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Abstract

Document collections are often stored as sets of sparse, high-dimensional fea-
ture vectors. Performing dimensionality reduction (DR) on such high-dimensional
datasets for the purposes of visualization presents algorithmic and qualitative chal-
lenges for existing DR techniques. We propose the Q-SNE algorithm for dimen-
sionality reduction of document data, combining the scalable probability-based
layout approach of BH-SNE with an improved component to calculate approx-
imate nearest neighbors, using the query-based APQ approach that exploits an
impact-ordered inverted file. We provide thorough experimental evidence that Q-
SNE yields substantial quality improvements for layouts of large document col-
lections with commensurate speed. Our experiments were conducted with six
real-world benchmark datasets that range up to millions of documents and terms,
and compare against three alternatives for nearest neighbor search and five alter-
natives for dimensionality reduction.

Keywords: dimensionality reduction, document visualization

1. Introduction

Dimensionality Reduction (DR) algorithms transform a set of N high-dimensional
input data points with M dimensions into an output dataset with the same number
of data points but a reduced number of m dimensions: m < M. We focus here
on the use of DR for visual data analysis, in contrast to other possible goals such
as generating tractable datasets for further algorithmic processing. We further fo-
cus on the common choice where m is equal to 2 and the low-dimensional data is
shown as a scatterplot, following guidelines for visual encoding [1, 2].

A frequent use case for visual data analysis with DR is for the exploration
of large document collections. These collections range in size from thousands to
millions of documents, precluding the simple approach of simply expecting the
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analyst to read through each of them. Each of the N points represents a document,
whose contents are represented as a vector of M terms. These datasets are very
high dimensional, where there are typically at least as many terms as documents;
in these cases, where N = M, the term vectors are sparse.

Despite the popularity of using DR for documents, we have identified a major
drawback of existing DR algorithms that leads to low-quality results for document
collections because of the sparse nature of these datasets. We present a new DR
algorithm, Querying Stochastic Neighborhood Embedding (Q-SNE), that yields
significantly higher-quality results for large document collections than previous
work, at commensurate speeds. Our design target is a system that scales to mil-
lions of documents and dimensions with tractable speed and memory use. The
main innovation of Q-SNE is to compute approximate nearest neighbors using the
APQ [3] impact-ordered inverted-file approach inspired by query-oriented tech-
niques from the information retrieval literature, in contrast to the previous BH-
SNE [4] approach that finds nearest neighbors using a combination of PCA and
Vantage-Point trees [5].

We validate our claims thoroughly with computational experiments on six
benchmark document collection datasets that range up to two million documents
and up to one and a half million terms. Though there are many possible defini-
tions of layout quality, we follow the reasoning of Venna et al [6] and focus on
neighborhood preservation, using precision/recall curves as a quantitative metric
for layout quality. First, we compare the nearest-neighbor computation to three
competing approaches in terms of both quality and speed for this document data,
and show dramatic improvements in both. Second, we compare the quality and
speed of the Q-SNE layout to five other DR algorithms: PCA [7], Glimmer [8],
LSP [9], LAMP [10], and BH-SNE [4]. We show that Q-SNE has equivalent speed
to and higher quality than BH-SNE, and both of them outperform the others. Fi-
nally, we illuminate the qualitative differences between the Q-SNE and BH-SNE
layouts with a detailed analysis of how and why Q-SNE more accurately reflects
the neighborhood structure of the data.

The contribution of our work is both the Q-SNE algorithm itself, and the ex-
tensive experimentation comparing the performance of the algorithm and its com-
ponents to previous work.

In Section 2 we discuss the challenges of sparseness in document collections,
and characterize how four classes of previously proposed DR algorithms handle
its implications. In Section 3 we discuss multiple interpretations of the concepts
of queries and neighborhoods, and characterize how three major approaches to
nearest neighbor search handle large document collections. We then present the
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Q-SNE algorithm itself in 4. Section 5 presents extensive experimental evaluation
of our performance claims, and we conclude in Section 6.

2. Document Data and Previous DR Algorithms

The usual strategy for transforming documents into high-dimensional data is
to map each document to a vector in term space, the vector space where each
dimension represents a weight assigned by a term-scoring method. The classic
TF-IDF technique [11] assigns each of a document’s term dimensions a weight
proportional to the frequency of the term in the document. This term weight is
then discounted by the frequency of the term across all the documents. There
are many possible vector similarity metrics in use. A popular one in information
retrieval is the cosine similarity: the inner product of the two vectors, normalized
by their lengths to range between 0 and 1. Most documents in a large collection
have little to no similarity to each other because they have little or no overlap
in the terms that they contain. Thus, most pairwise similarities are exactly 0 or
very close to 0, and the term vectors are considered to be sparse data and handled
accordingly.

Many DR algorithms require distances, rather than similarities, where cosine
distance is simply 1 minus cosine similarity. Thus, the preponderance of pairwise
distances are exactly 1 or close to 1 in large document collections. The semantics
of these numerous unit-length distances is important because conceptually they
correspond to infinite distances. However, many previous DR algorithms fail to
handle these infinite distances appropriately, resulting in impaired quality because
of layout distortion, or wasted time because of useless computations.

We classify previous DR algorithms into four major classes based on the ap-
proach to optimization: orthogonal projections, global distances, manifold dis-
tances, and probability distributions. We now discuss in detail how each of these
families of algorithms handles these unit-length distances; only the probability
distributions family has a mathematical framework that does so gracefully.

2.1. DR with Orthogonal Projections

The family of orthogonal projections includes methods such as principal com-
ponent analysis (PCA) [7] which computes the linear projection of coordinate data
onto an orthonormal basis that best preserves the variance of the data. The trans-
formation has numerous useful properties, both by being the linear projection of
the data into the low-dimensional space with least-squared error, and also by pro-
viding a method for back-projection to the original embedding space of the data.



Variants of PCA algorithms exist to address speed concerns and be computed very
efficiently using approximation algorithms of the singular value decomposition of
a matrix [12].

Orthogonal projections are often an ineffective solution for visualizing doc-
ument data because the majority of the variance in document data matrices is
captured by the unit length distances arising from the orthogonal relationships
between term vectors in the data. Assuming the data is clustered within G orthog-
onal subspaces, the average distance between these clusters will be 1.0, creating a
G-dimensional simplex. The first G principal components will primarily express
these unit-length, inter-cluster distance relationships, often without resolving any
of the intra-cluster distance relationships that may reside in a subset of orthogonal
dimensions. Because G is often larger than 2 or 3, PCA by itself is an ineffective
general tool for producing low-dimensional visualizations of document collec-
tions.

2.2. DR with Global Distances

Global distance methods, such as Multidimensional Scaling (MDS) [13], com-
pute a low-dimensional layout of points with inter-point distances that best match
the input high-dimensional distance matrix. There is surprising variability to the
number of MDS techniques [14], but our arguments here hold for any particular
MDS algorithm. The problem that MDS methods have with document data lies
with optimizing the layout to fit the preponderance of unit length distances that
arise when two documents share no terms. MDS methods optimize a function
called stress, which sums the residuals between the high and low dimensional
distance matrices.

Buja and Swayne noted the problem of indifferentiation [15] when using MDS
for datasets where distances are clustered around a positive constant, with the ex-
treme case being a perfect simplex: the high-dimensional analog of a tetrahedron,
where every object is equally distant from every other object. In this case, apply-
ing MDS yields low-dimensional layouts with a characteristic shape approximat-
ing a uniform ball: in 2D, it is a circular disk with a sharp edge and a low density
in the center. They caution data analysts to avoid misinterpreting this artifact as
meaningful dataset structure.

Continuing with this line of analysis, we argue that MDS algorithms spend
most of their time on nearly useless computations when applied to document data.
Because no simplex can fit without distortion into a low-dimensional projection,
the unit-length distances make up the majority of the error of the objective func-
tion. Unfortunately, these disconnected unit-length distances dominate the com-
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putation in a way that is inversely related to their importance; the important local
distances to their nearest neighbors are not given enough weight.

One strategy to improve MDS maps is to modifying the objective function
using polynomial re-weighting of the terms inversely proportional to distance, as
in Sammon mapping [16]. However, such schemes do not go far enough; they still
retain the need to fit all the distances of unit length in the objective function, as
shown by Paulovich [9].

2.3. DR with Manifold Methods

Manifold distance dimensionality reduction methods preserve distances across
local surfaces formed by the data in high dimensional space, building a model
of manifold connectivity. The early work such as the Isomap algorithm [17],
Local Linear Embedding [18], and Laplacian Eigenmaps [19] has been followed
by many other variants [20, 21, 22, 23].

Manifold methods are computationally intensive and often subject to numer-
ous tuning parameters controlling how the local manifold is inferred from the data.
Furthermore, several methods make assumptions about the sampling density and
number of manifolds generating the data points under analysis. Most of these
methods are targeted at the ideal case of data with smooth, uniformly sampled,
nonlinear structures [24].

While the notion of stitching together the term vectors into a useful layout may
seem attractive, in practice manifold techniques struggle with building an effective
manifold model over vectors derived from document collections. Their connectiv-
ity assumptions often do not hold because the sampling of the different subspaces
is very sparse, often leading to significant distortions in the manifold distance cal-
culations. This phenomenon is well documented by van der Maaten [25], who
reports that the performance of manifold methods are consistently thwarted by
noisy, real-world examples.

2.4. DR with Probability-based Methods

Probability-based dimensionality reduction methods such as SNE [26], t-SNE [27],
NERYV [6], NE [28] and BH-SNE [4] try to minimize the discrepancy between
high dimensional and low dimensional probabilities derived from distances. This
discrepancy is measured as the Kullback-Leibler divergence
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between the two distributions P and Q representing the distributions for the high-
dimensional and low-dimensional cases respectively. Probability methods work
by building conditional probability distributions for each point over the other data
points based on high-dimensional distances, where probability is interpreted as
the likelihood that point i will be chosen as a given point j’s nearest neighbor.
This approach intuitively assigns points with close distances a high probability
value, and points with far distances a low probability value.

Probability-based methods have objective functions that exhibit strong simi-
larity to the Stress function, used to optimize global distance, but we argue they
are different enough to warrant special categorization. The main distinction be-
tween MDS and probabilistic methods is best illustrated by comparing their ob-
jective functions. Stress, and its descendants, are expressed as a weighted sum of
squared residuals between high and low distances

Y, wij(dij— &)
i<j<n
where the weights w;; and §;; are fixed inputs into the objective function. In
contrast, the individual layout terms of the SNE objective function in Equation 1,
the g;’s, are functions of the locations of all the other points in the layout, not
just point j and i. Therefore, even ignoring the log transformation, no selection of
weights w;; or function of the input distances J;; can always reproduce the results
of SNE or other probabilistic dimensionality reduction methods.

The t-SNE probability-based method produces some of the most visually salient
cluster visualizations of high-dimensional data. It accomplishes this salience
by mapping the high-dimensional Gaussian probability distribution to a heavier-
tailed Student-t probability distribution in the low-dimensional space. The mis-
match in tails is specifically designed to address the crowding problem [27], where
mappings of points within a sphere of radius r high-dimensional space quickly ex-
haust the exponentially smaller volume contained within a corresponding sphere
with identical radius in low-dimensional space.

Unlike other DR techniques, Probability-based methods can implicitly handle
the unit-length distances induced by having zero cosine similarity. This is done
by mapping unit-length distances to zero probabilities. Unlike the previously de-
scribed DR techniques, probability methods permit significant flexibility in the
relative placement and handling of zero-probability points. Using a spring-force
metaphor, zero-probability points are attached to a point with an infinite-length
spring that rapidly diminishes in spring force as a function of distance. In con-
trast, distance-based methods such as MDS always assign a fixed-length spring
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between points that will invariably contract to some finite length, producing an
attractive force between two points that have no meaningful relationship.

2.5. Document Oriented DR

Numerous DR techniques specialize in computing layouts of high-dimensional
document vectors. The IDMAP algorithm of Minghim et al [29] performs dimen-
sionality reduction using the FastMap linear projection technique [30] followed
by a force-based relaxation step. The LSP algorithm of Paulovich et al [9] first
selects a set of control points with k-medoids [31] and then places the remaining
points with a linear mapping that best preserves nearest-neighborhood member-
ship. Paulovich and Minghim’s HiPP algorithm[32] uses a hierarchical clustering
of the data to recursively project the data with the LSP technique into disjoint
circular regions. Both LSP and HiPP were validated by using a metric called
“Neighborhood Preservation”, which is equivalent to precision-recall when the
sizes of relevant and retrieved documents sets are identical. In contrast to these
existing techniques, our approach avoids any linear projections or distance-based
positioning, requires no selection of control points, and imposes no hierarchical
structure of the data.

3. Queries and Previous Nearest Neighbor Algorithms

Venna et al [6] suggest framing the use of DR for visualization, where people
examine the visible structure of the low-dimensional projection as a 2D scatter-
plot, using terms from the information retrieval (IR) literature. In IR, the goal
is optimize the true information content retrieved by a guery. In their framing,
Venna et al define a query to be a point selected by a data analyst, and the re-
sult retrieved by the query to be the set of neighboring points around the query
point. They point out that analysis of the neighborhood in the low-dimensional
projection compared to the high-dimensional space in terms of true positives, false
positives, and misses matches up with common quality measures of precision and
recall [33] in IR, that compare the number of retrieved points to the number of rel-
evant points. As a systematic way to compare the visual neighborhood set in the
projection to the true neighborhood set in the high-dimensional space, they pro-
pose quantitative measurement of DR layout quality using precision-recall (PR)
curves, where the number of retrieved points is varied to create the curve. We
adopt their proposed methodology in this paper, using PR curves for quantitative
comparative analysis of DR layouts in Section 5.



We also consider the concept of a query and a neighborhood in a different
context: in the literature on nearest neighbor (NN) search, the goal is framed
as finding the neighbors for a query point. We use approximate NN search as
a component of the Q-SNE DR algorithm. In particular, we use approximate
K-nearest neighbor search compute the set of k nearest points in a data set for
a set of query points. Our design target is scalability to queries for millions of
documents in under an hour on a single CPU. We chose APQ [3] as a suitable
algorithm, as discussed below. APQ uses internal data structures that efficiently
support generating all pairs of queries; with APQ, the query set is equal to the
entire data set, not just a single point as above.

We now discuss in more detail three approaches to NN search: spatial parti-
tioning, mapping, and queries. We provide the rationale behind our choice of the
query-based method APQ [3].

3.1. NN with Spatial Partitioning

Spatial partitioning strategies conduct NN search by constructing hierarchical
structures that partition the data space. Examples include balance-box decom-
position trees [34], k-d trees [35], cover trees [36], and vantage point trees [5].
After constructing hierarchical spatial decompositions of the data space with such
methods, a spatial search for nearby points becomes similar to a generic search
tree traversal.

This spatial approach has two shortcomings with respect to the very high-
dimensional spaces that occur with document term vectors. First, in axis-aligned
trees such as k-d trees, the sheer number of dimensions in the data results in trees
that are too large to accelerate nearest neighbor search. Second, metric trees like
vantage point trees and cover trees are confused by the cosine distance because it
is not a true distance metric as it does not obey the triangle inequality. The BH-
SNE DR algorithm does use vantage point trees, but only after a pre-processing
step that reduces the number of dimensions to 50 with PCA. We conjecture that
this approach discards potentially important information; our goal with Q-SNE
is to use a scalable one-step approach that exploits all of the useful information
while avoiding unnecessary computation. We deem that the spatial partitioning
NN approaches are not suitable for this goal.

3.2. NN with Mapping

Mapping-based techniques, by contrast, build functions that map data points
close together with high probability. Using this technique, the search is restricted
to the set of bins to which similar points are mapped. The seminal example of



mapping techniques is Locality Sensitive Hashing (LSH) [37], which uses random
projections to divide the input space into a set of bins. Mapping techniques share a
limitation with spatial partitioning techniques: they operate without prior knowl-
edge of the subspace structure of the data. In contrast, the query-based approaches
described below build data structures that exploit useful structure directly, rather
than inferring it through time-consuming computation. These approaches outper-
form mapping techniques for sparse data such as document collections.

3.3. NN with Queries

The problem of exact NN search has been tackled in the IR and database lit-
eratures using a data structure called the inverted file [38] that maps from a single
query term to the list of documents that store it, in an inversion from the standard
approach of storing a term vector that maps from a single document to the list of
all the terms it contains. Inverted files accelerate query processing by providing
easy access to only those documents that share the query term, avoiding the need
to check against the entire collection. They provide benefits only when the data
is sparse, as in document collections; with dense datasets, the inversion would
simply add additional overhead rather than speed computation.

Initial work in IR reduced the search space of nearest points by partially order-
ing the inverted file, and then iteratively computing upper bounds on the remaining
documents to be processed [39, 40]. Recent work focused on scaling up similarity
calculations to massive datasets also uses a bound calculation to compute the exact
nearest neighbors, while also building the inverted file index on the fly [41][42].

An efficient approach to approximate NN search is by reordering and travers-
ing these lists according to impact, so that high-scoring queries are found ear-
lier in the search process than low-scoring ones [43]. The advantage of impact-
ordered traversal is that the computation can be truncated after the desired number
of neighbors is found; full traversal is not required.

We recently proposed the All Pairs Query (APQ) algorithm [3] for impact-
ordered, inverted-file approximate k-NN search. APQ constructs the approximate
set of k nearest neighbors by performing an ensemble of queries across all pairs
of data points, as the name suggests. (In the database literature, the all-pairs
k-nearest-neighbor problem is referred to as a top-k similarity join [44].) APQ
is explicitly designed to exploit the sparse structure of document collections to
avoid the need to exhaustively compute all of the similarities between data points.
Each term vector resides in a low-dimensional subspace of term space, and the
inverted file maintains a record of the subspace dimensions for each vector. In
APQ, the traversal of the documents indexed by the inverted-file terms contained
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in the query is ordered by the magnitude of their 1D projections with the query’s
subspace dimensions. Thus, when using the terms of a given term vector as a
query into the impact-ordered index, we first encounter those vectors whose pro-
jections onto the query’s subspace dimensions are the largest. These vectors are
more likely to be in the set of points closest to our query. Thus the impact-sorted,
inverted file provides the equivalent of a mapping function, but without the need
to derive partitions or hash functions from the data through computation. The
contribution of our work in this paper is to incorporate APQ into a DR algorithm.

4. Q-SNE Algorithm

Our design target for Q-SNE was scalability for datasets with millions of doc-
uments and millions of terms, achieving significantly higher quality layouts than
previous work for document data while preserving commensurate computation
times.

The Q-SNE algorithm has three phases: document processing, NN calcula-
tion, and layout. Q-SNE builds on Barnes-Hut Stochastic Neighborhood Embed-
ding (BH-SNE) [4], which itself builds on Stochastic Neighborhood Embedding
(SNE) [26]. The major difference between Q-SNE and BH-SNE is in the NN cal-
culation phase, where we use the APQ algorithm rather than the combination of
PCA and Vantage Point Trees.

In the first phase, documents are converted into term vectors using the TF-IDF
vector scoring function. In the second phase, the set of 30 approximate nearest
neighbors and the distances to them are computed for each document using the
APQ algorithm [3]. In the third phase, these nearest neighbors are used to pro-
duce a layout by minimizing the t-SNE objective function [27], using the same
momentum-based gradient descent with Barnes-Hut quadtree approximation as
used in the BH-SNE algorithm [4] and terminating after a fixed number of itera-
tions.

We now discuss these three phases in more detail.

4.1. Document Processing

To efficiently calculate similarities between documents, we convert the doc-
uments into vectors in term space, where each dimension represents a term. To
calculate the weights of each dimension we select the classic TF-IDF scoring
function [11]. The resulting dimensionality of term space is often very large; we
show results for benchmark datasets with term counts ranging from thousands to
millions in Section 5.
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The major scalability challenge in this phase is memory usage. While previous
work such as BH-SNE does not include document processing as part of the algo-
rithmic pipeline, we consider the processing stage worthy of a brief discussion
given the significant engineering requirements of handling very large collections
of document data.

It is crucial to efficiently manage document vector storage; many straightfor-
ward approaches to processing documents do not scale to collections with mil-
lions of terms. The Q-SNE processing stage converts directories of text docu-
ments into sparse TF-IDF feature vectors stored in a Compressed Sparse Row
matrix format[45]. We build on the sparse matrix storage support of the scikit-
learn toolkit [46], which also provides a standard set of English stop words and
generates bigrams.

4.2. Nearest Neighbor Calculation

The approximate nearest neighbor approach used in BH-SNE is to first reduce
the dataset to 50 dimensions using PCA and then use the Vantage Point metric
tree (VPTree) algorithm for approximate nearest neighbor search. We claim that
this approach leads to inaccuracy for sufficiently large document collections, and
show experimental evidence to validate this claim in Section 5.2.

The major scalability challenges in this phase are both computational speed
and result quality. The key insight in this paper is that an alternative approach
to approximate NN search could yield much better results for DR when the data
is a set of very sparse, high-dimensional document vectors. As we discussed in
Section 3, the limitations that spatial partitioning and mapping approaches to NN
must infer the subspace structure of the data are addressed by using a query-based
approach that features an impact-ordered inverted file as the core data structure.
We thus select the APQ algorithm [3], which exploits the sparse structure of docu-
ment datasets to compute a high-quality approximation of the k nearest neighbors
quickly. Our hypothesis is that higher quality NN results will lead to a higher qual-
ity layout for Q-SNE than BH-SNE, despite using essentially the same approach
for the layout computation itself. We show experimental evidence to validate this
hypothesis in Section 5.3.

The only parameter required for APQ is the number of nearest neighbors to
compute. The parameter setting of k = 30 was an empirical choice, based on our
observation that it produced stable results across the entire range of benchmark
datasets described in Section 5.1.
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4.3. Layout

We select the probabilistic t-SNE objective function for computing our docu-
ment embedding [27]. The choice of a probabilistic method gracefully transforms
the large number of unit length distances in document collections into zero prob-
abilities, as discussed in Section 2.4. In addition, t-SNE’s use of mismatched
tails for cluster separations creates visual salience for the disparate clusters, and
cluster-based analysis is a typical approach used in exploring large document col-
lections.

The major scalability challenge in this phase is speed, requiring to another
choice of approximation methods during the layout computation itself. Proba-
bilistic DR methods optimize the KL Divergence between the input P and vi-
sual Q distributions of data points. In practice, this optimization is done with ei-
ther momentum-weighted gradient descent[27] or conjugate gradients[6], both of
which require calculating the gradient of the objective function. This gradient cal-
culation is analogous to an N-body problem, requiring summing the contributions
between the O(N?) pairs of points. Naive implementation of quadratic algorithms
do not scale gracefully to large N. In low dimensions, such as the case we tar-
get with projecting to 2 dimensions, N-Body approximation strategies exist which
substantially reduce the complexity of such calculations down to O(NlogN) us-
ing the quadtrees or dual-trees, or even O(N) with the fast multipole method [47].
De Freitas et al propose using the Dual-Tree method[48] to approximate the SNE
gradient. In contrast, quadtrees are used by both van der Maaten for t-SNE [4] and
Yang [28] for NE. Van der Maaten showed that, with respect to the performance
of optimizing the t-SNE objective function, the need to reconstruct the dual tree
at each iteration reduces the computational advantages of the Dual Tree approach
over the quadtree [4]. Following their lead, we also chose to use quadtrees to
approximate the gradient of the t-SNE objective function.

An important parameter in N-Body approximation strategies with quadtrees is
the accuracy parameter 6. In their parametric analysis of 0 with respect speed and
accuracy of tSNE layout results, van der Maaten highlight a stable region between
0.25 and 0.75 and select 0.5 as a good tradeoff in speed versus quality [4]. We
follow suit and set 8 equal to 0.5 in all our results below.

5. Experiments

We now report on the results of experiments that compare the performance of
Q-SNE to other approaches. We first describe the benchmark datasets we use in
the experiments. We evaluate the performance of the approximate NN component
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Dataset Docs (N) | Terms (M)
warlogs 3,077 4,337
metacombine 28,433 28,377
textfiles 41,591 1,645,053
cables 251,287 771,854
nytimes 299,752 102,660
pubmed 1,999,000 141,043

Table 1: The six benchmark datasets used in the experiments, with document and term counts.

on document data by comparing it to three alternatives, measuring both compu-
tational speed with runtimes and quality in terms of precision-recall curves. We
then evaluate the performance of the layout component, again with quantitative
measures of speed and quality, against five alternatives. Finally, we perform a
detailed comparison of BH-SNE and Q-SNE results where qualitative analysis is
linked to quantitative measurements, to explain what aspects of visible structure
in the scatterplots that are misleading with BH-SNE are more trustworthy with
Q-SNE. All benchmarks were run on the same evaluation computer, a Dell R720
Server with two 12-core 2GHz Xeon CPUs and 32GB of RAM.

5.1. Benchmark Datasets

The benchmarks in this paper are run on a set of six text datasets, all gath-
ered from real-world sources. The warlogs and cables datasets are sets of
documents from Wikileaks, where warlogs represents the July 2009 subset
of the Iraqi Warlogs, and cables contains the entire set of text files from the
Cablegate dataset. The metacombine dataset is produced from metadata tags
harvested from a disparate collection of digital libraries [49]; we ran IDF as a
post-processing step, because the original had only been processed with TF. The
text files dataset is harvested from a curated collection of 1980s-era bulletin
board system posts'. We gathered nyt imes, New York times news articles, and
pubmed, PubMed abstracts, from the Bag of Words dataset from the UCI Ma-
chine Learning Repository [50]. Table 1 summarizes the sizes of each collection
in terms of the number of documents (points) N and number of terms (dimensions)
M.

Uhttp://www.textfiles.com/
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5.2. Approximate Nearest Neighbor Results

We first report on experiments that justify our selection of the APQ inverted-
file based approximate nearest neighbor algorithm. We use the same C imple-
mentation of APQ that was built during its original development [3]. We compare
APQ to three state-of-the-art algorithms. Two are representatives from each of
the other two major families of NN algorithms. We select the Vantage-Point met-
ric tree (VPTree) algorithm from the spatial partitioning family [5]. We use the
C++ VPTree implementation included in the BH-SNE source distribution.”? We
select Locality Sensitive Hashing (LSH) from the mapping family [37]. We use
the C++ implementation from the Caltech Large Scale Image Search Toolbox,?
after modifying it to handle sparse document vectors for greater scalability, with
the parameter settings of 10 hash tables and 10 random-projection hash functions
per table. The third algorithm tested is PCA-VPTree, the hybrid NN method used
in BH-SNE, where the document matrix is first reduced to 50 dimensions with
PCA and then the VPTree algorithm is applied to the results. The BH-SNE source
distribution does not include code for the reduction step at all, but assumes that
input data has already been preprocessed. In order to compare PCA-VPTree to
the alternatives and to compare BH-SNE to Q-SNE on datasets with more than 50
terms, we used an existing fast SVD approximation [12] in GNU Octave to com-
pute PCA on each data set. This implementation can only handle matrices of up
to 2 GB before running out of address space, but the 2 million document pubmed
dataset requires more storage than this limit and could not be processed. Datasets
of this size could possibly be handled with existing sparse PCA approaches, for
example by building on a toolkit capable of large matrix storage such as scipy [51],
but we leave this engineering effort to future work.

Figure 5.2 shows the effect of collection size on the speeds of the tested NN
algorithms with a log-log plot. VPTree is the slowest method tested, taking nearly
one day for the 251K case. For the smaller datasets of 3K and 28K size, LSH and
PCA-VPTree were slightly faster than APQ. For the larger datasets of S0K and be-
yond, APQ is substantially faster than the others. It is the only algorithm capable
of handling millions of documents; the LSH, PCA, and VPTree implementations
could not handle these sizes due to excessive memory consumption.

We measure the quality of the NN results using precision-recall (PR) curves,
as discussed in Section 3. Figure 5.2 shows the mean PR curves for the 30 nearest

Zhttp://homepage.tudelft.nl/19j49/t-SNE _files/bh_tsne.tar.gz
3http://vision.caltech.edu/malaa/software/research/image-search/
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Figure 1: Log-Log plot of NN algorithm runtimes against dataset size, for computing the 30

approximate nearest neighbors. APQ (pink curve) is substantially faster than LSH, VPTree, or the
hybrid PCA-VPTree for large datasets.
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Figure 2: Precision-recall curves comparing the quality of the approximation for the 30 nearest
neighbors across the four algorithms. APQ (pink curve) is substantially better than the alternatives
for all of the datasets, with the exception of the tiny warlogs dataset where VPTree matches
its performance. Top left: warlogs (N=3K). Top middle: metacombine (N=28K). Top right:
textfiles (N=42K). Bottom left: cables (N=251K). Bottom middle: nyt imes (N=300K).
Bottom right: pubmed (N=2M).
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neighbors computed by each of the four NN approaches that we tested. To calcu-
late each curve, we fix r = 30 and iterate k from 1 to 30, calculate the number of
true positives  in the k nearest neighbors, set precision to ¢ /k and recall to ¢ /r for
each k, and then draw a line connecting each point. Because calculating the true
nearest neighbors for the larger collections is extremely costly, we sample 100K
documents uniformly at random and take the mean of the sampled precision and
recall.

For the tiny (N=3K) warlogs and smaller metacombine datasets, the
APQ and VPTree results are competitive with each other, and superior to the
others. For all of four of the larger datasets, APQ yields high-fidelity results,
performing substantially better than the other three methods. It is the only method
that could handle the largest pubmed dataset, as we discuss above, so we cannot
make statements about relative quality; the absolute quality is reasonable.

These experiments validate our claims that APQ scales well for large docu-
ment collections, providing substantial speed and quality improvements over the
alternative approaches to finding approximate nearest neighbors.

In the case where the input distances are derived from a true metric, VPTree
will return a perfect precision and recall. For PCA-VPTree, we employ metric eu-
clidean distances to compute nearest neighbors after performing PCA. Thus, the
precision-recall curves of PCA-VPTree measure the corruption of point neighbor-
hoods induced by the reduction to 50 dimensions by PCA.

5.3. Layout Results

We compare the layout performance of Q-SNE to five alternative DR algo-
rithms. We choose the popular Principal Component Analysis (PCA) [7] approach
as a baseline that is fast but known to be of low quality; it is in the orthogonal pro-
jection family of DR algorithms. We choose the Glimmer [8] MDS algorithm as a
representative global distance method, where the optimization criterion is stress.
We include two hybrid methods that optimize a combination of stress and projec-
tion: Local Affine Multidimensional Projection (LAMP) [10] using the Projection
Analyzer tool*, and Least Squared Projection (LSP) [9] using the Projection Ex-
plorer [52]; the latter was specifically designed for document data. For input
parameters, we use the defaults proposed by the authors of the original systems.
In the case of LSP, the number of control points is N /10, number of nearest neigh-
bors is 15, and force improvement iterations are 50. For LAMP we set the number

“http://code.google.com/p/projection-analyzer/
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of control points to 3y/N uniformly chosen points at random. Finally, we com-
pare against Barnes-Hut Stochastic Neighborhood Embedding (BH-SNE) [4], as
the most similar method to Q-SNE; both use Kullback-Leibler Divergence as the
optimization criterion. We run both BH-SNE and Q-SNE for 5000 iterations of
gradient descent with 2000 high-energy iterations and a perplexity of 10.

As in the previous section, we compare against the same six benchmark datasets
with respect to runtime speeds and mean PR curves. We include a set of scatter-
plot layouts to illustrate the qualitative differences between the results generated
by the different algorithms.

Figure 3 shows the time needed to compute layouts by the different DR algo-
rithms, again with a log-log plot of runtimes against dataset size. PCA shines in
terms of runtimes compared to the other four, thanks to very efficient and accu-
rate SVD approximation algorithms; however, as shown below, there is a speed-
accuracy tradeoff: its quality is very low. The other four DR algorithms tested
exhibit roughly commensurate computation speeds. The BH-SNE and Q-SNE
performance numbers both include the nearest-neighbor calculation times, for fair
comparison against the other algorithms that do not have separable phases where
the equivalent computation is done. We do not include document processing times
for either algorithm. The BH-SNE and Q-SNE times are so similar that their per-
formance curves are directly on top of each other, thus showing that total com-
putation time is dominated by the layout phase rather than the NN computation
phase. We halted the Glimmer computation on textfiles when it failed to
terminate after over 30 hours, and the implementation did not scale to the three
larger datasets. Both of the freely available LSP and LAMP implementations were
unable to handle these four large datasets at all. There are no results for BH-SNE
on pubmed because of the preprocessing limitations discussed in Section 5.2.

We quantitatively measure the layout quality with mean PR curves, following
the method of Venna et al [6] by computing precision and recall based on the local
neighborhoods and comparing their content to the true neighborhoods. Figure 4
shows the resulting PR curves for the six benchmark datasets.

The results largely mirror those for the NN computations, validating our hy-
pothesis that improving the nearest-neighbor computation would improve the final
layout. Q-SNE yields the best PR curves on all datasets by a large margin, except
on the tiny warlogs dataset where BH-SNE roughly matches its performance.
For the four larger datasets, the quality of BH-SNE was substantially lower than
Q-SNE and substantially higher than PCA. As expected, the quality of the PCA
layouts is very low, showing that PCA is not a viable alternative for document
data despite its speed.
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Figure 3: Log-Log plot of the time to complete the full DR layout computation as a function of
the number of documents in the dataset. The BH-SNE (brown) and Q-SNE (pink) timings are
identical for the datasets that both can handle. PCA (red) is fast, but poor quality.
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Figure 4: Precision-recall curves comparing for DR layouts across the six algorithms. Q-SNE
(pink) yields substantially better quality than the alternatives, except for the tiny war1logs dataset
where BH-SNE (brown) nearly matches its performance. Curves are absent for algorithms that
could not scale to the larger datasets; for these, BH-SNE yields intermediate quality, substantially
better than the low-quality PCA performance (red). Top left: warlogs (N=3K). Top middle:
metacombine (N=28K). Top right: textfiles (N=42K). Bottom left: cables (N=251K).
Bottom middle: nyt imes (N=300K). Bottom right: pubmed (N=2M).
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Figure 5: 2D layouts for the tiny warlogs (N=3K) dataset for all six DR algorithms plus a true
baseline tested with cluster labeling from Ward’s method (k=8). The qualitative results match
the quantitative analysis with PR curves in Figure 4: the layout quality for PCA, LSP, LAMP, and
Glimmmer on the top row is poor, with no visible cluster structure, as opposed to the higher-quality
layouts for BH-SNE, Q-SNE, and True-SNE which correspond well to derived clusters.

Figure 6: Q-SNE layout of the pubmed dataset (N=2M). Left: Overview. Middle: Partial zoom.
Right: Full zoom. The layout contains some large-scale cluster structure visible in the overview,
and many smaller clusters that are hard to distinguish at that scale. The cluster structure is more
evident after zooming.
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Figure 5 shows scatterplots for the tiny warlogs dataset for all six layout
algorithms plus a reference benchmark we call True-SNE. True-SNE minimizes
the same energy function as BH-SNE and Q-SNE, but uses the true set of near-
est neighbors and their distances, not an approximation. The qualitative results
match quantitative results shown in the PR curves in Figure 4: the four algorithms
of PCA, LSP, LAMP and Glimmer all fail to provide clear separation between
clusters and have lower precision and recall, while BH-SNE, Q-SNE, and True-
SNE all do resolve visible cluster structure and report higher precision and recall.
Because calculating the true nearest neighbors does not scale well with the size of
the data, we only include a precision-recall curve for True-SNE on the warlogs
dataset. For reference, we color points in each scatterplot with 8 cluster labels
derived using Ward’s agglomerative clustering method [53]. In contrast to the
other layout methods, the visually distinct modes of point distributions in differ-
ent SNE layouts correlate well with clusters derived from the local connectivity
of the original data.

Figure 6 shows the Q-SNE layout of the very large (N=2M) pubmed dataset,
at three levels of zoom. The overview on the left shows some large-scale cluster
structure, but many smaller features. We note that these features are not individ-
ual points, but rather entire small-scale clusters. This cluster structure is more
apparently in the partial zoom in the middle. In the fully zoomed detail view on
the right, the smallest visible features are indeed individual documents, and the
cluster structure is very clear.

The obvious question is whether the lack of mid-level structure in the layout
is a true negative result, indicating that such structure simply does not exist in
this very large collection of individual paper abstracts, or is a false negative result
where Q-SNE failed tease out existing structure. We cannot directly compare this
layout to alternatives because of the limitations of their implementations and/or
algorithms. The lone PR curve for this layout in Figure 4 is equivocal: it is sub-
stantially lower than for the smaller datasets, hinting that some aspects of dataset
structure have not been recovered. We call for future work to shed further light on
the true structure of this dataset.

Further scatterplots appear in Figures 7 and 8, which display side-by-side
comparisons of BH-SNE and Q-SNE layouts of the (N=42K) textfiles and
(N=251K) cables datasets respectively; in the next section we compare these
results in more detail as part of our analysis of how these two algorithms differ.
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5.4. O-SNE and BH-SNE

The different choices of approximate nearest neighbor techniques between
BH-SNE and Q-SNE algorithms lead to both quantitative differences in terms
of PR curves and qualitative differences in terms of the visual character of their
layouts. We now perform an in-depth comparison of these layout results of these
two approaches to better understand the qualitative differences of the two different
techniques.

The two columns in Figure 7 show layouts from the medium (N=42K) textfiles
dataset, with BH-SNE on the left and Q-SNE on the right. Because this dataset has
been hand classified by a human curator, we have ground-truth categorization of
the data points, and use that to color the points. Each row shows 7 of the categories
with color, with all other points in a neutral black. We use this small-multiple
approach because of the strong limits on the number of colors that readers can
distinguish. The three rows show 21 of the 28 categories in the dataset; the others
follow roughly the same pattern. We see that both algorithms separate points into
point densities with spatial location correlating well with the ground-truth catego-
rization. However, the Q-SNE layout tends to break down larger categories into
a diffuse set of smaller groupings, as is evident in the purple sex category in the
bottom row.

Figure 8 shows layouts from the large (N=251K) cables dataset, with BH-
SNE and Q-SNE shown side by side. As in the case of the text files dataset,
both algorithms produce layouts with varying point densities; that is, there are ob-
vious clustered regions of points in both cases. The layouts produced by BH-SNE
have fewer clusters that are both larger and tighter, with very visible separations
between high density regions. The Q-SNE layouts have more clusters that are
smaller, with more points that fall into the background between any visibly dis-
tinguished cluster. People conducting visual analysis of DR data rely strongly on
visual cluster separation when making judgements about dataset structure [1]. The
crisp separation in the BH-SNE layout gives the strong visual impression of mean-
ingful cluster structure in the dataset. However, the quantitative metrics shown in
the PR curves imply that the Q-SNE layout is a more accurate depiction of true
dataset structure. We conjecture that some of the strong cluster structure shown in
the BH-SNE layout is a misleading artifact, possibly due to the loss of important
information by the initial reduction to 50 dimensions within the approximate NN
calculation. We now check this conjecture with more detailed analysis.

Figure 9 displays two kernel density estimates of the entire set of recalls for the
cables dataset with the setting k = 15 and » = 30. We observe that the Q-SNE
plot shows its estimated density more uniformly distributed in the higher-recall
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Figure 7: Layouts of the textfiles (N=42K) dataset, colored according to manually cate-
gorized ground truth. Left column: BH-SNE. Right column: Q-SNE. Visual document clusters
correspond well to the given ground truth for both.
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Figure 8: 2D layouts for the cables (N=251K) dataset, with red dots marking the location of
samples that had higher precision in Q-SNE than BH-SNE. Left: BH-SNE. Right: Q-SNE.

regions of the plot. It is instructive to analyze the locations of samples in the Q-
SNE plot that possess higher precision than the same BH-SNE samples, shown as
red dots in Figure 8. We observe that most of the higher recall points are located
in low-density regions of the Q-SNE plot. In the BH-SNE plot we do not observe
an obvious correlation between plot density and lower precision; instead, the red
dots are placed near the edges of the visible clusters. Both of these phenomena
provide supporting evidence for our conjecture that the BH-SNE layout has too
few clusters. Q-SNE lays out these red points between clusters, showing that they
have true neighbors across multiple clusters. BH-SNE lays out these red points
within clusters, but near the periphery: the points are pushed away from the center
because they do not have close relationships with most of the points in the cluster,
but enough of their neighbors are placed within the same large cluster that they
stay within it.

The red samples in Figure 8 with higher precision will all, by definition, have
a higher proportion of true nearest neighbors in the layout. To illustrate the visual
effect of higher precision, we select a random point from the red set of higher Q-
SNE recall samples and analyze the difference in true neighborhood distribution
between the Q-SNE and BH-SNE plots, by highlighting the selected point’s 99
true nearest neighbors in blue. Figure 10 displays these neighborhoods at three
different zoom levels for both plots, with the BH-SNE layouts on the left and Q-
SNE layouts on the right. At the overview level on the top, we highlight all 99 true
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Figure 9: Kernel density estimates comparing precision values for BH-SNE and Q-SNE, for the
cables datasets with the kK = 15 retrieved documents and » = 30 relevant documents.

NN points in blue. We can see that most of them are in the vicinity of the red point
on both plots, with a few more visible and distant outliers for BH-SNE. The next
row is zoomed further in, and only the 20 closest true NN points are highlighted in
blue. We can observe a very clear difference in the distribution of neighborhoods.
In the BH-SNE plot, the blue neighboring points all fall within a single large
cluster that is visibly separated from others, but they are fairly spread out across
it. In the Q-SNE plot, the blue points are so tightly packed into a small cluster
around the red selected point that they are barely visible behind it. The range
shown in each zoomed-in plot is calibrated between both sides, so that the cluster
sizes are directly comparable. The highest level of zoom, at bottom, again shows
dramatic differences. The BH-SNE plot shows only loose clustering, and only
three points are visible; the rest are outside the visible region. The Q-SNE plot
shows a very tight concentration of around 10 blue points around the red one; the
rest are not visible because they underneath the other plotted points, not because
they are outside the bounds of the window. This analysis shows that the more
fine-grained cluster structure of Q-SNE layouts does reflect true local structure
more accurately than the coarse-grained structure of BH-SNE layouts. This figure
shows a representative example; our investigation shows that this difference in the
distribution of true neighbors holds for most of the higher-recall points shown in
red in Figure 8.

We conclude that the placement of documents into large clusters with clean
visual groupings by BH-SNE is indeed a misleading artifact. The messier visible
structure in the Q-SNE plots is a layout where gaps between medium-sized clus-
ters are filled in with smaller clusters. Our analysis connects the improvements in
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Figure 10: Analyzing nearest neighbors (blue) for selected point (red), for cables. Left column:
BH-SNE. Right column: Q-SNE. Top: overview, with 99 NN. Middle row: partial zoom, with
closest 20 NN. Bottom row: full zoom. 25



mean precision and recall shown in the quantitative analysis from the PR curves
with a qualitative understanding of how the layout better represents the actual
neighborhood structure of the data.

6. Conclusion and Future Work

We have presented the Q-SNE technique for the dimensionality reduction of
large document collections. Q-SNE builds on the BH-SNE [4] technique, using
the same Barnes-Hut approximations for efficiently compute the gradient when
minimizing the t-SNE objective function during the layout itself. The major dif-
ference is the approach to computing the approximate k-nearest neighbors. Q-
SNE exploits the query-based APQ algorithm that uses impact-ordered inverted
files [3], rather than the hybrid combination of reducing to 50 dimensions using
PCA and then running Vantage Point trees [5]. Our hypothesis that this more so-
phisticated approach to NN computation would yield higher-quality layouts was
validated by extensive experimental results. We first showed that inverted files
outperform 3 other nearest neighbor techniques on 6 large document datasets in
terms of both runtimes and mean precision and recall. We then showed that our
approach to dimensionality reduction outperformed 5 other techniques in terms
of the combination of runtimes and quality as measured by mean precision and
recall. We also present evidence for the benefits of our approach through a qual-
itative discussion of the layout scatterplots across these DR techniques. Finally,
we performed an in-depth comparison of the results produced by the BH-SNE and
Q-SNE methods on two benchmark datasets, illuminating differences between the
two methods both qualitatively and quantitatively.

Future work to improve the Q-SNE algorithm itself includes improving the
optimization framework to have automatic termination criterion that detects con-
vergence, rather than simply using a fixed number of iterations. It would also be
useful to select the number of nearest neighbors k automatically, rather than re-
lying on the user to choose an appropriate value. An obvious improvement from
an interactive visualization point of view would be to better support exploratory
visual analysis of the scatterplots would be to add browsing capability with an
interactive analytics tool that would allow easy selection and inspection of visual
clusters. Another obvious improvement from an IR point of view would be to use
more sophisticated document scoring methods than TF-IDF, such as BM25F[54].

In the larger picture, it may be useful and straightforward to adapt the t-
NERV [6] algorithm to incorporate query-based NN computation, since NERV
is a generalization of SNE. A more challenging project would be to develop a
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mathematical framework that handles a preponderance of unit-length distances
gracefully without using probabilities.
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