PBRT
/home/felix/UBC/projects/AdaptiveLightfieldSampling/pbrt_v2/src/core/quaternion.h
00001 
00002 /*
00003     pbrt source code Copyright(c) 1998-2012 Matt Pharr and Greg Humphreys.
00004 
00005     This file is part of pbrt.
00006 
00007     Redistribution and use in source and binary forms, with or without
00008     modification, are permitted provided that the following conditions are
00009     met:
00010 
00011     - Redistributions of source code must retain the above copyright
00012       notice, this list of conditions and the following disclaimer.
00013 
00014     - Redistributions in binary form must reproduce the above copyright
00015       notice, this list of conditions and the following disclaimer in the
00016       documentation and/or other materials provided with the distribution.
00017 
00018     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
00019     IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
00020     TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
00021     PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
00022     HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
00023     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
00024     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
00025     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
00026     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00027     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
00028     OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00029 
00030  */
00031 
00032 #if defined(_MSC_VER)
00033 #pragma once
00034 #endif
00035 
00036 #ifndef PBRT_CORE_QUATERNION_H
00037 #define PBRT_CORE_QUATERNION_H
00038 
00039 // core/quaternion.h*
00040 #include "pbrt.h"
00041 #include "geometry.h"
00042 
00043 // Quaternion Declarations
00044 struct Quaternion {
00045     // Quaternion Public Methods
00046     Quaternion() { v = Vector(0., 0., 0.); w = 1.f; }
00047     Quaternion &operator+=(const Quaternion &q) {
00048         v += q.v;
00049         w += q.w;
00050         return *this;
00051     }
00052     friend Quaternion operator+(const Quaternion &q1, const Quaternion &q2) {
00053         Quaternion ret = q1;
00054         return ret += q2;
00055     }
00056     Quaternion &operator-=(const Quaternion &q) {
00057         v -= q.v;
00058         w -= q.w;
00059         return *this;
00060     }
00061     friend Quaternion operator-(const Quaternion &q1, const Quaternion &q2) {
00062         Quaternion ret = q1;
00063         return ret -= q2;
00064     }
00065     Quaternion &operator*=(float f) {
00066         v *= f;
00067         w *= f;
00068         return *this;
00069     }
00070     Quaternion operator*(float f) const {
00071         Quaternion ret = *this;
00072         ret.v *= f;
00073         ret.w *= f;
00074         return ret;
00075     }
00076     Quaternion &operator/=(float f) {
00077         v /= f;
00078         w /= f;
00079         return *this;
00080     }
00081     Quaternion operator/(float f) const {
00082         Quaternion ret = *this;
00083         ret.v /= f;
00084         ret.w /= f;
00085         return ret;
00086     }
00087     Transform ToTransform() const;
00088     Quaternion(const Transform &t);
00089 
00090     // Quaternion Public Data
00091     Vector v;
00092     float w;
00093 };
00094 
00095 
00096 Quaternion Slerp(float t, const Quaternion &q1, const Quaternion &q2);
00097 
00098 // Quaternion Inline Functions
00099 inline Quaternion operator*(float f, const Quaternion &q) {
00100     return q * f;
00101 }
00102 
00103 
00104 inline float Dot(const Quaternion &q1, const Quaternion &q2) {
00105     return Dot(q1.v, q2.v) + q1.w * q2.w;
00106 }
00107 
00108 
00109 inline Quaternion Normalize(const Quaternion &q) {
00110     return q / sqrtf(Dot(q, q));
00111 }
00112 
00113 
00114 
00115 #endif // PBRT_CORE_QUATERNION_H