .687* .636* 

* p < 0.01  

Table 2 – Pearson correlation coefficients (r) between predictor variables and the 

dependent variables of response time (RT) and error. Predictors are grouped by level of 

measurement; those that our study is the first to evaluate are shaded. 

Descriptive Statistics 

 M SD Min Max 
RT 38.71 22.83 5.94 85.15 

Error 4.84 3.75 0 12 

gl-ex 304.59 51.66 195 434 

gl-nx 71.34 13.99 35 108 

ss-ex 380.28 294.99 6 1382 

ss-nx 170.73 136.53 0 684 

sp-ex 14.05 7.51 1 41 

sp-nx 5.66 2.99 0 15 
sp-ln 3.00 0.82 2 4 

sp-cn 159.06 94.14 1 422 
sp-br 17.00 3.90 11 26 

Table 1 – Descriptive statistics for predictors and for the dependent variables of 

response time (RT) and error for the test set graphs (n=120). Predictors are grouped by 

level of measurement; those that our study is the first to evaluate are shaded. 
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found to have a positive skew, so we performed square root transformations59 on both 

variables to improve their distribution. We report on the Pearson correlation coefficients (r) 

between predictor variables and the dependent variables in Table 2. We found significant 

positive correlations between all predictors and the dependent variables, with the exception 

of those at the global level. These results show that all factors measured on the solution 

path and search set were moderate to strong individual predictors of response time and 

error. 

Multicollinearity between factors 

We also inspected the correlations between all of the predictor variables to detect 

multicollinearity; that is, two or more highly correlated predictors. Collinearity between 

two predictors prevents us from understanding the degree to which either of the two 

predictors entered into the model impacts the dependent variables, thus, standard practice in 

regression analysis is to omit one. Choosing to omit some of these predictors allows us to 

better examine the extent of the contributions of the remaining predictors, but leaves 

questions surrounding the omitted variables to future work. 

We identified two pairs of highly correlated predictors (r > .90) that were cause for 

concern: search-set edge-edge crossings (ss-ex) correlated with search-set node-edge (ss-

nx) crossings, and solution-path length (sp-ln) correlated with solution-path branches (sp-
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br). We omitted search set node-edge crossings, because the correlation with each 

dependent variable was weaker. We suspect that the relationship between solution-path 

length and branches stems from our graph generation model, so we would not necessarily 

expect to see it in other types of graphs. We chose to keep solution-path length (and omit 

solution-path branches) because previous work suggests that it more commonly accounts 

for a larger variance in performance than does the number of branches.23 

Hierarchical multiple regression analysis 

We constructed two separate hierarchical multiple regression models, one for response 

times and one for errors, the results of which are shown in Table 3. We included all of the 

predictors that significantly correlated with our dependent variables, but excluded solution-

path branches (sp-br) and search-set node-edge (ss-nx) crossings because of 

multicollinearity. For each regression model, we also confirmed that the assumptions of 

homoscedasticity (similar variance in the dependent variables) and linearity were met.  

The predictors were blocked as follows: block one contained solution-path length (sp-

ln), continuity (sp-cn), and edge-edge crossings (sp-ex), block two contained solution-path 

node-edge crossings (sp-nx), and block three contained search-set edge-edge crossings (ss-

ex). By placing the individual factors of interest into blocks two and three, we were able to 

examine the incremental validity of each factor. 
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We report on the standardized beta coefficients (β) at each step, which indicate the 

individual contribution of each predictor to the model. We also report on R2, a measure of 

the amount of variation accounted by the predictor(s) included in the model at each step, 

and adjusted R2, which takes into account the number of predictors in the model. All 

significant results were p < 0.01. For additional guidance in understanding the statistics, we 

recommend Field 59 for an entertaining introduction to interpreting the results of multiple 

regression analyses. 

Response time model.  After Step 1, the regression model accounted for 75.2% of the 

variance (R2 = 0.752). The relative contributions of the three predictors can be further 

understood by examining their individual beta values, the highest of which came from 

solution-path length (sp-ln) (β = 0.487), followed by continuity (sp-cn) (β = 0.359) and 

edge-edge crossings (sp-ex) (β = 0.160). These results replicate the relative importance of 

these factors found by Ware et al. 23 

Adding solution-path node-edge crossings (sp-nx) in Step 2 accounted for an additional 

2% of the variance (R2  = 0.772, ΔR2 = 0.020). Finally, adding search-set edge-edge 

crossings (ss-ex) in Step 3 accounted for an additional 1.8% of the variance (R2 = 0.790, 

ΔR2 = 0.018). The final regression model accounted for 79% of the variance in response 

time, and contains three statistically significant variables: Solution path length (sp-ln) had   
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Standardized Beta Coefficients (β values) 

 RT Error 

 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 

sp–ln 0.487* 0.458* 0.389* 0.303* 0.267* 0.168 

sp-cn 0.359* 0.358* 0.298* 0.441* 0.440* 0.355* 
sp-ex 0.160* 0.083 0.027 0.101 0.004 -0.075 

sp-nx 
 

0.171* 0.097 
 

0.217* 0.113 
ss-ex 

 
 0.242* 

  
0.342* 

 
 

  
   

Adj. R2 0.745 0.764 0.781 0.533 0.563 0.597 

R2 0.752 0.772 0.790 0.545 0.578 0.614 
ΔR2 

 
0.020* 0.018* 

 
0.033* 0.037* 

 * p < 0.01 

Table 3 – Summary of results from the hierarchical multiple regression analysis of 

measured factors on response time and error. Predictors that our study is the first to 

evaluate are shaded.  
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the highest beta value (β = 0.389), followed by continuity sp-cn (β = 0.298) and search-set 

edge-edge crossings ss-ex (β = 0.242). 

Error model. After Step 1, the model accounted for 54.5% of the variance (R2 = 0.545). 

Only solution-path length (sp-ln) (β = 0.303) and continuity (sp-cn) (β = 0.441) made 

significant contributions. Adding solution-path node-edge crossings (sp-nx) in Step 2 

accounted for an additional 3.3% of the variance (R2 =0.578, ΔR2 = 0.033). Finally, adding 

search-set edge-edge crossings (ss-ex) in Step 3 accounted for an additional 3.7% of the 

variance (R2 = 0.614, ΔR2 = 0.037).  

The final model accounted for 61.4% of the variance in error. Only search-set edge-

edge crossings (ss-ex) (β = 0.342) and solution-path continuity (sp-cn) (β = 0.355) were 

significant contributors to the final model.  

Summary 

Our results replicate previous findings in the literature that the factors of path length, 

continuity, edge-edge crossings, and branches have a significant individual effect on 

response time when measured on the solution path.23 We further found significant 

individual effects for node-edge crossings measured on the solution path, and both node-

edge and edge-edge crossings measured on the search set. We did not see any significant 

individual effect at the global level for edge-edge (gl-ex) and node-edge (gl-ex) crossings. 
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Through regression modelling we showed that we can predict 79% of the variance in 

response time using only three predictors: solution-path length is the most important, 

followed by solution-path continuity, and then search-set edge-edge crossings. Our results 

from the final step of the regression model for response time suggest that measuring 

crossings on the search set has incremental validity over measuring them on just the 

solution path – search-set edge-edge crossings added only an additional 1.8% to the total 

variance explained, a small effect, but it also removed the need for solution-path edge-edge 

and node-edge crossings, making for a more efficient model in terms of the number of 

factors needed for maximal variance prediction.  

We found that the relative importance of the factors differed quite dramatically for 

error from what we found for response time. Our results showed that all of the factors we 

measured on the solution-path and search-set levels had strong individual effects on error. 

Similar to our results for response time, our results in the final step of the regression model 

for error suggest that measuring crossings on the search set has incremental validity over 

the solution path, explaining an additional 3.7%, which is a small effect.  The final 

regression model accounted for 61.4% of the variance in error using only two predictors, 

search-set edge-edge crossings and solution-path continuity, which were very similar in 

importance. 
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We found some evidence that, at the solution-path level, node-edge crossings may be 

more important than edge-edge crossings. Adding solution-path node-edge crossings in step 

2 of both models had a small effect, explaining an additional 2% of variance in response 

time, and 3.3% more in error, but in the case of response time it also reduced the 

contributions of solution-path edge-edge crossings to insignificant levels. These results 

suggest that for layouts that allow node-edge crossings, it may be the more important factor 

to control for relative to edge-edge crossings at the solution-path level. We were not able to 

examine the relative effects of node-edge crossings at the search-set level due to the 

multicollinearity with search-set edge-edge crossings, but our results about the individual 

effects of the factor suggest that it may be of similar importance. This conjecture is further 

evidenced by our observations of the difficulty that apparent paths caused for participants 

during the study.  

Summary of hypotheses. All four of the hypotheses were supported, although two were 

only partially explored because of we were not able to include search set node-edge 

crossings in our multiple regression models due to limitations in our study. We summarize 

the outcomes for each. 
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H1. Solution path node-edge crossings (sp-nx) will account for additional variance in 

performance beyond other factors on the solution path. Supported. Solution path 

node-edge crossings explained additional variance for both dependent measures.  

H2. Search set (ss-) factors will account for additional variance in performance beyond 

all of the solution path factors. Supported for search-set edge-edge crossings, but we 

were not able to examine search-set node-edge crossings in this analysis. Adding 

search-set edge-edge crossings accounted for additional variance in both dependent 

measures.  

H3. Search set (ss-) factors will predict performance more efficiently than solution-path 

(sp-) factors. Supported for search-set edge-edge crossings, but we were not able to 

examine node-edge crossings. The overlap between the search set and solution path 

considerably reduced the relative contributions of node-edge and edge-edge crossings 

measured on the solution path, such that the search set edge-edge crossings accounted 

for additional variance in performance without requiring an increase in the total 

number of predictors required.  

H4. Global factors (gl-) will not account for additional variance in performance beyond 

the solution path and search set factors. Supported. We found no significant 
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relationship of node-edge or edge-edge crossings measured globally with either 

dependent measure. 

Discussion and future work 
The main goal of this research was to dig deeper into what makes path tracing in graphs 

difficult. We did so by characterizing human path-tracing behaviour, both as a worthwhile 

pursuit in its own right and in service of developing a predictive model of the search set, as 

our primary contributions. We also present as secondary contributions the concept of the 

search set itself, and the preliminary validation of the predictive behavioural model through 

multiple regression analysis of graph readability factors. We now discuss how our research 

has addressed these goals, including the limitations of our approach and possible routes for 

future work.  

The characterization of path tracing behaviours 

Our characterization of path-tracing behaviours in graphs extends beyond the previously 

proposed geodesic tendency.7 While we did find strong supporting evidence for this 

tendency, we also found many situations in which it falls short for explaining what people 

do. We sharpened the description and shortened the term that was used in previous work, 

where this phenomenon has been called the geodesic path tendency. Our discussion 



83 

emphasizes that it entails following the closest-to-geodesic branch. We find this description 

more evocative because it emphasizes that a decision is made many times along a path, 

once for each perceived hop, rather than only once for the entire path. 

Our observations revealed a more complex behavioural framework, within which the 

geodesic tendency plays a major role but can be overridden by other tendencies: the 

tendency to continue following straight lines, the tendency to avoid directions that point 

away rather than towards the target, and the tendency to be misled into tracing apparent 

branches that are not in fact true topological connections. Moreover, a full model of path-

tracing behaviour requires understanding when people stop tracing one path in order to try 

another, and where they begin their next tracing attempt. From our observations we also 

characterized a number of behavioural based stopping conditions, such as the tendency of 

users to stop searching soon after going past the target, making paths that do so much 

harder to find.  

The behavioural framework we present here can act as a baseline against which to 

compare further work. While we believe that the framework should allow reasonable 

guesses for parameters that could be used for a range of similar situations, our study design 

and our analytic approach were necessarily limited by balancing precision and 

completeness against the time available to conduct this research. More observational work 
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can be done to untangle the relationships between the geodesic path tendency and other 

tendencies that we characterize, in order to model exactly how they interact and under what 

conditions each should take priority. One parameter space to explore in future work is the 

characteristics of the graph itself: size, edge density, and synthesis technique (for example, 

hierarchically clustering a base graph rather than permuting a mesh according to a 

preferential attachment model). Another large parameter space worth exploring is the visual 

encoding technique used to lay out the graph, including layouts via algorithms such as 

multi-level methods33,60,61 or constraint optimization62 rather than relatively naïve force-

directed placement.63 The layout technique directly affects the search set, since it 

determines which paths are closest to the geodesic, and thus it is likely that a search-set 

model should be customized for families of layout approaches; however, we conjecture that 

it is not necessary to create one for each individual algorithm. Another space of alternatives 

is how edges are drawn, for example as curved lines rather than the simple straight-line 

encoding that we studied.64,65 Moreover, it would be useful to see whether and how the 

addition of scaffolding interaction techniques such as highlighting may change the nature of 

the behaviours we described here. Finally, it would be useful to investigate how behaviours 

differ for other abstract tasks, for example those that combine reading attribute information 

with topological structure traversal.19   
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While we found the recorded path-tracing data from the Cintiq tablet to be quite rich, 

and sufficient for our study, we know that it did not capture the complete picture of what 

users were doing. Some of the noise in our logged data can be attributed to instances where 

users visually examined nodes but forgot to point at them with the pen. We chose not to use 

eye tracking in our study primarily because of its high overhead with respect to the analysis 

required in the development of our predictive model. A follow-up study could combine the 

tablet approach with eye tracking using tools to automatically compare or correlate node 

hover and eye tracking data to examine how well pointing and eyes match up, and to 

potentially capture aspects that the tablet misses.  

Qualitative analysis through coding always involves a degree of subjectivity: a 

different investigator might describe some of the path-tracing behaviours that we identified 

in a different way, or even identify other behaviours that we did not. A useful follow-up 

analysis could employ additional coders to examine the reliability of our single 

investigator’s codes, and potentially expand upon our findings. Alternative visual analysis 

techniques may bear fruit; our approach to exploring trajectory data with small multiples 

that show the evolution over time for a single person and a single layout is only one 

possible tactic. Andrienko et al.49 discuss many alternatives for the visual analysis of 

trajectories: flow maps, clustering by flow similarity, and frequent sequence discovery 
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seem like the most appropriate choices to try. Quantitative computational methods such as 

machine learning might reveal different patterns than human judgement yields, and are 

another promising avenue for future research to explore.  

The predictive search set model 

Our predictive behavioural model allowed us to predict a set of paths that users were likely 

to follow at fairly high accuracy (87%). We consider this model a good first step: it 

captures most of the behaviours that we observed in a robust way that avoids overfitting the 

training set in the first analysis phase. We encourage future research on search set models 

that strive for further breadth, completeness, and accuracy. For example, although we noted 

in our characterization of behaviours that users could be quite distracted by apparent paths 

caused by node-edge crossings, our final predictive model only accounts for true 

topological paths. A more complex model could take into account both true topological 

paths and apparent paths, thereby supporting layout algorithms featuring nuanced 

adjustments to local regions of the graph to eliminate node-edge crossings on important 

paths. Future work could lead to models that support relative rankings of paths within the 

equivalence classes that we propose, or even more specific priorities to different paths 

within the search set based on their relative salience, supporting a layout adjustment 
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algorithm that determines whether a particular path is sufficiently high priority to merit a 

layout change. 

The search set concept  

A secondary contribution of this work is the concept of a search set. It appears to be an apt 

model for real human behaviour: we have shown it to be predictable when applied to path-

tracing tasks. We promote the idea of a search set to analyse exactly the subset of a graph 

that is relevant to a particular task, at an intermediate level between completely global and 

the strictly local single path that is the answer to a specific query. 

The search set concept may serve to illuminate aspects of human behaviour that have 

been difficult to unravel thus far; it may serve to explain the variation in results on global 

edge-edge crossings found in previous research. Evaluation results for this factor have been 

very mixed;8,11,20,37 our own study was one of several to find a lack of effect of global edge-

edge crossings on performance. Our conjecture is that the effect depends on the size of the 

search set in relation to the size of the full graph. In a small graph, a user may search most 

of the graph to complete a task, so global measurements of factors will heavily overlap with 

the search set. Our study used somewhat larger and denser graphs than have typically been 

in used in previous work, for a smaller overlap; this difference may explain the lack of any 

significant relationship between the global factors and our dependent variables.   
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Factor measurement for model validation 

Although factor measurement was the initial impetus for our investigation, in the end it was 

relegated to a supporting role in validating our predictive behavioural model. We applied 

our predictive model of a search set to the problem of factor measurement both as 

validation that the model itself is a reasonable approximation of the human behaviour we 

had observed, and as an example of how the technique can be used. We consider the results 

of the regression analysis to be encouraging evidence that the concept of a search set is on 

target; indeed, we see a modest quantitative improvement for even this first attempt at a 

predictive model.  

Our findings pertain specifically to one type of path-tracing task in graphs. It would be 

useful to understand how the relative importance of the factors we examined in our study 

differs for different abstract tasks, such as browsing or comparison. Future research could 

also explore whether the incremental improvements seen by extending measurement of 

edge-edge crossings from the solution path to the search set also hold true of other factors. 

The differences we found in our analysis between how the various factors influence 

response time and error strengthens the case that no single factor that dominates graph 

readability, so we should seek to understand a factor’s priority or importance in a specific 

context. This idea has received limited practical attention beyond Eades et al.66, who 
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showed that compromises between factors based on their relative importance can lead to 

better layouts. Future research should continue to examine how factors might be traded off 

to provide the best support for particular user tasks or priorities.  

Regression versus ANOVA for factor characterization 

We echo and emphasize the call of Ware et al.23 for the benefits of regression analysis over 

simply testing for statistical significance with methods such as analysis of variance. 

Untangling the relationships between factors will help characterize the algorithms that use 

these factors, and it will also help develop guidelines of how to map between algorithms 

and the requirements of specific visual encoding and interaction techniques.67 A small 

methodological contribution in this article is that we advocate for hierarchical rather than 

stepwise multiple regression, based on recommendations from the clinical psychology 

literature on incremental validity.42  

Conclusion 
In this article, we proposed the concept of the search set: the subset of the graph that is 

likely to be carefully investigated by a user in carrying out a path-tracing task in a graph. 

The search set concept was motivated by our interest in determining path difficulty for the 

purposes of experimental comparisons of techniques, and we focused on this application in 
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our work. We also presented range of potential practical applications that a predictive 

search set model in the design of visual encoding and interaction techniques for graphs. A 

primary contribution of the work is a characterization of common human path-tracing 

behaviours based on detailed qualitative analysis of observations of people using visual 

representations of graphs for path tracing. These include verification of the closest-to-

geodesic tendency, and descriptions of conditions under which people stop following paths, 

the likely directions for the first hop in a path, the tendency to revisit previously followed 

paths, and the tendency to mistakenly follow apparent paths in addition to true topological 

paths. Another primary contribution of this work is an initial predictive behavioural model 

of the new concept of a search set that is based on these observed behaviours and is robust 

to a range of parameters. We validated the search set model by measuring graph readability 

factors on this set, in comparison with measuring them globally on the entire graph or very 

locally on only the single path that is the correct solution. The factors tested included edge-

edge crossings, node-edge crossings, path continuity, and path length. The modest 

improvements that we achieved in the efficiency and total variance accounted for in 

predicting response time and error are encouraging evidence that the concept of a search set 

has merit, even though our model is a first attempt at algorithmic instantiation of complex 

human behaviour. A secondary contribution of this article is the careful comparison of the 
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relative importance of factors measured at these three levels of a graph through multiple 

regression analysis. We also found key differences in the relative weighting of the 

importance of the factors that affect response time versus error. 
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