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Variant Data
Patient ID Chr. Coord. Ref Base Var Base dbSNP129 dbSNP135 dbSNP137 COSMIC A.A. Chng. Gene RefSeq ID
pid-anon 55589770 TACGAC TAC . . COSM2901 D419- gene-anon trans-anon
pid-anon 55589772 C CTTCCTA . . 29820(?) -419FL gene-anon trans-anon
pid-anon 55593605 GAAGGTT GAAAAGGT . . "21978, V559RS gene-anon trans-anon
pid-anon 55599320 G T . rs121913 "21979, D816Y gene-anon trans-anon
pid-anon 55599320 G T . rs121913 "21979, D816Y gene-anon trans-anon
pid-anon 55599320 G C . rs121913 "21979, D816H gene-anon trans-anon
pid-anon 55599321 A T . rs121913 "1314, 1 D816V gene-anon trans-anon
pid-anon 55599321 A T . rs121913 "1314, 1 D816V gene-anon trans-anon
pid-anon 55599333 A T/G . . "1317, 1 D820V gene-anon trans-anon

Alternative Transcripts: gene-anon (trans-anon) gene-anon (trans-anon)

Fig. 1. Sequence variants and their attributes shown in Variant View with respect to biological context annotations at multiple scales.
This gene, whose name is anonymized, was identified by analysts as a putative cancer candidate gene through using the tool.

Abstract—Scientists use DNA sequence differences between an individual’s genome and a standard reference genome to study the
genetic basis of disease. Such differences are called sequence variants, and determining their impact in the cell is difficult because it
requires reasoning about both the type and location of the variant across several levels of biological context. In this design study, we
worked with four analysts to design a visualization tool supporting variant impact assessment for three different tasks. We contribute
data and task abstractions for the problem of variant impact assessment, and the carefully justified design and implementation of
the Variant View tool. Variant View features an information-dense visual encoding that provides maximal information at the overview
level, in contrast to the extensive navigation required by currently-prevalent genome browsers. We provide initial evidence that the
tool simplified and accelerated workflows for these three tasks through three case studies. Finally, we reflect on the lessons learned
in creating and refining data and task abstractions that allow for concise overviews of sprawling information spaces that can reduce
or remove the need for the memory-intensive use of navigation.

Index Terms—Information visualization, design study, bioinformatics, genetic variants

1 INTRODUCTION

The human genome project produced a reference genome for the hu-
man species [10], consisting of about 3 billion chemical constituents
called nucleotides. Each person’s genome is slightly different; the
rate of variation between the nucleotide sequences for individuals is
less than one percent [16]. Differences between an individual per-
son’s genome and the reference genome are called sequence variants.
Changes at the DNA sequence level can cause a variety of genetic
diseases such as cancer. Scientists are interested in finding sequence
variants that are predictive of different disease states, and they do so
by comparing the genome sequences of individuals diagnosed with a
disease to the reference genome, which is generally assumed to be
healthy and disease-free. This problem is non-trivial because very few
variants are harmful and teasing these apart from the much larger set
of harmless variants requires both automated detection and human in-
spection. Human reasoning about the biological impact of variants is
particularly challenging because it requires considering multiple at-
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tributes at a variant position across several levels of biological context.
Currently, variant analysts attack the problem with workflows

that have high cognitive load because of the need to mentally in-
tegrate across many databases and spreadsheets. The dominant vi-
sualization tools for exploring sequence data in general are genome
browsers [3, 7, 11, 32, 34]; using them typically requires extensive
navigation with very high time costs. A few systems have been pro-
posed for variant analysis, but they either share the fundamental prob-
lems of genome browsers [3] or fall short of presenting the full spec-
trum of biological context needed by the analysts [2, 5].

In this design study, we worked with four variant analysts over a six
month period to design and refine Variant View, a tool to accelerate
and improve variant analysis, shown in Figure 1. We identified three
variant analysis tasks: finding candidate genes that may be implicated
in specific types of cancer, comparing data about an individual patient
to a data set of variants known to be harmful, and debugging the bioin-
formatics pipeline before the data is used for any further analysis.

One contribution of this paper is a data and task abstraction for the
problem domain of variant analysis: our task analysis links concrete,
domain-specific questions to this data abstraction. Another contribu-
tion is a discussion that reflects on the strengths and weaknesses of
genomic coordinates as a data abstraction, a question that has broad
implications for the design of biological visualizations. A third con-
tribution is the validated design and implementation of Variant View.
We carefully justify our choices for visual encoding and interaction
techniques with respect to the data and task abstractions. With care-
ful filtering, we created an information-dense overview for multiple,



non-contiguous features at multiple scales showing all necessary in-
formation simultaneously without the need to navigate. We validate
the effectiveness of the tool with three case studies of its use after sev-
eral months of deployment. Our final contribution is a discussion of
the lessons learned in this design study: the design strategy of “spe-
cialize first, generalize later”, and six design considerations organized
into the themes of “what to show” and “how to show it”.

2 DESIGN PROCESS

Our design process followed the collaborative nine-stage design study
methodology framework [28], a natural choice since it is the distilla-
tion of the experience of conducting over twenty design studies co-
authored by one of the authors of this paper. The nine stages are the
precondition phase of learn, winnow, cast; the core phase of discover,
design, implement, deploy; and the analysis phase of reflect, write. In
this study, the three visualization researchers were new, moderately ex-
perienced, and very experienced; given this combination of expertise,
we did not allocate time for an explicit learning phase. We did indeed
have an extensive winnowing stage of roughly five months, in which
we considered several other biological problems of potential collabo-
rators at the Michael Smith Genome Sciences Centre (GSC) but de-
cided against pursuing them. We ultimately selected the problem of
variant analysis as a rich problem domain with interesting visualiza-
tion research questions after a series of meetings with two front-line
analysts (A1 and A2) who are research biologists. We made connec-
tions with these two postdocs through a gatekeeper (G1) who is en-
gaged in both basic and clinical research at the GSC.

The core phase of the design study lasted roughly six months. Dur-
ing this time we met with analysts regularly, for around an hour a
week, and their feedback and ideas actively shaped the tool capabil-
ities. The discover stage began with several semi-structured inter-
views with analysts A1 and A2 to understand their current workflow
and identify tasks that visualization might address. Their tasks are
described in Section 3.2: their main problem is the Discover Genes
task. The design and implementation stages were tightly interwoven,
with a series of 8 prototypes of increasing complexity created over
five months. We decided that data sketches [14] were more appro-
priate than paper prototyping due to the complexity of the data, so
even the earliest prototypes did load and show real data. The first
two prototypes were static tests of visual encoding possibilities, where
we received feedback by demonstrating them to the analysts. The de-
ploy stage began in the third month with the third prototype, which
supported interactive search; from then on, A1 and A2 used the proto-
types in their analysis process, with each new prototype replacing the
previous one. Five more prototypes of increasing sophistication were
deployed over the next two months, and A1 and A2 have been using
the final version for two more months.

When this prototype was demonstrated to gatekeeper G1, he be-
came enthusiastic about using it for other biological problems. He
connected us with two more analysts, A3 and A4, who are bioinfor-
maticians. Their feedback identified the driving problems described as
the Compare Patient Task and the Debug Pipeline Task in Section 3.2.
Based on analyst feedback, we adapted the base design to handle these
additional tasks with two more rounds of prototyping over one month.
These analysts were intrigued by this prototype and are considering
how it might be incorporated into future workflows. Deployment for
the Debug task with A3 and A4 might be possible in the near future,
since they have direct control over their own workflow. However, de-
ployment for the Compare task is a more complex problem since that
workflow is still being developed and gatekeeper approval is required
for clinical use. A staged development process, as with LiveRAC [15],
would be one way to approach the problem; we leave it as future work.

The analysis phase of the design study overlapped with the core
phase, and extended for another month beyond it. As usual, the writ-
ing stage triggered a return to the discover stage to further refine the
data and task abstractions, which in turn led to a few improvements
in design. Writing also triggered a return to the reflect stage, as we
considered what lessons we learned that might be of interest to visual-
ization practitioners who have no connection to this particular domain.
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Fig. 2. Biological context in which variants occur. The gene level is
specified by genomic coordinates, the exon-containing transcript level
is specified by transcript coordinates, and the protein level is specified
by protein coordinates.

Annotations CS Count Length
Gene G 20K per genome 10K nt
Exon G/T 10 per gene 100 nt
Functional Region P 10 per gene 1-300 AA

(20 region types)
Variant Attributes CS # Categories
Variant Position G/T/P -
Nucleotide Type G/T 4
Variant Type G/T/P 7
Amino Acid Type P 20
Amino Acid Class P 4
Database Status - 4
Sample IDs - (list)
Derived Attributes Range
VarCount Metric [0, max]
Hotspot Metric [0.0, 1.0]

Table 1. Data abstraction. Annotations may be in one or several coor-
dinate systems (CS): Genome (G), Transcript (T), or Protein (P). Their
counts are given, and their average lengths show their relative scales.
Variant attributes are also associated with a coordinate system. For cat-
egorical attributes, the number of categories are shown. Each sample
has a unique identifier and two gene-level derived attributes.

3 DATA AND TASKS

Before we present the visual encoding and interaction design choices
of Variant View, we need to explain the underlying data and task ab-
stractions [19, 21]. We begin with the data abstraction, where we
explain the characteristics of the domain data and how we abstract it
in terms of scale and type, and discuss the computation of derived data.
We then explain the tasks in more detail with respect to data involved,
and then consider what abstraction in domain-independent language
is interesting. The data and tasks were extracted through continued
feedback from our analyst collaborators as part of our design process.

3.1 Data
A variant is a difference between an individual person’s genome and
the reference genome, a standardized coordinate system derived as a
consensus from a small number of people. This imperfect abstrac-
tion is actively being augmented by sampling [31] and storing [29]
the larger scope of human variability. The genome of an individual
is called a sample; it typically contains thousands to millions of vari-
ants. Our collaborating analysts working with cancer genomes applied
several rounds of custom filtering to identify on the order of hundreds
of variants of interest per individual. When summed across roughly
a hundred samples, their data sets contain between 2,000 and 10,000
variants.

The starting point of variant analysis is of course the variants them-
selves, but they need to be interpreted within a larger biological con-
text of additional information about the genome and its structure. Fig-
ure 2 shows a diagram of the relevant biological context.



3.1.1 Scales and Coordinate Systems
As with many complex datasets, there is known and relevant struc-
ture at multiple scales in genome sequence data (Table 1). At the top
level is the entire genome, which is roughly 3 billion nucleotides (nt)
in length. The reference genome establishes genomic coordinates, a
linear coordinate system that specifies location within the sequence as
an nt index. The standard way to provide information about known bi-
ological context is as annotations that pertain to a range between two
locations.

The next relevant level of structure below the genome itself is genes;
they are roughly 10,000 nt in length, and there are approximately
20,000 genes in the human genome. Below that, the next level is
exons, the part of the gene sequence that creates proteins. They are
roughly 100 nt in length and there are on average 10 of them per gene.

Eliminating the regions of the genome that are not exons leads to
a second coordinate system, transcript coordinates. Exon ordering is
preserved between genomic and transcript coordinates, and these re-
gions are simply stitched together to produce transcripts that are on
average 1000 nt long. Most genes in the human genome produce mul-
tiple different transcripts. This diversity results from different subsets
of exons being assembled into alternative transcripts under different
conditions. For example, one transcript may include all of a gene’s
exons while another may include all but one exon.

Finally, each triple of nucleotides in the transcript is translated into
one amino acid to create a sequence that is a third as long, for a third
coordinate system of protein coordinates indexed by amino acid (AA).

The lowest level of relevant structure is protein regions, which range
from one to hundreds of AA in length and are specified in protein co-
ordinates. These regions have known functional properties, such as
facilitating chemical reactions within a cell or anchoring the protein
to particular structures. There are around 20 types of protein regions;
each has a list of ranges in protein coordinates specifying known re-
gions of that type. Proteins do not typically have annotations for all
possible region types, but rather only have annotations for a few region
types. Variants that cause amino acid changes within these regions are
considered more likely to disrupt protein shape or function.

3.1.2 Variant Attributes
Each variant can have a position in all three coordinate systems:
genome, transcript, and protein. Each variant has several categorical
attributes, also summarized in Table 1 in terms of coordinate system
and the number of categories for each. There are 4 possible nucleotide
types for a variant, represented by the well-known letters A, C, G, or
T, and there are 20 possible AA types, classified into 4 different chem-
ical classes. A variant that changes the AA to one of a different class
is typically more disruptive than those where the new AA is still in the
same class. There are 7 possible variant types, for example, a nt in-
sertion or a nt deletion. Another attribute of interest is whether a vari-
ant is recorded in any of the two major databases that categorize cer-
tain variants as known to be harmful or known to be harmless. These
databases are imperfectly curated and cover multiple cancer subtypes,
so this information is considered supplemental rather than definitive.
Each variant also has an associated list of sample identifiers; the same
variant may occur in only one or multiple samples.

3.1.3 Gene Attributes
Our data abstraction also includes two derived attributes, called var-
count and hotspot, that we calculate for every gene (Table 1). These
attributes were not previously used by the analysts, but capture pat-
terns that we determined were of interest based on our task analysis.
The varcount metric is simply the count of how many variants occur
within a gene normalized by the gene’s length in nt, and thus it ranges
from 0 to 1. This measure is useful for identifying highly mutated
genes. The hotspot metric is a more complex metric that goes be-
yond counts to capture the co-location of variants within a gene. We
group together neighboring variants if their distance is smaller than 20
nt in transcript coordinates; this threshold corresponds to the inflec-
tion point in the distribution of inter-neighbor distances for all genes.
The hotspot metric is then computed as the maximum group size for

a gene, and thus it ranges from 0 to the maximum value for the data
set. This metric is useful for identifying genes with large clusters of
variants.

3.2 Tasks

All of the analysts were in a group at the GSC focused on the specific
cancer type of acute myeloid leukemia (AML). In this section we first
characterize the problems and tasks our analysts face and then distill a
set of questions they ask about their data to perform these tasks.

3.2.1 Driving Biological Tasks

Discover Genes: The Discover Genes task is to find new genes that
are candidates for involvement in the disease of AML through variant
analysis. The scope of this task is limited to hypothesis generation; the
identified candidate genes would then be investigated further to con-
firm those hypotheses with other tools. This task takes place within the
context of an extensive pipeline of data processing and analysis. The
input at this stage is a dataset of around 3,000 variants that has already
been pre-filtered by data quality metrics. Each variant is associated
with several attributes including the gene within which it occurs; typ-
ical datasets have around 50 variants per gene, and include samples
from around 100 individuals.

The analysts loaded this list into a spreadsheet, sorted by gene
name, and then went through line by line to make judgements about
the impact of each variant by reading its attributes. They also used
web-based tools to determine whether the variant appears within any
of a large number of protein regions. This latter task required an ardu-
ous process of querying a protein database website, selecting a protein
from a list of possible proteins, inspecting the resulting web page of
protein details, and mentally intersecting the variant’s location within
the genome with the interval of the protein region boundaries. They
also manually compared the variant against two different databases of
known variants [8, 29], to understand whether or not it had already
been characterized as being harmful or harmless.

Compare Patient: The Compare Patient task is to compare variant
data for a particular individual patient with a database of variants that
are known to be harmful for AML, in hopes of generating a diagnosis
and treatment plan by noting variants similar to a disease population
group [30]. The known-AML database contains around 10,000 vari-
ants with at most 200 variants per gene; the patient dataset typically
has around 1000 variants, with at most 10 variants per gene.

The challenge is that similarity is loosely understood rather than
fully characterized. A specific variant in a patient clearly corresponds
to a known one if they have exactly the same position and attributes;
the question of whether nearby variants should be considered matches
is more fuzzy. Currently, A3 and A4 are in the process of devel-
oping algorithms that classify variants into three categories: positive
matches, unclear, and unlikely to match. Their preliminary algorithms
generate reports that are being used experimentally by clinicians as
part of a workflow that is still under development. Although they are
not clinicians themselves, A3 and A4 work closely with them, un-
derstand the pain points of the current prototype workflow, and have
access to real patient data. They conjecture that visualization support
might allow the clinicians to better interpret the border cases between
matching and non-matching where the algorithm may fall short, and
possibly also to better use the matching variants for a treatment plan.

Debug Pipeline: The Debug Pipeline task is to ensure that the bioin-
formatics pipeline used to generate variant datasets from raw data is
working correctly, before relying on the output in downstream tasks
such as Discover Genes or Compare Patient. There are several places
that errors might occur in the multi-stage pipeline: spurious variants
may be generated due to noise in the next-generation sequencing stage
or incorrect thresholding in the data quality filtering stage after that,
and incorrect attributes for variants might be generated by the variant
effect prediction stage. The goal of finding biologically implausible
results requires knowledge of both biology and the variant data pro-
duction pipeline. Once a pattern is known to reliably predict false



Discover Genes Task: Gene-Level
Q1 What is the variant type?
Q2 Is there a change in AA chemical class? From what to what?
Q3 Is there a change in AA? From what to what?
Q4 Is the variant in any of the known databases? Is it a harmless or harmful one? Which one(s) is it?
Q5 Are there many variants in close proximity to each other? Where?
Q6 Is the variant close to an exon boundary?
Q7 Which types of functional regions are known for this gene and does the variant fall within any range of any of them? If so, which

types? Which ranges?
Discover Genes Task: Genome-Level

Q8 Are there genes with many variants?
Q9 Are there genes with variants in close proximity to each other?

Compare Patient Task
Q10 Does a patient variant occur at exactly the same position as a known variant? If so, do the attributes match exactly (variant type,

AA change, nt change)?
Q11 Does a patient variant have a known variant nearby it? If so, are the attributes the same? Or very similar?

Debug Pipeline Task
Q12 Is there an unusual or biologically implausible distribution of variants?
Q13 Is there an unusual or biologically implausible combination of attributes at a variant position?

Table 2. Concrete questions asked by analysts to infer variant impact, for each of the three identified tasks.

positive data, it can be incorporated later into automated filtering al-
gorithms. Although the bioinformaticians already had debugged their
pipeline extensively, visualization support has often uncovered errors
of a kind difficult to detect with other methods.

3.2.2 Tasks and Data Questions

Table 2 contains the full list of concrete questions about the data that
we identified for three target tasks of Discover Genes, Compare Pa-
tient, and Debug Pipeline.

The Discover Genes task involves Q1 through Q9. Q1 through Q4
are direct questions about variant attributes. The only unimportant at-
tribute is the list of sample IDs; these unique identifiers are occasion-
ally used to look up further information but are not directly of interest
themselves. Q5 is about proximity between variants themselves. Q6
and Q7 also pertain to proximity, but specifically whether a variant
falls within given annotation ranges. Q1 through Q7 are all at a gene-
level scale; that is, they only pertain to variants within a single gene.
Q8 and Q9 are at a larger scale: they characterize genes with respect
to each other in terms of patterns of variants within them. These two
questions are at genome-level scale; they pertain to selecting which
genes to inspect in more detail. The Compare Patient Task involves
Q10 and Q11: these questions also pertain to the positions of variants
and their attributes. Finally, the Debug Pipeline Task involves Q12 and
Q13: Q12 is purely about position, and Q13 is a direct question about
variant attributes.

Identifying the questions analysts ask about their data can provide
guidance for what information is required to solve their tasks, and
what information is irrelevant. In the design rationale discussion of
Section 5, we use these concrete questions to motivate and justify the
design decisions we make to construct our visualization solution.

4 RELATED WORK

There are many tools available for visualizing sequence variant data.
Some tools target flexibility in the sense of displaying a large num-
ber of attributes, some irrelevant to the current study’s tasks, and oth-
ers target particular tasks with limited flexibility. Generally speaking,
genome browsers are the most flexible tool [3, 7, 11, 32, 34]; one
genome browser in particular, Ensembl [3], allows for a specialized
display for variant analysis in addition to typical genome browser ca-
pabilities. Other representations expose variant attributes more explic-
itly, such as cBio [2] and MuSiC [5], but only do so at the gene level.

Genome browsers are the dominant paradigm in sequence visual-
ization today [3, 7, 11, 32, 34]. At their core is the data abstraction of
genomic coordinates: the genome is considered as a single, long, lin-
ear sequence of nucleotides, and nucleotide position within the string

acts as an index. The visual encoding is that horizontal spatial posi-
tion reflects genomic coordinates, with interactive navigation through
panning and zooming to adjust the view to show any single region of
interest. Multiple rows are stacked vertically into tracks; each of these
separate tracks can show any kind of data that can be indexed with re-
spect to genomic coordinates. An enormous amount of genomic infor-
mation is indexed this way in public and private biological databases,
as annotations that refer to some range in genomic coordinates.

When zoomed all the way in, the user sees features at the level of
individual nucleotides, including their actual values as C, G, A, or T
in the base track. When zoomed all the way out, the entire genome
is shown. Even when zoomed out only to the gene level, individual
nucleotides cannot be resolved, and there are many irrelevant regions
present which causes regions of potential interest to be so highly com-
pressed that useful information is not visible. The variant data are so
squished that they just appear as thin, non-salient vertical lines. The
strengths and weaknesses of genomic coordinates are discussed fur-
ther in Section 5.2 as part of our design rationale.

The Ensembl genome browser, in addition to being a fully-fledged
genome browser tool, now includes support for visualizing variants
and their attributes in the form of a so-called variation image [3]. The
variation image encodes variant type and some variant attributes, in ad-
dition to partially collapsing the inter-exon regions to give more screen
space to variants within exons. This view shows only a single gene in
a display, but it does not provide any guidance on what gene to in-
spect. One benefit of the single-gene approach is that its scalability
problems are less extreme than those of a general-purpose genome
browser in terms of panning and zooming to regions of interest in the
entire genome. However, the Ensembl variation image’s track-based
view, shown in the supplemental materials, typically requires vertical
scrolling, particularly to see variants across multiple alternative tran-
scripts: each possible transcript and its associated protein regions form
a unit, and around ten of these units are stacked vertically to span a
great deal of screen space. The representation also requires user inter-
action to expose some attribute information such as known database
type, and does not encode AA class. Variants are difficult to resolve
since they are encoded as thin vertical lines. Their type is encoded by
color, which is difficult to resolve because the variant lines are so thin.
Also, because inter-exon regions are only partially condensed, exon
regions are still small, and multiple variant lines in close proximity
can overlap and occlude each other making it difficult to resolve vari-
ant type, position, and recurrence. Finally, at this time, the Ensembl
genome browser’s variation image does not allow analysts to upload
their own data into the system to be displayed. They can only visualize
variant data from existing, curated datasets.

In contrast to genome browser approaches, there are two recent



tools, cBio [2] and MuSiC [5], that are more tailored to the display of
variant attribute and multi-scale annotation information. These tools
are a useful first step in showing important feature information at the
overview level. Both show variant position with respect to annotation
boundaries. However, several visual encoding decisions lead to diffi-
culties in using them to assess variant impact. For example, cBio en-
codes the repetition of multiple variants as variant bar height, which is
only minimally salient. MuSiC encodes repetition of multiple variants
at a single location with vertical stacking if they are identical, and tri-
angular bloom-like layouts if they are colocated but of different type.
Both MuSiC and cBio are missing much of the detailed information of
amino acid class and known database type. In both cBio and MuSiC,
protein regions are likely to overlap, leading to occlusion and difficul-
ties in resolving what regions are affected by variants. Neither tool
shows where variants occur in relation to the gene transcript, thus it
is difficult to know whether variants occur in and around exon bound-
aries. A major barrier to cBio use is that users cannot import their
own data. Although MuSiC is technically available as open source,
it too has barriers to use: the undocumented code to generate plots is
embedded within a larger system codebase and would be nontrivial to
adapt for standalone use.

5 DESIGN RATIONALE

We now discuss the design decisions for Variant View.

5.1 Core Components: Automation versus Visualization

Figure 3 shows Variant View, with its core interface components la-
beled. The overall design arose from considering the specific tasks
outlined in Section 3.2 and identifying three common themes. First,
analysts need to integrate diverse data types from distinct sources,
such as patient variant data in user-specified input files or protein an-
notations from public databases. Manually integrating these data to-
gether one gene at a time as described in Section 3.2.1 is very time-
consuming. We therefore decided to automate this process by building
data integration into Variant View so that all relevant data is available
from within a single unified interface. Second, analysts need to prior-
itize genes based on these integrated data, but the previous workflow
only provided alphabetical sorting by gene name. We designed two de-
rived metrics, varcount and hotspot, and equipped Variant View with
a reorderable list of genes that can be sorted by either of these met-
rics or alphabetically (Figure 3, label B). This component of Variant
View also supports direct searching by gene name. Finally, analysts
need to make judgements about the biological significance of a gene’s
variants. Unlike the other two general tasks described above, this one
requires human inspection and we therefore designed a concise visual
interface to support this type of reasoning. We strove to encode as
many attributes into the primary overview (Figure 3, label A) as pos-
sible; to avoid clutter, we show attributes that were deemed by our
analysts to be more peripheral to the analysis into the supporting table
view (Figure 3, label C). Variant View features bidirectionally linked
views [35] such that selections in any one of the views are reflected in
the others; the video included in the supplementary materials shows
the look and feel of the interaction at more length.

5.2 Genomic Coordinates: Strengths and Weaknesses

Although many genome browsers provide access to many hundreds of
public data tracks, an analyst typically focuses on fewer than a dozen
tracks at once. The data abstraction of genomic-coordinate tracks pro-
vides an extremely flexible architecture, allowing new data types to be
easily incorporated into genome browsers. The popularity of genome
browsers implies that many tasks in this domain are well served by
this style of pan-and-zoom navigation. Users can easily navigate to a
known range and explore local neighborhoods around it at that same
scale. They can also easily synthesize information about correlation
between phenomena in the same range across multiple tracks. The
fixed coordinate system allows users to easily preserve and maintain
orientation in terms of where some feature of interest lies with respect
to larger-scale structures in the genome.

Fig. 3. The Variant View tool, annotated to indicate its three main views.
The primary view (A) is the central overview for performing variant im-
pact assessment; the reorderable gene list view (B) can sort genes
alphabetically or by derived measures of variant importance; the sec-
ondary Variant Data table (C) contains peripheral information.

However, genome browsers are more difficult to use for tasks that
require understanding features that fall into non-contiguous regions
because the interaction costs become high. Extensive panning and
zooming adds both time cost and cognitive load for the user, who must
remember regions of interest and their context because they cannot be
seen side by side [13, 26]. Genome browsers are particularly difficult
to use when features of interest have distributions that are sparse or
bursty across some range. The problem with sparse distributions in
a fixed coordinate system is that the features are small relative to the
scale of the range in which they fall, so they are difficult or impossible
to see when the user has zoomed out far enough to see the full range.
Similarly, distributions with bursts of features very close to each other
can be difficult to understand from high zoom levels because they lie
on top of each other, so that a burst is hard to distinguish from a single
occurrence. Genome browsers are also difficult to use when features
of interest fall at multiple scales, so they cannot be easily seen at any
single zoom level. Moreover, if an analyst does not already have hy-
potheses about what regions in a dataset are interesting, it could be
difficult to find such areas through unguided exploration. Abstractly
speaking, the problem is a lack of information scent [9, 25] in the
overview; that is, at high zoom levels there is no visual indication of
what areas might be fruitful to explore next, forcing users to undertake
exhaustive search.

Collapsed coordinate systems can be used instead of genomic coor-
dinates to emphasize regions of interest. They are a much less common
representation than genomic coordinates. As discussed in Section 4,
tools like the Ensembl variation image [3] use partially collapsed inter-
exon regions to slightly emphasize exons as regions of interest. Over-
all, collapsed coordinates risk not being able to show data that fall
outside of the selected regions, and they also distort the scale, which
may be important for some tasks.

The data abstraction of genome coordinates is sufficiently powerful
and pervasive that it has widespread use, but variant analysis is one
of many biological subdomains where it falls short [22, 23]. In our
design we abandoned them completely, in favor of the collapsed coor-
dinate systems of transcript and protein coordinates as a way to filter
the scope of what is shown.

5.3 Filtered Scope

A central design decision was to aggressively filter out all informa-
tion unnecessary for variant analysis tasks in order to create an easily-
comprehensible overview showing everything important simultane-
ously. All questions except for Q8 and Q9 require seeing only a single
gene at a time. The analysts ignore all variants that occur outside of
gene boundaries both because their functional consequences are much



more difficult to assess and because they are deemed less likely to be
harmful.

Even Q8 and Q9 do not require visually encoding the location of
the genes in genomic coordinates. Thus, there is no overview of the
entire genome in the main view; only a single gene is shown at once.
The gene to inspect is selected from a reorderable list of gene names in
a secondary view that can be sorted according to the derived attributes
of hotspot and varcount, to satisfy Q8 and Q9, and reduce the gene
search space.

Moreover, the combination of Tables 1 and 2 shows there is no need
to use genomic coordinates at all; transcript and protein coordinates
suffice. That is, our task analysis also shows that there is no need to
show the non-exon parts of the gene that do not contribute to the tran-
script, so we filter them out completely. Again, the analysts ignore all
variants that occur outside of exon region boundaries, deeming them
unlikely to be harmful.

We also realized that there is no need to show low-level nucleotide
or protein type information at non-variant positions. Thus, we only
show the boundaries of annotation ranges, without attempting to show
their internal structure.

In a traditional genome browser, each sample would be shown sep-
arately with its own horizontal band. We have instead chosen to show
all of the variants together in the context of a single coordinate sys-
tem, combining information across all samples. Again, this decision
was motivated by our task and data analysis: no question requires di-
rect comparison between multiple samples. The only questions that
require reasoning about an individual sample are Q10 and Q11. We
once again handle the problem with aggressive filtering: in that case,
we only show two more variants for each one in the individual sample,
its neighbors to the left and right.

We relegate secondary information to an auxiliary spreadsheet-
format table linked to the main view: it contains details about identi-
fiers in known databases (for Q4c, which database is it?), the genomic
coordinate value, identifiers for samples and the transcript, and other
attribute information in textual format that is also visually encoded in
the main view.

These decisions lead to a view dramatically different from what is
shown in a traditional genome browser: it is information-dense but vi-
sually clear, showing all important information simultaneously with-
out the cognitive load of navigation.
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Fig. 4. Variant visual encoding.

5.4 Transcript and Protein Region Encoding

With the scope of the view reduced to a focus on the exon-containing
transcript and protein regions, the next decision was how to encode
them. Using horizontal spatial position for the coordinates was the
obvious choice, given the strong precedent of horizontal encoding of

coordinate data in genome browsers. The transcript and protein re-
gions are bars on separate vertical rows, with the transcript bar on top
showing exon boundaries within it (Q6) and one row for each protein
region type below it. They are aligned to have the same spatial ex-
tent so that vertical locations correspond across these rows, supporting
reasoning simultaneously across these levels. Encoding each type of
functional regions as its own bar on a separate vertical row is an impor-
tant choice to prevent occlusion while accommodating Q7; in previous
systems these intervals all fall into the same spatial region, leading to
overlap and visual clutter.

Only the protein region types that appear as annotations for a se-
lected gene are shown in the main view. Every gene has the AA
Chain type, but some have no other region types at all; many have
only a few region types. Text labels with more detailed information
about protein regions appear on mouseover; this interaction is shown
in the video included in the supplementary materials.

5.5 Variant and Variant Attribute Encoding
The goal for encoding variants and variant attributes was to show all
of them at once; that is, to allow variant impact to be assessed with an
information-dense overview that does not require interaction. Figure 4
summarizes the visual encoding choices.

Variants are encoded as vertical lines that traverse the entire tran-
script and protein regions. The lines have high visual salience, em-
phasizing the relationship of variants across the transcript and protein
regions in one view.

The attributes for a variant are encoded at the top of its line, stacked
vertically. Although the horizontal screen space is occupied by bars
encoding the transcript and protein regions, there is considerable ver-
tical screen space available. This scheme also allows attributes to be
clearly associated with the variant without occluding the transcript and
protein regions, leading to a primary display without visual clutter.
The top of the stack has a two-part icon to show database status, with a
small hollow circle on top if the variant appears in the known-harmless
database and a small filled-circle icon just below it to show that is listed
in a known-cancer database (Q4). A single variant could be in both of
these simultaneously, so a different vertical region is allocated to each.
Just below, variant type is encoded with an icon (Q1); we use a set
of 7 evocative icons culled from the biological literature. Resolving
the variant type was difficult in previous tools because either it was
not shown at all, or it was encoded with a very small mark such as a
small, circular mark or thin line [2, 3, 5]. Moreover, the small size of
these marks precludes the effective use of color coding [36] to show
any other addition.

Below the variant type is the amino acid type for both the refer-
ence genome and the sample at that position (Q3). The 20 amino acid
types are shown using single letters, following biological convention
(Q2); we note that color coding is precluded since there are 20 choices.
Changes in type are thus shown implicitly by having different symbols
next to each other in the stack.

A small grey arrow appears at the very top of the stack to distin-
guish the variants for a particular patient as needed for the clinical
patient-focused task (Q10, Q11). We chose to use an additional mark
to highlight rather than changing color to ensure that the color coding
choices discussed below remain clearly visible.

We wanted variant hotspots to be highly salient (Q5). Our lay-
out emphasizes recurrence of variants across samples by repeating the
variant unit as many times as it recurs. The large region of encoded
pixels created by this repetition results in a highly visually salient tri-
angular visual footprint. In contrast, previous work has shown recur-
rence in a way that is far more subtle, through position coding of a
small object across a small position range, so it is easy to miss [2, 3, 5].

5.6 Use of Color
In the vertical stack of variants in the top part of the main view, we
reserve the use of color for emphasizing changes of type implicitly.
Amino acid chemical class is encoded with one of 4 different colors,
red, green, light blue, and blue, so that a change of class is apparent
as a change of color. These changes have a high impact, and so are



encoded with high salience. The regions are relatively small, so we
use high-saturation colors; we do take care to ensure that the text pro-
tein symbols in the foreground have sufficient luminance contrast to
be visible. We chose colors to be highly distinguishable while still
colorblind-safe through varying saturation and brightness.

In the bottom Transcript/Protein section, bars are colored if variants
strike through them; otherwise they are shown in desaturated grey. The
always-visible bars that stretch across most of the view each have their
own color for memorability and visual salience: the Transcript bar is
orange, and the AA Chain protein region bar is green. All of the other
bars are blue if they are struck by a variant (Q7).

We do reuse colors between the top and bottom parts of the view.
While is it possible that the similarities between colors in the two
parts of the view could be misinterpreted as implying a connection be-
tween data that is not in fact related, such as the AA Chain with the
Special AA class, we made a considered tradeoff. Our main goal
was highly distinguishable colors in both places, with a secondary goal
of a reasonably unified palette; the spatial separation between the parts
of the view makes the misinterpretation less likely.

5.7 Design Comparison
We compare existing visual representations for variant analysis to our
visual encoding to motivate the strengths of our design, showing the
same variant data for a more direct and fair comparison. Figure 5
shows a comparison of variant data for the known gene DNMT3A be-
tween the encoding schemes of cBio [2], MuSiC [5], Ensembl varia-
tion image [3], and Variant View. Because of the usage barriers de-
scribed in Section 4, the images from previous work are mockups
created through close reading of the associated papers and personal
communication with the authors. Our discussion focuses on the intel-
lectual design considerations of each representation, not on the under-
lying implementation of the system or tool that generates them.

Both cBio and MuSiC encode variants as small colored circles on
top of vertical lines that indicate their position on the protein coordi-
nate, as shown in Figures 5(a) and (b). While MuSiC uses circle color
to represent a limited number of variant types, neither representation
shows the variant attributes of known database information or chemi-
cal class change, and only MuSiC shows AA change consistently. In
both cases, the variant context of the transcript is absent and protein
regions are represented as colored blocks all on the same vertical row,
so there is a risk of occlusion. The high color saturation for these pro-
tein regions also tends to make them the centre of focus rather than
the variants themselves. Figure 5(d) shows that the Variant View en-
coding is both more information-dense and more visually salient than
these previous tools.

The Ensembl mockup in Figure 5(c) focuses on only the transcript
and protein regions, with annotations to show where the many other
alternative transcript and protein regions would take a great deal of
additional vertical screen space. (The supplementary materials in-
clude an annotated complete screenshot of Ensembl showing a dif-
ferent dataset.) To avoid clutter, Variant View instead shows these
alternative transcripts in separate views. In the Ensembl variation im-
age, variants are encoded as thin lines, with variant type encoded as
color which makes type difficult to resolve; in addition, occlusion of
amino acid encodings can occur if the variants are close together. Vari-
ant lines can also overlap if they are in the same location, making it
difficult to determine how many variants are present, and their vari-
ant type. Furthermore, the design relies on interaction in the form of
scrolling and clicking to expose more information from the represen-
tation, instead of encoding it densely at the overview level. While we
do not attempt to make an exact estimate of the speedup, we argue that
analysts would need significantly less time to extract the important in-
formation from Variant View, where it is all shown immediately, then
from the sprawling Ensembl variation image.

5.8 Implementation
Variant View was implemented using a combination of HTML,
CSS, JavaScript, and the JavaScript Data-Driven Documents (D3) li-
brary [1]. We chose to deliver the tool as a web application to maxi-
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Fig. 5. Comparison of the same variant data between different visual
encoding schemes. (a) cBio [2] mockup. (b) MuSiC [5] mockup. (c)
Ensembl variation image [3] mockup. (d) Variant View screenshot.

mize accessibility and appeal for biologists, who find software instal-
lation a significant barrier to entry. The two versions of the prototype,
Discover versus Compare, are accessible through different URLs. It
is available as open source at http://www.cs.ubc.ca/labs/
imager/tr/2013/VariantView.

In addition to the user-specified input file of variant data, Variant
View accesses the UniProt database [33] for protein information and
the RefSeq database [27] for exon information.

6 CASE STUDIES

We now present three case studies to provide initial evidence that Vari-
ant View is useful to domain experts in several ways. First, it integrates
diverse data types previously distributed across input files and external
databases. Second, it provides summary metrics that are valuable for
sorting genes and identifying candidates for further exploration. Third,
it displays rich information about variant type and distribution across
a gene. This information is not available in any other visualization
tool and is valuable for interpreting the biological impact of variants,
which requires human inspection.

http://www.cs.ubc.ca/labs/imager/tr/2013/VariantView
http://www.cs.ubc.ca/labs/imager/tr/2013/VariantView


6.1 Case Study 1: Discover
Variant View consolidates transcript, protein and variant position and
attributes into a single summary view, in contrast to the previous com-
plex workflow described in Section 3.2.1. The analysts used Variant
View first for hypothesis confirmation, to see if the tool could expose
known types and distributions of variants in genes implicated in AML,
and then for hypothesis generation, to discover new variants that play
a role in AML.

6.1.1 Hypothesis Confirmation
Upon sorting by the hotspot metric (Q9), the first three genes in the list
were DNMT3A, IDH2, and FLT3. All of these have been reported
in the literature as being affected by AML variants and this provides
evidence that the tool can help confirm positive controls of the disease.

Once promising candidate genes were identified by simple sorting
on summary metrics, our analysts then used the rich information avail-
able in the Variant View visualization to examine the variants’ biolog-
ical contexts. Figure 6(a) and (b) show the gene-level view of FLT3
and IDH2, respectively. The analysts found that the visual encoding
in the main window was highly effective at emphasizing the hotspots
at the gene level with visually salient bloom-like structures (Q5). They
also noted how easily they could relate protein region information to
variant position (Q7). In particular, Figure 6(a) reveals variant inter-
sections with many different protein regions, which would be consid-
erably more difficult to interpret in tabular format. In addition, Variant
View exposes the diversity of variant types within a given hotspot.
For example, the clusters in Figure 6(a) contain many different types
of variants, whereas the cluster in Figure 6(b) is comparatively uni-
form in variant type. Our analysts were interested in such differences.
These details are not captured by simple summary measures, like our
hotspot metric, but rather require visual inspection and human inter-
pretation. Overall, Variant View provided a notable acceleration of our
analysts’ previous manual workflow and they could see immediately
what would have taken them at least 15 minutes to find.

6.1.2 Hypothesis Generation
In addition to retrieving and inspecting known variants in important
AML genes, our analysts successfully used Variant View to discover
interesting candidate genes. For example, Figure 1 shows one of these
genes, and two more are shown in the supplemental materials. The
gene names have been sanitized since their research is still ongoing
and sample IDs in all examples have been sanitized to protect patient
privacy. Figure 1 shows a concentration of variants that would be diffi-
cult to reveal in a spreadsheet or list interface. Just as with the hypoth-
esis confirmation examples, Figure 1 and the supplementary figures
reveal either uniform or diverse variant types within their hotspots in a
way that is not communicated by the hotspot metric alone. Interpreta-
tion of the biological importance of this variant diversity requires hu-
man judgement, as does the significance of intersected protein regions.
A1 remarked on the limitations of the previous workflow compared to
using Variant View for Q5, Q6, and Q7:

It was really difficult to try and imagine the distribution
of the variants along both the transcript and the protein -
furthermore, the number of look ups required to determine
whether the variants intersected important protein domains
would have made searching all of them really difficult -
getting extra detail about the protein regions would add an
additional layer of workload.

6.2 Case Study 2: Compare
Analysts A3 and A4 used Variant View for the Compare Patient task,
as described in Section 3.2.1. Figure 7 shows the immediate neigh-
bors on each side of each variant, with the patient’s own data indicated
by the grey arrows at the top of the stack. It is immediately appar-
ent that the leftmost and middle variants are exact matches with the
known-AML variants on their left sides. It is also immediately appar-
ent that the rightmost variant does not have a match in the database: its
neighbor is relatively far away and has very different attributes. The
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Variant Data
Patient ID Chr. Coord. Ref Base Var Base dbSNP129 dbSNP135 dbSNP137 COSMIC A.A. Chng. Gene RefSeq ID
pid-anon 28609758 C G . . 116249 V491L gene-anon trans-anon
pid-anon 28608315 C T . . . V581M gene-anon trans-anon
pid-anon 28608299 TC T . . . gene-anon trans-anon
pid-anon 28608281 ACGTAGAA AC . . "28045, EYFY588- gene-anon trans-anon
pid-anon 28608273 TG TGGCCCAC . . "36099, F594SPEG gene-anon trans-anon
pid-anon 28608251 TTGAGATC TTGAGATC . . 19855 -594SENM gene-anon trans-anon
pid-anon 28602329 G A . . 786 A680V gene-anon trans-anon
pid-anon 28592642 C A . rs121913 "785, 78 D835Y gene-anon trans-anon
pid-anon 28592642 C A . rs121913 "785, 78 D835Y gene-anon trans-anon
pid-anon 28592642 C G . rs121913 "785, 78 D835H gene-anon trans-anon
pid-anon 28592641 T A . rs121909 "784, 19 D835V gene-anon trans-anon
pid-anon 28592640 A T . rs121913 "854, 79 D835E gene-anon trans-anon
pid-anon 28592640 A C . . "854, 79 D835E gene-anon trans-anon
pid-anon 28592634 CATGAT CAT . . . I836- gene-anon trans-anon
pid-anon 28592621 A C . . . Y842D gene-anon trans-anon

Alternative Transcripts: gene-anon (trans-anon)

(a)
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Patient ID Chr. Coord. Ref Base Var Base dbSNP129 dbSNP135 dbSNP137 COSMIC A.A. Chng. Gene RefSeq ID
pid-anon 90645558 G A . . . A22V gene-anon trans-anon
pid-anon 90631935 G A . . 41877 R140W gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631934 C T . rs121913 "41590, R140Q gene-anon trans-anon
pid-anon 90631838 C T . rs121913 "33733, R172K gene-anon trans-anon
pid-anon 90630421 A G . . . V297A gene-anon trans-anon

Alternative Transcripts: gene-anon (trans-anon)

(b)
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Patient ID Chr. Coord. Ref Base Var Base dbSNP129 dbSNP135 dbSNP137 COSMIC A.A. Chng. Gene RefSeq ID
pid-anon 19499556 G A . . . T1108I gene-anon trans-anon
pid-anon 19484347 G A . . . R1908C gene-anon trans-anon
pid-anon 19477147 T C . . . N2452D gene-anon trans-anon
pid-anon 19422124 T C . . . Y4514C gene-anon trans-anon
pid-anon 19419817 T C . . . S4701G gene-anon trans-anon

Alternative Transcripts: gene-anon (trans-anon)

(c)

Fig. 6. Variant View allowed analysts to quickly confirm known results:
known AML genes could be found near the top of the sorted lists, and
the per-gene views clearly and immediately showed tell-tale structure.
(a) IDH2. (b) FLT3. (c) Example gene without interesting structure near
the list bottom.

analysts remarked on how quickly the tool allowed them to draw these
conclusions.

6.3 Case Study 3: Debug Pipeline
The Debug Pipeline task, as discussed in Section 3.2.1, emerged later
in our interactions with analysts and like the Compare Patient task it
was suggested after presentations of the tool designed for the Discover
Genes context.

Analyst A3 found spurious data from what he thought was a fully
debugged pipeline when using Variant View. Figure 8 shows the sur-
prising visual pattern for a gene (name sanitized). He quickly con-
cluded that the sheer number of repeated identical variants that he saw
was highly unlikely to reflect true dataset structure of the same variant
occurring in so many different individuals. After solving this particu-
lar pipeline problem, A3 remarked:

The tool exposed artifacts in the data that slid past at least
two rounds of quality metric filtering, I was very surprised
to see that there could be anything wrong with the data at
this point - this type of problem would not have been caught
by our previous, automated methods.

7 DISCUSSION AND LESSONS LEARNED

We discuss the design strategy of ”specialize first, generalize later”
as a way to tackle biological data visualization challenges. We also
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Variant ID Chr. Coord. Ref Base Var Base Effect Level Effect Type Gene Name Trans. Name Prot. Coord.
pid-anon 31022959 T C MODERATE NON_SYNONY gene-anon trans-anon L815P
pid-anon 31022959 T C NON_SYNONY gene-anon trans-anon L815P
pid-anon 31023029 G T NON_SYNONY gene-anon trans-anon K838N
pid-anon 31024274 T C LOW SYNONYMOUS gene-anon trans-anon S1253
pid-anon 31024274 T C SYNONYMOUS gene-anon trans-anon S1253
pid-anon 31024450 C T NON_SYNONY gene-anon trans-anon A1312V
pid-anon 31024704 G A NON_SYNONY gene-anon trans-anon G1397S
pid-anon 31025163 A G MODIFIER UTR_3_PRIM gene-anon trans-anon -

Alternative Transcripts: gene-anon (trans-anon) gene-anon (trans-anon)

Gene Select: AP1S2  Submit
Select Patient: Patient 1  Submit
Patient Genes: ASXL1  Submitgene-anon

Fig. 7. Comparison of patient data to a known-AML variant database.
The immediate neighbors for each variant are shown.
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Patient ID Chr. Coord. Ref Base Var Base dbSNP129 dbSNP135 dbSNP137 COSMIC A.A. Chng. Gene RefSeq ID
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTGTCTG . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 CTCTG CTCTGTCT . ABSENT "158604, gene-anon trans-id
pid-anon 17083754 TCTG TCTGCCTG . ABSENT "20866, gene-anon trans-id
pid-anon 17083754 TCTGGC TCTGGCTG . ABSENT "20866, gene-anon trans-id
pid-anon 17083754 TCTG TCTGCCTG . ABSENT "20866, gene-anon trans-id
pid-anon 17083754 CTG CTGTATG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 CTG CTGTTTG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 CTG CTGCATG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 CTG CTGCATG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 CTG CTGTTTG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 CTG CTGCTTG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 CTG CTGCTTG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 CTG CTGCATG . ABSENT "27392, gene-anon trans-id
pid-anon 17083754 G GCAGA . ABSENT "17571, gene-anon trans-id
pid-anon 17083754 G GTCTC . ABSENT "17571, gene-anon trans-id
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Fig. 8. Debugging the bioinformatics pipeline.

reflect more generally on the visualization design issues, and discuss
limitations of the work with an emphasis on the design’s scalability.

7.1 Specialize First, Generalize Later
The domain of biology has been a frequent target of design studies in
visualization [4, 12, 17, 18, 20, 24]. We conjecture that this domain
is a rich source of problems exactly because of its difficulty: there is
an enormous amount of data to contend with, and figuring out what
matters is nontrivial. In the language of the four-level nested model of
visualization design [21], developing the appropriate data abstraction
is a major part of the problem.

By abandoning whole genome coordinates and committing to tran-
script and protein coordinates, we created a specialized tool that tar-
gets key tasks in variant analysis, but does not offer the generality of
a genome browser. We made this decision knowingly, and throughout
the design phase we purposefully strove to optimize the display to the
target tasks and did not require ourselves to produce a very general
solution. This philosophy to specialize first has emerged from our ex-
periences in many design studies [24, 28]; it seems to be well suited
for domains where the amount of up-front detail is enormous and it
can be difficult to judge which design elements will generalize.

Generalization follows naturally from this initial specialization. We
have found that opportunities for generality naturally emerge when an-
alysts try out working prototypes on their own data, even though they
are not obvious at the outset. For example, our original design targeted
the Discover Genes task, but it later became apparent that Variant View
could support the other two tasks with only minor adjustments. Ad-
ditional applications and adaptions continue to emerge as we expose
more analysts to the tool. For example, another group is interested to
use Variant View to visualize variants in non-exonic regions, which
are excluded in the current tool by our choice of coordinate system. A
more general alternative to committing to transcript and protein coor-
dinates would be to enable an analyst to define coordinates of interest:
for example, non-exonic regions. Overall, this approach ensures that
the decisions of what to generalize are guided by real-world use cases.

7.2 Visualization Design Considerations
We now reflect on our design choices by framing them in an abstract
way that is not tied to the vocabulary of the domain problem. These
choices can be organized into: What to show and How to show it.

What to show: A major abstract choice in this study was to identify
scales of interest within the data. As discussed previously, the final

choice of scales may break with convention, but should best serve the
analysis task. Closely coupled choices were to identify what data can
be filtered out as being irrelevant and to determine what additional
data to derive. There is a tendency to display all information within the
provided input file, but more often than not, much of that material is
not useful to the target tasks and valuable derived metrics are missing.

How to show it: At several points in the design phase, we explored
options for how to highlight a change in data value and the choice re-
quired: deciding when comparison can be accommodated implicitly
by visually encoding values through side-by-side marks versus by ex-
plicitly computing a value difference that is visually encoded directly.
Although the side-by-side approach may introduce more visual clutter
than a single difference value, it preserves the underlying data and may
be the better choice for some tasks. A related choice concerned decid-
ing what to visually encode directly versus what to support through
interaction. Attempting to encode all pertinent data attributes can lead
to visual clutter, but requiring extensive interaction can be taxing to the
user. Similarly, navigation within a view can be very time consuming
and we carefully considered when to reduce navigation drastically or
eliminate it completely. Taken together, our approach regarding how
to show the data was to create a multi-scale non-contiguous overview
that showed all information without the need to navigate.

7.3 Scalability Limitations and Future Directions
Variant View supports the display of up to 52 variants per gene on a
1280 by 800 pixels display (primary view: 675 pixels wide; each vari-
ant encoding: 13 pixels wide). Above 52 variants, the display scrolls
horizontally to show additional variants. This scale choice is appropri-
ate for our target analysts’ datasets, which undergo a previous filtering
step in their workflow. We initially experimented with supporting the
filtering stage within Variant View itself, but abandoned this effort be-
cause of the availability of existing variant management and filtering
solutions, such as MedSavant [6], that could be integrated with Variant
View as future work. Existing tools, such as cBio [2] and MuSiC [5]
have similar display limits, which we estimate at 80 and 60 variants,
respectively, onscreen without overlaps. The Ensembl variation im-
age [3] and other genome browsers can display hundreds of variants
because they are encoded as thin vertical lines, but overlaps and oc-
clusion can lead to difficulties in determining whether there is one or
many variants at a single position. In addition to integrating with data
filtering systems, another interesting future direction would be to ex-
tend the tool for comparing more than just two groups of patients.

8 CONCLUSIONS

In this design study we designed, implemented and deployed a tool
for genetic variant impact assessment. It was originally designed for
the specific variant analysis task of Discover Genes in collaboration
with two analysts, but we were able to adapt the design with minimal
changes to two additional tasks for other analysts. The combination of
thorough data abstraction and task analysis led us to select and prior-
itize data in this domain in terms of what should be emphasized, de-
emphasized, or completely discarded. Our goal was an information-
dense overview showing multiple, non-contiguous features at multiple
scales. We succeeded in designing a main view that did not require any
navigation, and limited our use of interactivity to simple techniques of
sorting secondary views and bidirectional linking between views. In
contrast, previous tools in this domain rely on interaction techniques
that are costly in terms of both speed of execution and mental work-
load, or present an incomplete view of the dataset, so that some user
questions could not be answered.
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