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Fig. 1. Our system reliably estimates point spread functions of a given optical system, enabling the capture of high-quality imagery through poorly performing
lenses. From left to right: Camera with our lens system containing only a single glass element (the plano-convex lens lying next to the camera in the left image),
unprocessed input image, deblurred result.

Modern imaging optics are highly complex systems consisting of up to two
dozen individual optical elements. This complexity is required in order to
compensate for the geometric and chromatic aberrations of a single lens,
including geometric distortion, field curvature, wavelength-dependent blur,
and color fringing.

In this paper, we propose a set of computational photography tech-
niques that remove these artifacts, and thus allow for post-capture cor-
rection of images captured through uncompensated, simple optics which
are lighter and significantly less expensive. Specifically, we estimate per-
channel, spatially-varying point spread functions, and perform non-blind
deconvolution with a novel cross-channel term that is designed to specifi-
cally eliminate color fringing.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Pic-
ture/Image Generation—Digitizing and scanning

Additional Key Words and Phrases: Computational Photography, Deconvo-
lution, Optimization, Optics

1. INTRODUCTION

Over the past decades, camera optics have become increasingly
complex. The lenses of modern single lens reflex (SLR) cameras
may contain a dozen or more individual lens elements, which are
used to optimize light efficiency of the optical system while min-
imizing aberrations, i.e., non-linear deviations from an idealized
thin lens model.

Optical aberrations include effects such as geometric distortions,
chromatic aberration (wavelength-dependent focal length), spheri-
cal aberration (focal length depends on the distance from the op-
tical axis), and coma (angular dependence on focus) [Mahajan
1991]. All single lens elements with spherical surfaces suffer from
these artifacts, and as a result cannot be used in high-resolution,
high-quality photography. Instead, modern optical systems feature
a combination of different lens elements with the intent of cancel-
ing out aberrations. For example, an achromatic doublet is a com-

pound lens made from two glass types of different dispersion, i.e.,
their refractive indices depend on the wavelength of light differ-
ently. The result is a lens that is (in the first order) compensated
for chromatic aberration, but still suffers from the other artifacts
mentioned above.

Despite their better geometric imaging properties, modern lens
designs are not without disadvantages, including a significant im-
pact on the cost and weight of camera objectives, as well as in-
creased lens flare.

In this paper, we propose an alternative approach to high-quality
photography: instead of ever more complex optics, we propose
to revisit much simpler optics used for hundreds of years (see,
e.g., [Rashed 1990]), while correcting for the ensuing aberra-
tions computationally. While this idea is not entirely new (see,
e.g., [Schuler et al. 2011]), our approach, which exploits cross-
channel information, is significantly more robust than other meth-
ods that have been proposed. It is therefore able to handle much
larger and more dense blur kernels, such as disk-shaped kernels
with diameters of 50 pixels and more, which occur frequently in
uncorrected optics unless the apertures are stopped down to an im-
practical size. A key component to achieve this robustness is the
development of a convex solver with guaranteed convergence prop-
erties that can minimize the resulting cross-channel deconvolution
problem. In fact, our experiments show that a failure of current
methods to arrive at a global optimum of the objective function
limits the quality of state-of-the-art deconvolution methods. The
specific technical contributions that enable the use of simple lens
designs for high-quality photography are

—a new cross-channel prior for color images,
—a deconvolution method and convex solver that can efficiently

incorporate this prior and is guaranteed to converge to a global
optimum, and

—a robust approach for per-channel spatially-varying PSF estima-
tion using a total variation (TV) prior based on the same opti-
mization framework.
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We demonstrate our method by producing high-quality pho-
tographs on modern 12 megapixel digital SLRs using only sin-
gle lens elements such as plano-convex or biconvex lenses, and
achromatic doublets. We achieve high quality results compara-
ble to conventional lenses, with apertures around f/4.5. Finally,
we show that our formulation outperforms competing deconvolu-
tion approaches in terms of both quality and computational per-
formance. Using our techniques, simplified camera optics become
viable alternatives to conventional camera objectives without the
disadvantages outlined above.

2. RELATED WORK

Only a few years after Gauss introduced the linear model of op-
tics [1841] that gives rise to the thin lens model, Seidel [1857] in-
troduced aberration theory, i.e., the study of non-linear effects in
optical systems. The common way to correct for these effects in op-
tical systems is to design increasingly complex systems with larger
and larger numbers of individual lens elements [Mahajan 1991]. An
alternative way to deal with aberrations is to remove the resulting
blur after the capture in a deconvolution step.

Image Deconvolution.
The most basic deconvolution approaches include frequency-space
division and the Wiener filter [Wiener 1964], which however deal
poorly with frequencies that are suppressed by the blur kernel. A
classical iterative method for image deconvolution is Richardson-
Lucy [Richardson 1972; Lucy 1974], which was developed for
use in astronomy to compensate for blur in optical systems that
are insufficiently corrected for aberrations. The basic Richardson-
Lucy algorithm has been extended in many ways, including resid-
ual deconvolution [Yuan et al. 2007] and Bilateral Richardson-
Lucy [Yuan et al. 2008].

Recently, there has been a lot of work on incorporating image
priors into the deconvolution process, as an attempt to better cope
with very broad blur kernels and the complete loss of certain fre-
quencies. Such priors include convex terms such as total variation
(TV, e.g., [Chan et al. 2011]) and total curvature [Goldluecke and
Cremers 2011], which can be optimized with specialized solvers
that are guaranteed to converge to the globally optimal solution.
Other authors have used non-convex regularization terms that are
optimized using techniques such as Iteratively Reweighted Least
Squares (IRLS) [Levin et al. 2007; Joshi et al. 2009]. These meth-
ods are not guaranteed to converge to a global optimum, but pro-
duce state-of-the-art results in practice. Krishnan and Fergus [2009]
introduce a prior based on the Hyper-Laplacian, and an efficient
solver to implement it. Like IRLS, this new solver is not guaran-
teed to converge to a globally optimal solution. We show in Ap-
pendix B that this limitation is in fact practically relevant, and that
a TV solver with guaranteed global convergence will often produce
sparser gradient distributions than these Hyper-Laplacian solvers.

PSF Estimation.
Although blind deconvolution methods exist, the best image qual-
ity is achieved with known blur kernels. Several methods for esti-
mating the kernels exist, including spectral methods [Gibson and
Bovik 2000] and estimation from edge-based [Joshi et al. 2008]
or noise-based patterns [Brauers et al. 2010] or image pairs [Yuan
et al. 2007].

Deconvolution for Aberration Correction.
As mentioned above, the use of deconvolution algorithms for cor-
recting for aberrations dates back at least to the original develop-

ment of the Richardson-Lucy algorithm. More recently, there has
been renewed interest in solving such problems with modern tech-
niques, including deconvolution for spatially varying PSFs [Kee
et al. 2011] and the removal of chromatic aberrations [Chung et al.
2009; Joshi et al. 2009], both for images taken with complex opti-
cal systems. We note that in both cases the point spread functions
are significantly smaller than with the simple lenses we use. Joshi
et al.’s color prior [2009] encourages color gradients that are lin-
ear blends of two base colors. This is not a good prior for remov-
ing color fringing from chromatic aberration since large-area color
fringing is typically composed of several segments that are linear
mixtures of different base colors.

Kang [2007] proposes a method specifically for removing color
fringing in images. However, this method is based on edge detec-
tion, which is feasible for images taken with partially corrected op-
tics, but is impossible in the presence of very large blurs that result
from the use of uncorrected optics.

Cho et al. [2010; 2012] propose a deconvolution method that
uses locally learned gradient statistics for deconvolution. Although
this has not been attempted in the literature, one could imagine us-
ing this method to transfer gradient information from one channel
to another. Instead, our approach is to directly match point-wise
gradients in the different channels, which provides better localiza-
tion and therefore suppression of color fringing than an approach
based on area statistics.

Schuler et al. [2011] presented the work most similar to ours.
They solve the demosaicing problem as well as the deconvolution
problem at the same time by working in Yuv color space. While
working in this color space is a strong-enough prior to avoid color
artifacts stemming from PSFs with relatively sparse features and
thin structures, this approach is not sufficient to avoid artifacts in
the presence of large disk-like blurs such as the ones produced
by spherical and chromatic aberrations (Section 7). Schuler et al.’s
method also suffers from the lack of global convergence stemming
from their use of a Hyper-Laplacian prior.

In contrast to all these methods, our approach uses a convex
cross-channel prior that can be implemented efficiently and with
guaranteed global convergence. As a result, it can produce excel-
lent image quality even in the presence of very large blur kernels.
We emphasize that our contribution is not only to introduce a color
prior, but also to find a convex optimization framework for this
prior, which is a key component in achieving excellent image qual-
ity in the presence of very large blur kernels.

Finally, there has been work on using chromatic aberrations to
increase the depth of field of the imaging system [Cossairt and Na-
yar 2010; Guichard et al. 2009]. This problem is somewhat orthog-
onal to our goal, and could be added to our method as well. We also
note that Cossairt and Nayar [2010] still require an optical system
in which all aberrations except for chromatic ones are minimized.

3. OVERVIEW

The goal of our work is to replace complex optical systems used
in modern camera objectives with very simple lens designs such
as plano-convex lenses, while achieving image quality comparable
to modern cameras at the full resolution of current image sensors
(Fig. 2).

The primary challenge in achieving these goals is that simple
lenses with spherical interfaces exhibit aberrations, i.e., higher-
order deviations from the ideal linear thin lens model [Seidel 1857].
These aberrations cause rays from object points to focus imper-
fectly onto a single image point, thus creating complicated point
spread functions that vary over the image plane, which need to be
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Fig. 2. In this paper we propose to replace complex lens systems by a
single lens element plus a set of computational photography techniques.

removed through deconvolution. The effect gets more pronounced
at larger apertures where more off-axis rays contribute to the image
formation. Figure 3 shows the variation of the PSF over the image
plane for two simple lens elements. We can make several observa-
tions from these images:

Fig. 3. Patch-wise estimated PSFs for two simple lenses. The PSF estima-
tion and non-blind deblurring in our method is done in patches to account
for the PSFs’ spatial variance. Left: PSF of a single biconvex lens at f/2.0.
Right: PSF of a single plano-convex lens at f/4.5.

—The blur is highly spatially varying, ranging from disc-like struc-
tures (spherical aberration) with diameters of 50 pixels and more
to elongated streaks (coma and astigmatism). We can address
this problem by subdividing the image into tiles over which we
assume a constant point spread function (see, e.g., [Levin et al.
2007]).

—The blur is highly wavelength dependent (chromatic aberration).
This results in objectionable color fringing in the image. At the
same time, the PSF of at least one of the color channels often
contains more energy in high spatial frequencies than the others
(one channel is usually focused significantly better than the oth-
ers); note here that we do not require it to be perfectly in focus.
This suggests that we may be able to utilize cross-channel infor-
mation and reconstruct spatial frequencies that are preserved in
at least one of the channels.

The rest of the paper is structured as follows. In Section 5 we
describe a cross-channel prior, and an efficient convex optimiza-
tion algorithm for solving the deconvolution problem. Section 6 de-
scribes a PSF estimation algorithm for recovering tile-based PSFs
such as the ones shown in Figure 3. Both the deconvolution algo-
rithm and the PSF estimation use the convex optimization frame-
work by Chambolle and Pock [2011], which we summarize in Sec-
tion 4. We conclude with results and a discussion in Sections 7
and 8.

4. REVIEW OF OPTIMAL FIRST-ORDER
PRIMAL-DUAL CONVEX OPTIMIZATION

To solve both the image deconvolution and the PSF estimation
problem for working with simple lenses, we derive optimization
methods based on the optimal first-order primal-dual framework
by Chambolle and Pock [2011]. In this section we present a short

overview of this optimization framework. We refer the reader to the
original work by Chambolle and Pock for an in-depth discussion.

The optimization framework considers general problems of the
form

xopt = argmin
x

F (Kx) + G(x). (1)

For example, in an inverse problem with a TV regularizer, the first
term in Eq. (1) is the regularizer (that is K(x) = ∇x, F(y) =
‖y‖1 for TV), while the second term is the data fitting term (some
residual norm).

Let X,Y be finite-dimensional real vector spaces for the primal
and dual space, respectively. The operators from Eq. (1) are then
formally defined as:

K : X → Y is a linear operator from X to Y
G : X → [0,+∞) is a proper, convex, (l.s.c.) function.
F : Y → [0,+∞) is a proper, convex, (l.s.c.) function.

(2)

where l.s.c. stands for lower-semicontinuous. The dual problem of
Eq. (1) is given as

yopt = argmax
y

− (G∗ (−K∗y) + F∗(y)) , (3)

where the ∗ denotes the convex conjugate. To solve the above (pri-
mal and dual) problem, the following algorithm is proposed by
Chambolle and Pock [2011]:

ALGORITHM 1. (First-order primal-dual algorithm)

—Initialization: Choose τ, σ ∈ R+, θ = 1 with τσL2 < 1
Choose initial iterates (x0,y0) ∈ X × Y, x̄0 = x0

—Iterations (n ≥ 0): Update xn,yn, x̄n as following:
yn+1 = proxσF∗(yn + σKx̄n)

xn+1 = proxτG(xn + τK∗yn+1)

x̄n+1 = xn+1 + θ (xn+1 − xn)

The resolvent or proximal operator with respect to G is defined
as:

proxτG(x̃) := (I + τ∂G)−1 (x̃)

= argmin
x

1

2τ
‖x− x̃‖22 + G(x) (4)

and analogously for proxσF∗ := (I + σ∂F∗)−1. It is assumed that
these operators are easy to compute, for example in closed form or
using a Newton-like method. The parameter L, which is necessary
to compute valid σ, τ , is defined as the operator norm L = ‖K‖2.

Note that Algorithm 1 never minimizes functions including both
G and F∗ at the same time. This splitting of the minimizations
for G and F from Eq. (1) and the alternation between those mini-
mizations is the high-level idea behind all forward-backward split-
ting methods [Combettes and Pesquet 2011], [Friedlander 2011]. In
each iteration, these methods first perform a forward step to mini-
mize G in the objective function and then minimize F, where both
minimizations are coupled by terms that ensure that the solution is
close to the previous solution (note the first term in the minimiza-
tion in Eq. (4)). A basic forward-backward method that illustrates
this idea is the projected gradient method. Consider the example of
solving Eq. (1) with K(x) = x,F(y) = δC(y) and arbitrary G,
where δC(y) is the indicator function for a set C that is 1 if y ∈ C,
else∞. Thus, in this example G is to be minimized with the hard
constraint x ∈ C. The projected gradient method would be the fol-
lowing iteration over n ≥ 0:
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xn+1 = proxσF︸ ︷︷ ︸
backward step

(xn − σ∇G(xn))︸ ︷︷ ︸
forward step

, (5)

where σ is a step size. The iteration is illustrated in Fig. 4. We
can see that in each iteration the projected gradient method first
performs a gradient descent step and then a prox-step for F. For
the considered problem this is a Euclidean projection on the hard
constraint set C. Consequently the resolvent operators from Eq. (4)
can be thought of as a generalization of the projection.

∇G

x0

−σ∇G
(x0)

C
x1

proxσF

−σ∇
G(x1

)

x2

proxσF

x′1

x′2

Fig. 4. Projected gradient method that illustrates the high-level idea be-
hind forward-backward splitting methods: Alternating sequence of gradient
descent (forward) steps and projection (backward) steps.

Many known sparse optimization methods fall into the class of
forward-backward splitting methods, illustrated by the projected
gradient example above. Other forward-backward splitting meth-
ods include ISTA, FISTA, Split Bregman, ADMM [Friedlander
2011]. A distinguishing property of Algorithm 1 is that the au-
thors show that it converges to a global minimum with the rate
O(1/N), which is optimal for the general problem from Eq. (1)
(see again [Chambolle and Pock 2011]).

5. DEBLURRING

Having summarized the general optimization framework, we now
derive a specific and efficient deconvolution algorithm based on
this framework. We start by introducing an image formation model,
and motivating a novel cross-channel prior for deconvolving multi-
channel images, then define an optimization function for deconvo-
lution with this term, and cast it into the framework from the previ-
ous section. Next, we discuss an improvement of the basic method
to deal with dark image regions, and finally we describe how the de-
veloped core method can be integrated into an efficient scale-space
deconvolution method.

5.1 Image Formation Model

Consider a grayscale image tile captured with n × m resolution.
Let J , I ,N ∈ Rn×m be the observed blurred image, the underly-
ing sharp image and additive image noise, respectively. The forma-
tion of the blurred observation with the blur kernel B can then be
formulated as

J = B ⊗ I + N (6)
j = Bi + n, (7)

In the second form, B, j, i, and n are the corresponding quanti-
ties in matrix-vector form. As mentioned in the overview, an actual
camera image will be composed of many tiles, each with a PSF that
is assumed constant over the tile.

5.2 Deconvolution with Cross-Channel Information

Real optical systems suffer from dispersion in the lens elements,
leading to a wavelength dependency of the PSF known as chro-
matic aberration. While complex modern lens assemblies are de-
signed to minimize these artifacts through the use of multiple lens
elements that compensate for each others’ aberrations, it is worth
pointing out that even very good lenses still have a residual amount
of chromatic aberration. For the simple lenses we aim to use, the
chromatic aberrations are very severe – one color channel is fo-
cused significantly better (although never perfectly in focus) than
the other channels, which are blurred beyond recognition (of course
excluding achromatic lenses which compensate for chromatic aber-
rations).

Given individual PSFs B{1...3} for each color channel J{1...3} of
an image J one might attempt to independently deconvolve each
color channel. As Figure 5 demonstrates, this approach does not in
general produce acceptable results, since frequencies in some of the
channels may be distorted beyond recovery. Note the severe ringing
in the top center and strong residual blur in the bottom center.

Fig. 5. Effect of using the cross-channel priors (with the addition from
Sec. 5.5) for two image patches (full images in results section). Left: Orig-
inal blurred capture. Middle: Independently deconvolved results for each
channel using the method of Levin et al. [2007]. Right: Deconvolution re-
sult with our cross channel prior.

We propose to share information between the deconvolution pro-
cesses of the different channels, so that frequencies preserved in
one channel can be used to help the reconstruction in another chan-
nel. Our cross-channel prior is based on the assumption that edges
in the image appear in the same place in all channels, and that hue
changes are sparse throughout the image (also see Figure 6). These
assumptions lead to the following prior for a pair of channels l, k

∇ik/ik ≈ ∇il/il
⇔ ∇ik · il ≈ ∇il · ik,

(8)

which we enforce in a sparse (`1) fashion. Note that the division
and multiplication /, · are pixel-wise operators.

5.3 Minimization Problem

Using this cross-channel prior, we formulate the problem of jointly
deconvolving all channels as the optimization problem

(i1...3)opt = argmin
i1...3

3∑
c=1

‖Bcic − jc‖22 + λc

5∑
a=1

‖Haic‖1

+
∑
l6=c

βcl

2∑
a=1

‖Haic · il −Hail · ic‖1,
(9)
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Fig. 6. Blurred scanline on the left with different PSFs in each channel
and a sharp green channel. Reconstructed scanline on the right. Our cross-
channel regularizer enforces gradient consistency between the color chan-
nels and allows sparse hue changes. Constant regions and pure luma gra-
dients have a low regularizer energy (regions shaded in light green), but
changes in chroma are penalized (red regions). For the region between x1

and x2, the extrapolated intensities of all channels intersect the x-axis in the
same point x0, which visualizes Equation 8. By using an `1 norm, sparse
chroma changes occurring exactly at edges (right) are preferred over wider
regions (left) that are typically perceived as color fringing.

where the first term is a standard least-squares data fitting term, and
the second term enforces a heavy-tailed distribution for both gradi-
ents and curvatures. The convolution matrices H{1,2}, implement
the first derivatives, while H{3...5} correspond to the second deriva-
tives. We use the same kernels as Levin et al. [2007] but employ an
`1 norm in our method rather than a fractional norm. This ensures
that our problem is convex. The last term of Eq. (9) implements
our cross-channel prior, again with an `1 norm. λc, βcl ∈ R with
c, l ∈ {1 . . . 3} are weights for the image prior and cross-channel
prior terms, respectively.

5.4 Deconvolution Algorithm

The minimization from Eq. (9) is implemented by alternately min-
imizing with respect to one channel while fixing all the other chan-
nels. To optimize for this single channel x = ic we derive a first-
order primal-dual algorithm adopting the framework described in
Sec. 4. First, the optimization is rewritten in matrix-vector form as

(ic)opt = argmin
x

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



λcH1

...
λcH5

βcl
(
DilH1 −DH1il

)
...

βcl
(
DilH2 −DH2il

)
...


x

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

+ ‖Bcx− jc‖22

= argmin
x

‖Sx‖1 + ‖Bcx− jc‖22

(10)

where here D denotes the diagonal matrix with the diagonal taken
from the subscript vector. See Appendix A for a detailed derivation.
S is a matrix consisting of the sequence of all t = 5 + 2(3 − 1)
matrices coming from the `1 minimization terms in Eq. (9). By
comparison with Eq. (1), we can now define

K(x) = Sx

F(y) = ‖y‖1
G(x) = ‖Bcx− jc‖22 .

(11)

Given this structure, the following resolvent operators neces-
sary to apply Algorithm 1 are already known [Chambolle and Pock
2011]:

y = proxσF∗(ỹ)⇔ yi =
ỹi

max(1, |ỹi|)
(12)

x = proxτG(x̃)

⇔ 0 =
1

τ
(x− x̃) + 2

(
BT
c Bcx−BT

c j
)

⇔ x = F−1

(
τ2F (Bc)

∗ F (jc) + F (x̃)

τ2 |F (Bc)|2 + 1

)
, (13)

where F (.) in the last line denotes here the Fourier transform
and ỹ, x̃ are the function variables of the proximal operators as
defined in Eq. (4). The first proximal operator is just a per-pixel
projection operator (for detailed derivation we refer the reader
to [Chambolle and Pock 2011]). The second proximal operator is
the solution to a linear system as shown in the second line. Since
the system matrix is composed of convolution matrices with a large
support we can efficiently solve this linear system in the Fourier do-
main (last line).

What still needs to be determined is the convex conjugate K∗ of
the linear operator K, which is given as follows:

K∗ = ST =
[
ST1 · · ·STt

]
=
[
λcH

T
1 · · ·λcHT

5 βcl
(
HT

1 Dil −DH1il

)
· · ·
]
,

(14)

where t is the number of matrices S is composed of. In sum-
mary, the matrix-vector multiplication K∗(y) in Algorithm 1 can
be expressed as the following sum

K∗(y) = STy =

t∑
k=1

STk y[(k−1)·nm,...,k·nm−1], (15)

where each STk is just a sum of filtering operations and point-wise
multiplications. Likewise, the resolvent operators given above can
be implemented using small filtering operators or the FFT for larger
filters.

Parameter Selection
Algorithm 1 converges to the global optimum of the convex func-

tional if θ = 1, τσL2 < 1 with τ, σ > 0 and L = ‖K‖2
(see [Chambolle and Pock 2011] for the proof). We use θ = 1, σ =
10 and τ = 0.9

σL2 for the deconvolution algorithm proposed in this
paper. That only leaves open how to compute the operator norm L.

Since we have K(x) = Sx where S was a matrix, ‖K‖2 is
the square root of the largest eigenvalue of the symmetric matrix
STS (see, e.g., [Rowland 2012]). We find the value L by using the
power iteration where again all matrix-vector-multiplications with
STS can be decomposed into filtering operations (other eigenvalue
methods like the Arnoldi iteration are consequently also suited for
computing L).

5.5 Regularization for Low-Intensity Areas

In this section, we propose a modification of the basic cross-
channel prior that produces improved results in dark regions, i.e.,
for pixels where all channel values approach zero. In these regions,
the prior from Eq. (8) is not effective, since the hue normalization
reduces the term to zero. As a result, significant color artifacts (such
as color ringing) can remain in dark regions, see Figure 7. Note that
by allowing luma gradients in the original cross-prior this is an in-
herent design problem of this prior and not an optimization issue.

In these regions, we therefore propose to match absolute (rather
than relative) gradient strengths between color channels. The oper-
ator G from (11) is modified as
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Fig. 7. Chromatic artifacts in low-intensity areas. Left: Original blurred
patch. Center: Reconstruction using Eq. (9). Notice the chromatic artifacts
in all low-intensity areas and the correct reconstruction in the other areas.
Right: Regularization for low-intensity areas added as discussed below.

G(x) = ‖Bcx− jc‖22 + λb
∑
l6=c

2∑
a=1

‖Dw (Hax−Hail)‖22,(16)

where Dw is a spatial mask that selects dark regions below a
threshold ε. The mask is blurred slightly with a Gaussian kernel Kσ
to avoid spatial discontinuities at the borders of regions affected by
the additional regularization term:

w =

(
1−

∑
l βclT (il)∑

l βcl

)
⊗Kσ with T (i)k =

{
1 ; ik ≤ ε
0 ; else ,

and ε = 0.05 and σ = 3 in our implementation.
The resolvent operator with respect to G from Eq. (13) is re-

placed by the following derivation (see Appendix A for details):

uopt = proxτG(ũ)

⇔

2τBT
c Bc + I + 2τλb

∑
l6=c

2∑
a=1

HT
aD

2
wHa

uopt

= 2τBT
c jc + ũ + 2τλb

∑
l6=c

2∑
a=1

HT
aD

2
wHail

⇔ Auopt = b (17)

This expresses the solution of the resolvent operator as the matrix
inversion problem Auopt = b. Since blur kernel sizes of the order
of magnitude of 102 × 102 can be expected for practical applica-
tions, A is very large and impractical to invert explicitly. The sys-
tem is solved using the Conjugate Gradient (CG) algorithm. This
allows us to express the matrix-vector multiplication in the CG-
algorithm as a sequence of filtering operations as before.

5.6 Residual and Scale-Space Deconvolution

The basic deconvolution approach described so far can be ac-
celerated and further improved by adopting a scale-space ap-
proach [Yuan et al. 2008] as well as residual deconvolution [Yuan
et al. 2007].

The idea behind residual deconvolution is to iteratively decon-
volve the residual image starting with a large regularization weight
which is progressively decreased. Since the residual image has
a significantly reduced amplitude, its deconvolved reconstruction
contains less ringing which is proportional to the amplitude. The
iteration is shown in the center of Fig. 8.

Our method handles saturation in the blurred image by remov-
ing the rows where j is saturated from the data fitting term. This
is done by pre-multiplying the residual Bcx − jc with a diagonal
weighting matrix whose diagonal is 0 for saturated rows and 1 else;
the derivation from Eq. (17) is changed straightforwardly.

To increase the performance of the algorithm by using good start-
ing points for Eq. (10), the method is performed in scale space.

I0 =

I z−1
c ↑

I0 =

I zc ↑

k = 0

∆J = J − Ik ⊗B
Ik+1 = Ik + ∆J ⊗−1

λk
B

λk+1 = 1
3 λk, k = k + 1 It

er
at

e

I zc = Ik

Scale zz−1 z+1

J = Jzc , B = Bzc ,

λ0 = λc

Fig. 8. Iterative deconvolution of the residual image which eliminates
ringing artifacts, center. The operator ⊗−1

λk
is the deconvolution of the im-

age to the left using the kernel to the right and a regularizer-weight λk .
For performance reasons the algorithm is implemented in scale space. This
figure shows the deconvolution on a level z in the pyramid. We set I−1

c = 0.

See again Fig. 8, where ↑ is an upsampling operator to the next
finer scale. We use nearest neighbor since it preserves edges. The
pyramids {J z}Zz=0, {Bz}Zz=0 of the blurred image/kernel pairs are
computed by bicubic downsampling of J ,B with the scale fac-
tor 1

2
. The reconstruction pyramid {I z}Zz=0 is progressively recov-

ered from coarse (scale 0) to fine, where at each scale the initial
iterate is the upsampled result of the next coarser level. Note, that
our scale space implementation purely serves as a performance im-
provement. In particular we do not need to overcome local minima
in our minimization problem since it is convex.

Contrary to [Yuan et al. 2007], we are also not using any infor-
mation from coarser scales in the deblurring at a considered scale.
Since the reconstructions can contain significantly less detail we
found that guiding fine scale deblurring with coarser scale infor-
mation is problematic in many cases.

6. PSF ESTIMATION

The previous section assumes that the PSF of the optical system is
given for each image tile. While the PSF can be obtained by any
existing technique, we use a calibration-pattern-based approach. In
contrast to methods that directly measure the PSF like Schuler et
al. [2011], no pinhole-light source and a dark-room lab is necessary.
Instead we just use a consumer laser-printer to make our targets. To
estimate the PSFs from the target images, it is natural to apply the
same optimization framework that was used for deblurring also for
the PSF estimation step. This method is detailed below. Note again
that any PSF estimation method could be used here and the whole
estimation process is a calibration procedure, which only needs to
be performed once for each lens.

6.1 PSF Estimation as Deconvolution

The PSF estimation problem can be posed as a deconvolution prob-
lem, where both a blurred image and a sharp image of the same
scene are given. The blurred image is simply the scene imaged
through the simple lens, with the aperture open, while the sharp
image can be obtained by stopping the lens down to a small, almost
pinhole aperture, where the lens aberrations no longer have an ef-
fect. By acquiring a sharp image this way (as opposed to a synthetic
sharp image) we avoid both geometric and radiometric calibration
issues in the sharp reference image.

Let J be an image patch in a considered blurred channel, I the
corresponding sharp pinhole-aperture patch. We estimate a PSF
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Bopt describing the blur in J by solving the minimization problem

bopt = argmin
b

‖Ib− s · j‖22 + λ‖∇b‖1 + µ‖1Tb− 1‖22, (18)

where the first term is a linear least-squares data fitting term, and
the scalar s =

∑
k,l I (k, l)/

∑
k,l J (k, l) accounts for the differ-

ence in exposure between the blurred and pinhole image. The sec-
ond term represents a standard TV prior on the gradients of the
recovered PSF, and the third term enforces an energy conservation
constraint, i.e.,

∑
k,l B(k, l) = 1.

Note that Eq. (18) is a convex optimization problem. We derive a
first-order primal-dual algorithm adopting the framework described
in Sec. 4. Specifically, Eq. (18) is expressed using the following
operators adopting the notation from before:

K(x) = ∇x
F(y) = ‖y‖1

G(x) =
1

λ
‖Ib− s · j‖22 +

µ

λ
‖1Tb− 1‖22

(19)

The following resolvent operators and convex conjugates necessary
to apply Algorithm 1 are then provided in [Chambolle and Pock
2011]:

y = proxσF∗(ỹ)⇔ yi =
yi

max(1, |ỹi|)
(20a)

K∗x = ∇∗x = −divx (20b)

However, the resolvent operator with respect to G(u) has to be
derived for our problem. As we show in Appendix A, we can ex-
press it as a sequence of frequency domain operations:

uopt = proxτG(ũ)

= F−1

(
τsF (I)∗ F (j) + λ

2
F (ũ) + τµF (1)

τ |F (I)|2 + λ
2

+ τµF (O)

)
,

(21)

where O is a convolution matrix consisting only of ones.
Using these operators, we can again apply Algorithm 1. The

computation of L has been described in Sec. 5.4 and the same τ
and σ can be used.

6.2 Calibration Pattern

To allow for robust PSF estimation, the scene used for this pur-
pose should have a broad spectrum. We therefore decide against
both natural scenes and edge based patters (e.g., [Trimeche et al.
2005; Joshi et al. 2008]), and instead adopt a white noise pattern.
See [Brauers et al. 2010] for a comparison of a white-noise pattern
to different other calibration patterns. Our specific pattern, shown
in Figure 9, is subdivided into several noise patches, separated by
a white border. Each noise tile will produce a PSF for a single im-
age tile, while the white frame helps suppress boundary effects in
the PSF estimation process. This is because it enables a physically
correct constant boundary condition around each patch if the frame
width is rbnd ≥ blur-radius (see again Fig. 9).

6.3 Full PSF Estimation Framework

To increase the efficiency of the PSF estimation, we apply the al-
gorithm introduced above in scale space. We initialize our iterative
minimization at each scale with the upsampled results from the next
coarser scale, which yields a good starting point for the convex ob-
jective function from Eq. (18) and thus speeds up the minimization.

After the initial PSF estimation, we perform an additional step
of smoothing by computing weighted averages of PSFs for a 3 ×

rbnd

Fig. 9. Proposed PSF calibration target consisting of a grid of framed
white noise patches. If the frame width is rbnd ≥ blur-radius, a bound-
ary condition propagating the boundary pixels outside (e.g., replicate the
pixels) is a physically correct model for the blurred and sharp noise patch.

3 set of neighboring tiles. Although the PSFs may contain high
frequency features, these tend to change smoothly over the image
plane. Combined with the relatively small tile size, we found that
this spatial filtering does not cause feature loss, but reduces noise
significantly.

7. RESULTS

In this section we present a number of results captured with simple
lens elements attached to a Canon EOS D40 camera, as well as
detailed comparisons with state-of-the-art deconvolution methods.
For figures where we choose to present cropped regions to highlight
detail structure, the full native camera resolution image is provided
in the supplemental material. We encourage the reader to zoom in
on the individual images in the electronic version of this paper.

Efficiency.
First we compare the performance of our method to several other
sparse optimization approaches. To this end, we implemented
our objective function, including the cross-channel prior in the
following solvers: Split-Bregman [Goldstein and Osher 2009],
FISTA [Beck and Teboulle 2009], and Nesterov [Nesterov 2005],
which are all recent, state-of-the-art sparse optimizers with guar-
anteed convergence to a global optimum. They therefore produce
identical results to our method. To keep the comparison fair, we
disabled the residual and multiscale parts of our algorithm. All ex-
periments were performed on a single core of an Intel Core2 Quad
CPU with 2.40GHz and 4GB RAM.

The test images are standard images used in imaging research,
that were convolved with the PSFs shown in Figure 10. All al-
gorithms were run until the per-iteration change in the result fell
below a given threshold. Table I shows the timing results for the
different algorithms and images. We note that our algorithm consis-
tently outperforms the alternatives. For comparison we have added
the last two rows in Table I which show the timings for the method
from Levin et al. [2007] both in its original form, and a modified
version with our cross-channel prior added. Our method is signif-
icantly faster than the version with the cross prior, but somewhat
slower than Levin without our prior (as shown later in Figure 18,
that method produces poorer results than our method). We note,
however, that Levin’s method only performs two iterations of IRLS,
while we run our algorithm to convergence. Also, our use of multi-
scale deconvolution significantly speeds up the full algorithm.

Results from different lenses.
Figures 1 and 11 show several results from the most basic refrac-
tive optical system, a single plano-convex lens (focal length 130
mm, f/4.5) shown lying on the side in Figure 1. For all results in
this paper, ISO100 and autoexposure settings were used, which we
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Fig. 10. Blur kernels used for Table I (all 45 × 45). From left to right:
a) simple lens kernel estimated with our method, b) standard lens kernel
estimated with our method, c) out-of-focus kernel from [Levin et al. 2007],
d) motion blur from [Yuan et al. 2007].

Table I. Runtime comparison using different images and kernels.
All times are in seconds.

Image: Mandrill Cameraman Lena Mean:Kernel: a) b) c) d) a) b) c) d) a) b) c) d)

Proposed method 14.5 11.7 22.8 18.2 19.8 12.9 23.6 19.0 20.7 10.2 25.5 21.6 18.4
Split Bregman 34.5 31.1 37.5 37.9 32.6 28.3 39.2 32.3 34.8 29.1 40.0 31.9 34.1
FISTA 320.7 304.8 385.4 341.6 443.9 413.5 422.5 404.4 425.5 409.9 407.5 376.3 388.0
Nesterov 344.8 320.5 378.7 361.9 462.4 440.5 453.2 431.7 451.7 440.8 424.3 405.5 409.7

Levin+cross term 53.5 27.6 72.3 71.6 40.6 26.4 69.4 71.9 40.2 24.3 76.4 74.8 54.1
Levin 11.1 11.4 11.3 11.6 11.8 11.8 11.4 11.0 11.3 11.8 11.2 11.4 11.4

consider as standard settings. The corresponding PSFs can be found
on the right side of Figure 3. We note that all results show good de-
tail down to the native sensor resolution, demonstrating that our
method is indeed capable of producing high quality digital pho-
tographs with very simple lens designs. The parking meter image
and the twigs show that deconvolving with the PSF for one partic-
ular scene depth preserves the deliberate defocus blur (bokeh) for
objects at different depths without introducing artifacts. The man-
hole cover image at the top shows focus change over a tilted plane.
Saturated regions as shown in the second inset of this image are
handled properly by our method. The supplemental material con-
tains even more plano-convex lens results than Fig. 11. It also in-
cludes a result under low-light conditions.

Figures 14 and 12 test the limits of our method using lenses with
a larger aperture of f/2. Figure 14 shows the results for a 100 mm
biconvex lens, with PSFs from Figure 3. The larger aperture in-
creases the depth dependency of the PSF. Therefore our deconvolu-
tion method produces very sharp reconstructions in-plane (see color
checker in Fig. 14), but suffers from some ringing out-out-of-plane
(see text on the foreground object). A similar depth dependency is
visible in Figure 12, where we show results for a 100 mm achro-
matic doublet (PSFs can be found in the supplemental material).
Considering that the PSFs exhibit disk-like structures in all chan-
nels, our deconvolution method still produces detailed reconstruc-
tions. The depth-dependency of the PSFs (that is the ringing in the
images) can be minimized through a stronger weight on the regular-
ization terms, which, however, introduces cartoon-like artifacts at
the highest resolution. Figure 13 shows a result of the same achro-
mat stopped down to f/4.5. This significantly reduces the artifacts
in results produced by our method. Note the strong chromatic ar-
tifacts in the naively deconvolved result, while our reconstruction
contains significantly reduced ringing that is not chromatic. In the
future one could imagine to improve the depth dependency by esti-
mating depth-depending PSFs (see Section 8).

Results for a commercial camera lens, a Canon 28–105 mm
zoom lens at 105 mm and f/4.5, are shown in Figures 15 and 16
(see supplemental material for full images). While this commercial
lens shows much reduced aberrations compared to the uncorrected
optics used above, there still are some residual blurs that can be
removed with our method. In particular, the vertical edges of the
calibration pattern in Figure 16 reveal a small amount of chromatic
aberration that is removed by our method. The PSFs for this lens
are around 11× 11 pixels in diameter.

Fig. 11. Images captured with a simple plano-convex lens (left) and re-
stored with our method (right). Note recovered spatial detail and the absence
of color fringing. Also note the bokeh and graceful handling of out-of-focus
blur in the top three images.

Fig. 12. Left: Cropped central region of the image from achromatic lens
with f/2.0. Right: Deblurred version.
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Fig. 13. Left: Captured input image from achromatic lens with f/4.5.
Right: Deblurred version. The third inset on the right is the patch recov-
ered with Levin et al. [2007] naively on independent channels.

Fig. 14. Left: Captured input image from biconvex lens at f/2. Right:
Deblurred version. A very low cross-prior weight has been used here to
illustrate the depth-dependency of the PSF.

Fig. 15. Test scene captured with a commercial Canon lens (105 mm,
f/4.5). Left: Captured input image. Right: Deblurred result.

Multispectral camera.
Our aberration correction method cannot only be used for regular
RGB cameras but also for multispectral imagers. In this case, the
cross-channel prior is applied for all pairs of frequency bands. Fig-
ure 17 shows results for a multispectral camera with custom multi-
element optics. As with the conventional cameras, our method suc-
cessfully removes chromatic aberration and restores lost image de-
tail in the blurred channels. Considering the wavelength-dependent
PSFs here, we want to point out that the assumption of fixed PSFs
for each color-channel of an RGB-sensor is often violated. This
assumption is made for all the RGB sensor results in this paper
and is a classical assumption in deconvolution literature. However,
one cannot tell from a tri-chromatic sensor the exact wavelength
distribution. Metamers (different spectra that produce the same tri-

Fig. 16. Patches from an image captured with a commercial Canon lens
(105 mm, f/4.5). Left: Captured input patches. Right: our results. The full
image can be found in the supplemental material.

Fig. 17. Results for a multispectral camera with custom optics. The top
row shows PSF estimation results for 20 nm wavelength increments, rang-
ing from 420 to 720 nm (blue: image center, red: upper left corner). The
bottom set of images and insets shows the captured image (left) and the
deconvolved result (right) after mapping to sRGB space.

stimulus response) will have different blur kernels, so there can al-
ways be situations where the assumption of fixed per-channel PSFs
will fail, such as for example light sources with multiple narrow
spectra or albedos with very narrow color tuning. This will intro-
duce errors in the data-fitting term of our objective function. Since
we have a strong cross-channel and image prior (see comparisons to
other priors below), we are still able to reconstruct images with high
quality. For future research we imagine using a physical model of
the full depth and wavelength-dependent PSF (see Section 8). Such
a model may then allow to obtain a plausible spectral reconstruc-
tion of the image, similar to what Rump and Klein [2010] show.

We have compared our method against several state-of-the-
art deconvolution algorithms, including the one from Levin et
al. [2007]. Figure 13 shows an additional inset of per-channel de-
convolution with their method. Compared to our result, it shows
more prevalent ringing artifacts, which are particularly noticeable
because they also have chromatic component. Our cross-channel
prior successfully suppresses chromatic artifacts, but also helps to
transfer information between channels for reduced ringing and in-
creased detail overall. Figure 18 shows another comparison. Here
we also implemented our cross-channel prior as an additional regu-
larization term for Levin et al.’s method. While this improves the re-
sult, it does not match the quality of our method. The IRLS solver is
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Fig. 18. Top row from left to right: Captured image, deconvolved result
from [Levin et al. 2007] independently on each channel, IRLS method
from [Levin et al. 2007] extended with our prior, our result. Bottom row:
Patches in same order of the methods.

unstable, not guaranteed to converge, does not minimize the sparse
norm close to its non-differentiable origin, and thus cannot achieve
the results of our method. We especially found robustness to be a
general issue once the cross-channel prior was added to IRLS, with
the resulting method being very sensitive to parameter selection and
often failing completely.

To further investigate the convergence properties of Hyper-
Laplacian priors, we conducted more detailed experiments with
the method by Krishnan and Fergus [2009] and compared it with
a plain TV regularized solution (Appendix B) for which there are
many solvers that guarantee convergence to a global optimum. We
found that the TV solution often produces sparser gradient dis-
tributions (i.e., lower Hyper-Laplacian residual) than the solvers
designed to optimize for these objectives. We can therefore con-
clude that Hyper-Laplacian regularization often fails at its objective
to produce sparser gradient distributions, at least with the solvers
available today.

We have also compared our method to Schuler et al. [2011].
First, in Fig. 19 we show results using their datasets (images and
estimated PSFs). We show results with two different weights for
the regularizer. Note that in both cases, our method recovers more
fine-scale structure than their approach. Since Schuler et al. use a
Hyper-Laplacian objective with the solver analyzed in Appendix B,
we again achieve a more heavy-tailed gradient distribution in our
result. However, the results for this dataset do not match the quality
we can achieve with our own datasets – for varying regularization
weight always a strong residual blur remains, especially around the
leaves and window edges.

We believe these artifacts are due to issues with the estimated
PSFs (which we take directly from Schuler et al.) rather than is-
sues in the actual deconvolution method. We note that the PSFs
lack a very low-frequency component, which we have observed
with every single lens element we have tested in our setup. Instead,
their blur kernels exhibit very thin structures akin to motion blur
kernels and contain very little chromatic variation. A missing low-
frequency component in the kernels could easily explain the poor
quality of the deconvolved results. Unfortunately, Schuler et al. do
not specify details about the lens, so we are unable to obtain similar
images using our setup.

We note that Schuler et al.’s Yuv-cross-channel regularization
breaks down when the chromatic aberrations increase. It com-
pletely fails for many of the large aberrations that we can handle.
In Fig. 20 we compare our cross-channel prior against their Yuv-
cross-channel regularization.

In this case we did not have access to their original implemen-
tation, so we reimplemented their method. To solve Eq.(5) from
their paper, we have adapted the code from the Hyper-Laplacian
solver [Krishnan and Fergus 2009] as suggested by the authors. All

Fig. 19. Top row from left to right: Captured image, our deconvolved re-
sult, result from [Schuler et al. 2011]. Patch matrix below from top left to
bottom right: Captured image, result from [Schuler et al. 2011], our result
with strong regularization (smoother reconstruction), our result with low
regularization (more detailed reconstruction) .

parameters documented in their paper have been used. Note that our
prior removes nearly all chromatic aberrations, while Schuler’s Yuv
regularization fails with the large aberrations that we can handle.

8. CONCLUSIONS AND FUTURE WORK

We have proposed a new method for high-quality imaging using
simple lens elements rather than complex lens designs. This is
made possible by a new, robust deconvolution with a novel cross-
channel gradient prior that enforces sparsity of hue changes across
the image. The prior allows detail transfer between different chan-
nels and suppresses reconstruction artifacts in individual channels.
Both this deconvolution algorithm and a related PSF estimation
method rely on a convex optimization framework [Chambolle and
Pock 2011], which guarantees convergence to a globally optimal
solution as well as optimal convergence rates. We demonstrate that
this solver is also faster than alternative methods in practice. Fur-
ther improvements in terms of both performance and quality are
achieved by adding residual and multiscale deconvolution.

Overall our method produces image quality comparable to that
of commercial point-and-shoot cameras for reasonable apertures
(around f/4.5) even with the most basic refractive imaging optics
imaginable: a single plano-convex lens. For much larger apertures
of f/2 and more, the quality degrades due to the depth dependency
of the PSF and significantly larger disk-shaped blur kernels, which
destroy much of the frequency content. We point out that, in com-
parison to other deconvolution algorithms, our cross-channel prior
still manages to transfer significantly more detail between channels
to produce an acceptable result, although not at the quality level of
a high-end lens in combination with a good SLR camera. We con-
clude that in order to achieve that level of image quality it may still
be necessary to optimize the lens design to partially compensate
for aberrations. However, we believe that even in this case, future
lenses can be simpler than they are today, thus paving the road for
lighter, cheaper, and more compact camera lenses.

At the moment, we are deconvolving the images with PSFs that
are calibrated for a single scene depth and that are fixed per chan-
nel. One possible extension of our method is to perform decon-
volution with PSFs for different image depths and wavelengths.
How to handle depth-dependency has been demonstrated in, e.g.,
Levin et al. [2007], we have suggested a direction for wavelength-
dependent deconvolution in Section 7. Doing so would require a
large wavelength-dependent 3D table of PSFs, which may be dif-
ficult to calibrate and expensive to store. However, since we are
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Fig. 20. Images from Fig. 11, 1 reconstructed using our cross-channel
prior (left) and restored with the Yuv-regularization from [Schuler et al.
2011] (right).

working with very simple optics, an alternative similar to [Shih
et al. 2012] may be to generate the PSFs procedurally from pa-
rameters of the optical system, such as lens curvature, glass type, as
well as calibrated or measured focus and alignment parameters. We
imagine to improve significantly on their results since our simple
optical system leads to only a handful of optimization parameters.
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APPENDIX

A. PROOFS

This section contains all the proofs for the mathematical results
presented in the paper.

PROOF FOR (10).

(ic)opt

= argmin
x

‖Bcx− jc‖22 + λc

5∑
a=1

‖Hax‖1

+
∑
l6=c

βcl

2∑
a=1

‖Hax · il −Hail · x‖1

= argmin
x

λc

5∑
a=1

‖Hax‖1 +
∑
l6=c

βcl

2∑
a=1

∥∥(DilHa −DHail

)
x
∥∥

1

+‖Bcx− jc‖22

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



λcH1

...
λcH5

βcl
(
DilH1 −DH1il

)
...

βcl
(
DilH2 −DH2il

)
...


x

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

+ ‖Bcx− jc‖22

= ‖Sx‖1 + ‖Bcx− jc‖22

PROOF FOR (17).

uopt = proxτG(ũ)

= argmin
u

1

2τ
‖u− ũ‖22

+ ‖Bcu− jc‖22

+λb
∑
l6=c

2∑
a=1

‖Dw (Hau−Hail)‖22︸ ︷︷ ︸
Φ(u)

⇔ 0 =
∂Φ(uopt)

∂u
=

1

τ
(uopt − ũ) + 2

(
BT
c Bcuopt −BT

c j
)

+ 2λb
∑
l6=c

2∑
a=1

(
(DwHa)T DwHauopt − (DwHa)T DwHail

)
⇔

∂Φ(uopt)

∂u
=

1

τ
(uopt − ũ) + 2

(
BT
c Bcuopt −BT

c j
)

+ 2λb
∑
l6=c

2∑
a=1

(
HT
aD

2
wHauopt −HT

aD
2
wHail

)
= 0

⇔

2τBT
c Bc + I + 2τλb

∑
l6=c

2∑
a=1

HT
aD

2
wHa

uopt

= 2τBT
c jc + ũ + 2τλb

∑
l6=c

2∑
a=1

HT
aD

2
wHail

⇔ Auopt = b

PROOF FOR (21).

uopt = proxτG(ũ) =

argmin
u

1

2τ
‖u− ũ‖22 +

1

λ
‖Iu− s · j‖22 +

µ

λ

∥∥1Tu− 1
∥∥2

2︸ ︷︷ ︸
Φ(u)

⇔
∂Φ(uopt)

∂u
=

2

λ

(
IT Iuopt − s · j

)
+

1

τ
(uopt − ũ) +

2µ

λ

(
1Tuopt − 1

)
1 = 0

⇔ λ

2
uopt −

λ

2
ũ + τ

(
IT Iuopt − s · IT j

)
+ τµ(Ouopt − 1) = 0

⇔ uopt = F−1

(
τsF (I)∗ F (j) + λ

2
F (ũ) + τµF (1)

τ |F (I)|2 + λ
2

+ τµF (O)

)

B. COMPARISON OF HYPER-LAPLACIAN AND TV
REGULARIZATION

Qualitative Comparison. Often IRLS-based solvers or solvers tar-
geting non-convex objective functions fail to converge to a global
minimum. Figure 21 shows an example for the non-convex func-
tion solved by Krishnan and Fergus [2009] using the kernels intro-
duced in the same paper. A single channel grayscale deconvolution
problem is solved using the unaltered code published from the au-
thors’ website. We compare these results against a single-channel

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



• 13

Table II. Comparison of the `2/3-regularized objective f(x) = λd
2
‖Bx− j‖22 + ‖∇x‖2/3 and its regularizer component r(x) = ‖∇x‖2/3

using our solver with plain TV-regularization and the method from [Krishnan and Fergus 2009] for different images and kernels. All values in
the table are in 103. Although we are actually minimizing the `1-regularized approximation of f(x), our method finds in most cases a better

objective with a more sparse solution than what the method from [Krishnan and Fergus 2009] produces.
Image: Mandrill Cameraman Lake Lena House
Kernel: a) b) c) d) a) b) c) d) a) b) c) d) a) b) c) d) a) b) c) d) Mean:

f(x) Hyper-Laplacian 230.86 155.80 254.67 324.29 313.79 173.04 330.45 394.65 271.05 150.83 296.63 383.01 248.62 94.68 253.23 351.58 453.08 349.97 488.47 525.24 302.19
f(x) our TV-solver 229.47 149.77 253.35 319.66 308.34 170.19 324.16 388.76 266.24 146.14 292.35 384.79 245.24 91.17 247.90 347.58 445.21 350.53 482.01 516.30 297.95
r(x) Hyper-Laplacian 15.70 31.24 13.75 22.31 12.86 17.37 12.28 15.67 18.05 24.39 17.96 22.41 15.87 20.02 15.84 18.52 14.17 16.68 14.95 17.02 17.85
r(x) our TV-solver 16.72 27.84 10.72 21.49 10.52 14.73 8.21 13.11 15.64 20.65 12.87 19.37 13.40 17.18 11.65 16.39 11.10 14.22 9.92 14.73 15.02

TV-regularizer with the same kernels and without scale-space and
residual deconvolution to make the comparison fair. The same reg-
ularization weights have been used, which means that the global
optimum of the Hyper-Laplacian objective function should have a
gradient distribution with a heavier tail than the one of the TV so-
lution.

However, as seen in the figure the distribution obtained using
Krishnan and Fergus’ method [2009] exhibits a lighter tail than the
solution from an `1-solver with guaranteed convergence, suggest-
ing that the the global optimum for the Hyper-Laplacian objective
has not been found.
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Fig. 21. Gradient distributions of the right synthetic blurred single-
channel image deconvolved with the according PSF in its upper left. Gaus-
sian noise σ = 10−4 and quantization was applied. Note, that our `1-
regularized solution features a heavier tail than the approximate solution
for the ` 2

3
-regularized problem computed with the method from [Krishnan

and Fergus 2009].

Quantitative Comparision. This suspicion can be further corrob-
orated by systematic experiments with larger sets of images. Using
the same images as for Table I, we compute both an `2/3 regular-
ized solution (again using the method by Krishnan and Fergus), as
well as a TV solution, and then compute the numerical value of
the `2/3 objective function for both results (see Table II). We note
that in most cases, the TV solver actually produces a more optimal
solution to the `2/3 problem than the dedicated Hyper-Laplacian
solver.

These results also explain why Krishnan and Fergus [2009] in
their work found only very minor differences in SNR values be-
tween the two methods. Our own experiments confirm these find-
ings.

We conclude, that, although Hyper-Laplacian norms should in
theory provide better regularization than simple TV terms, we in
practice do not see these improvements due to the inability of cur-
rent solvers to find the global optimum. These findings support
our choice of `1 norms for the various regularization terms in our
method, and stress the significance of convex methods with guar-
anteed convergence to a global optimum.
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