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Abstract
We provide two contributions, a taxonomy of visual cluster separation factors in scatterplots, and an in-depth
qualitative evaluation of two recently proposed and validated separation measures. We initially intended to use
these measures to provide guidance for the use of dimension reduction (DR) techniques and visual encoding (VE)
choices, but found that they failed to produce reliable results. To understand why, we conducted a systematic
qualitative data study covering a broad collection of 75 real and synthetic high-dimensional datasets, four DR
techniques, and three scatterplot-based visual encodings. Two authors visually inspected over 800 plots to deter-
mine whether or not the measures created plausible results. We found that they failed in over half the cases overall,
and in over two-thirds of the cases involving real datasets. Using open and axial coding of failure reasons and
separability characteristics, we generated a taxonomy of visual cluster separability factors. We iteratively refined
its explanatory clarity and power by mapping the studied datasets and success and failure ranges of the measures
onto the factor axes. Our taxonomy has four categories, ordered by their ability to influence successors: Scale,
Point Distance, Shape, and Position. Each category is split into Within-Cluster factors such as density, curvature,
isotropy, and clumpiness, and Between-Cluster factors that arise from the variance of these properties, culminat-
ing in the overarching factor of class separation. The resulting taxonomy can be used to guide the design and the
evaluation of cluster separation measures.

Categories and Subject Descriptors (according to ACM CCS): H.5.0 [Information Interfaces and Presentation]:
General; J.0 [Computer Applications]: General

1. Introduction
Over a century of previous work has been devoted to creating
effective and efficient algorithms for dimensionality reduc-
tion (DR), where a set of points in high-dimensional space
is transformed into a more compact lower-dimensional form
that preserves the important aspects of its underlying struc-
ture. These techniques include the venerable principal com-
ponents analysis (PCA) [Jol02], the many variants of mul-
tidimensional scaling (MDS) [IMO09], and very new ap-
proaches such as t-SNE [vdMH08] that are designed to ad-
dress the failure cases of older methods. The most common
visual encoding (VE) techniques for the resulting lower-
dimensional data generated by these DR techniques are vari-
ants of scatterplots. Two-dimensional scatterplots are nearly
ubiquitous, scatterplot matrices (SPLOMs) are also widely
used, and 3D scatterplots are not uncommon.

However, little attention has been paid to the question of
how to guide users through the process of choosing which
DR and VE techniques to use. The DimStiller system used
a workflow structure to guide users through the process of

choosing DR and VE techniques [IMI∗10], but it remains
an open problem to develop automatic algorithms to pro-
vide such guidance. In service of this goal, we sought to
use recent measures for visual cluster separation in scat-
terplots [SNLH09, TAE∗09]. These were originally devel-
oped for selecting good views within a SPLOM, but we rea-
soned that they should also be applicable to providing guid-
ance for DR and VE technique choices. A previous user
study [TBB∗10] had identified two particular measures as
the most effective state of the art: the centroid measure and
the grid measure [SNLH09,TAE∗09]. (These names are our
own, designed for readability. The original centroid mea-
sure name was Distance Consistency [SNLH09], the original
grid measure names were the equivalent Distribution Con-
sistency [SNLH09] and 2D-Histogram Density [TAE∗09].)

However, our initial tests showed that these measures
failed to produce reliable results; that is, there was often a
mismatch between the result computed by the measure and
a quality judgement made by a person. These mismatches
were in the form of both false positives, where the mea-
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Figure 1: Taxonomy of factors in visual cluster separation, where factor axes are marked to show the ranges where existing
measures are successful; gaps represent failure cases. The centroid measure is marked in blue and the grid is marked in red.
All positions are approximate estimates. The six datasets shown in Figure 5 are also marked along the factor axes. Five of
them have little inter-class variance and are marked with a single representative point on the Within-Class axes, but the high-
variance shuttle dataset has ranges marked with lines and boxes.

sure value was high but the human judged the visual sepa-
ration between clusters as poor, and false negatives, where
the measure value was low but humans were indeed able
to distinguish clusters in the scatterplots. We conjectured
that these measures encapsulated implicit assumptions about
dataset characteristics, which were not previously uncov-
ered because they were only tested with relatively simple
datasets. Therefore, we decided to systematically study the
differences between computed measures and human judge-
ment across a broad set of 75 real and synthetic datasets,
using a range of four DR and three VE techniques, to un-
tangle these assumptions and create a taxonomy of factors
underlying visual cluster separation in scatterplots.

In our qualitative data study, two human investigators
(the first two authors of this paper) visually inspected over
800 plots to determine whether or not the measures created
plausible results. We found that the measures failed in over
half the cases, and over two-thirds of the time for the real
datasets. In addition, the investigators generated a detailed
set of characteristics that influenced cluster separability in
general, and specific reasons why the measures failed in the
cases where they found a mismatch. Based on separability
characteristics and failure reasons, we generate a higher-
level taxonomy of factors, which we iteratively refined in
multiple passes, not only by considering its explanatory clar-
ity and power, but also by mapping the ranges where each
measure was successful along the factor axes, and by placing
some of the studied datasets along them. Figure 1 shows the
measure success ranges on a simplified version of the taxon-
omy. The extent of the gaps which indicate measure failure
ranges is readily apparent. This figure is discussed in more

detail in Section 6 after the factors are presented in Section
5; the meaning of each is further explained in Figure 3.

The primary contributions of this paper are (1) a taxon-
omy for dataset factors that influence visual cluster separa-
tion, and (2) the systematic evaluation of two visual clus-
ter separation measures with respect to human judgement.
The taxonomy is intended to provide operational guidance
in terms of how to develop and evaluate better cluster sepa-
ration measures. Two smaller contributions are the extension
of these two measures from 2D scatterplots to SPLOMs and
3D scatterplots, and the qualitative data study method itself.

2. Cluster Separation Measures

We chose to focus on cluster finding and verification as the
main task supported by scatterplot usage when visually en-
coding DR data. Although finding correlation is an even
more common task for general scatterplot usage [RB10,
LMvW08], that task is not relevant in our case because DR
techniques are designed to generate a set of dimensions that
are as independent as possible; that is, not correlated. We
thus chose to test measures for visual cluster separation. For
the purpose of our study, we selected two measures, cen-
troid [SNLH09] and grid [SNLH09, TAE∗09] measures,
which were found to outperform other visual cluster sepa-
ration measures in a previous user study [TBB∗10].

Our chosen measures were designed for the task of verify-
ing clusters in classified data. Our study design required that
we use classified data as if it were ground truth, to check if
the class structure matched up with the visible cluster struc-
ture. However, we know that often class structure is a conjec-
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Figure 2: (a) Computed centroids are marked with an X. (b)
Grid cells used to compute class intermixtures are shown
with dotted black lines. (c) Synthetic example of a SPLOM
that should score well because each individual class is sep-
arated within at least one view, even though no single view
shows all classes simultaneously separated.

ture or proposal rather than a final answer, and that finding
clusters in non-classified data is an important task. We thus
kept this latter task in mind when designing our taxonomy.

2.1. Original Measures

The original centroid and grid measures operate on a single
2D scatterplot, and rate it on a scale of 0-100 where low
values are poor and high values are good.

The centroid measure iterates over all points and deter-
mines the closest class centroid, defined as the arithmetic
mean of all points of a particular class, using euclidean dis-
tance. For each class, the ratio between points closest to the
centroid of their own class and those closer to the centroid
of another is computed. The overall measure is computed by
the weighted mean of all class-wise judgements using the
number of points per class as the weight. Figure 2(a) shows
an example dataset annotated by centroids drawn with an X.

The grid measure superimposes a virtual grid over a scat-
terplot and measures the mixture of points in each grid cell:
a cell containing points of only one class is good, and one
with intermixing of all classes is poor. A weighted sum of
all grid cells based on the number of points in each grid cell
is used for the overall measure value. Figure 2(b) shows an
example dataset annotated with dotted grid lines.

2.2. Extensions

In order to include multiple scatterplot-based VE techniques
in our study, we extended these measures to operate on
3D scatterplots and 2D SPLOMs. The extension to 3D was
straightforward for the centroid measure, by simply substi-
tuting 3D for 2D euclidean distance. For the grid measure
we used a 3D grid of cubes instead of a 2D grid with boxes,
and took care to keep the number of cells roughly constant
across these cases to ensure comparability between the 2D
and 3D measures.

We extend the cluster separation measures from the sin-
gle scatterplot case to an entire SPLOM by picking the best

view independently for each class and computing a weighted
mean across all classes, using number of points per class as
the weight. For our purposes, a SPLOM where each class
is clearly separated in at least one of its constituent views
should score well, even if no single view shows all classes
separated simultaneously. The original measure judged all
classes simultaneously for each view, so the example in Fig-
ure 2(c) would score poorly. Instead, we compute the best
view for each class using a class-wise measure that provides
a judgment between 0-100 for each class in each view. Using
a one-vs-all comparison, this extension was straightforward
for the centroid measure, while we needed to make some mi-
nor adaptions for the grid measure. The mathematical details
of our extensions can be found in the supplemental material.

Sips et al. claim that the grid measure is relatively insen-
sitive to grid size [SNLH09] in terms of the number of grid
cells, based on tests with grids of 20x20, 25x25, and 33x33.
However, our tests showed that using a static grid size did
not give reliable values across datasets with different num-
bers of points. We thus extended the measure to incorporate
a simple dynamic grid size rule dependent on the number of
points, using the square root of the point count for the 2D
case and the cube root for the 3D case.

3. Related Work

The most relevant previous work is the scagnostics (scat-
terplot diagnostics) framework for finding interesting views
within SPLOMs [WA05, WW08]. Wilkinson et al. pro-
posed nine axes for characterizing the shapes formed by
points within scatterplots: outlying, skewed, clumpy, con-
vex, skinny, striated, stringy, straight, and monotonic. A few
of these axes correspond directly to our own factors, and our
names reflect this similarity (Outlier, Clumpiness).
Wilkinson et al.’s goals are more broad than ours since they
include structures relevant for many scatterplot usage tasks,
while we focus on cluster separation and specifically exclude
correlation analysis; our taxonomy is thus more tightly fo-
cused. Another difference is while their framework is clearly
informed by informal exploration of many datasets, our tax-
onomy is rigorously grounded in systematic qualitative data
gathering and analysis. A final critical difference is the angle
of attack: their top-down approach has a core contribution
of providing precise mathematical descriptions and efficient
algorithms for computation of their nine measures; in con-
trast, our bottom-up approach builds up categories derived
from open coding of phenomena that humans noticed, and
we deliberately refrain from such top-down descriptions to
avoid a bias towards what is easy to compute algorithmically
or crisply define mathematically. We see our work as com-
plementary to theirs.

We distinguish our contribution from previous work on
visual cluster perception, such as the fundamental work on
the Gestalt principles that describe the phenomena under-
lying human perception of groupings [Wer23]. Rather than

c© 2012 The Author(s)
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explain the mechanisms behind human perception of clus-
ters, our goal is to provide operational guidance for compu-
tational designers who seek to build and evaluate better class
separability measures.

We furthermore distinguish our work from the abundant
body of research on cluster analysis in data mining and ma-
chine learning for unsupervised classification, which focuses
on how to computationally extract groups of similar objects.
Based on the deficiency of popular clustering techniques
such as k-means [Mac67] to detect non-spherical clusters,
various researchers sought more robust ways to identify ar-
bitrarily shaped clusters [AT89, EKSX96, ZFLW02]. With
this line of work, we share the critique of centroid-based ap-
proaches and the acknowledgment of Shape as an impor-
tant factor of class separation. However, while cluster analy-
sis research focuses on automatically finding class structure
in the data, we study the human judgment of clusters in scat-
terplots, based on a broad set of data.

4. Method

We call our methodological approach a qualitative data
study. Echoing a previous call for the balance of focus on
both user and data [PVW09], we consider a qualitative data
study approach to be the dual of a user study: rather than
a few datasets observed by many people, there are many
datasets observed by a few people. Data studies themselves
are not new in visualization and have, for instance, been
used to evaluate the scagonstics measures [WW08], or to
verify novel DR techniques [IMO09]. While these studies
have been usually conducted to evaluate or compare tech-
niques based on quantitative measures or informal discus-
sions of images, we use a data study to derive and system-
atize knowledge about datasets by applying qualitative cod-
ing techniques as used in the social sciences [Cha06]. Em-
braced in the HCI community [FBC11], in visualization cod-
ing has been successfully employed for analyzing video and
audio footage of user interviews and behavior [IFM∗10], and
for systematic literature review [BTK11, LM10, LBI∗11].
Here, we propose using coding for analyzing judgements
about visually encoded data. We conjecture that our method
of creating taxonomies through qualitative data studies may
be applicable in a wide variety of visualization contexts.

Our study is qualitative in that a fundamental operation is
human judgement, and our subsequent analysis is based on
the methods of open and axial coding [Cha06]. These judge-
ments were made by two investigators — the first and sec-
ond authors of this paper. In particular, our study consisted
of four stages:

1. Choosing variables for study
a. 75 datasets: 31 real, 44 synthetic
b. 4 DR techniques: PCA, robust PCA, MDS, t-SNE
c. 3 scatterplot VE techniques: 2D, 3D, SPLOM
d. 2 visual cluster separation measures: centroid, grid

2. Generating dataset instances and computing measures
3. Open coding and measure evaluation

a. Pass 1 (all dataset instances):
i. Open code factors affecting separability

ii. Judge if measures worked
b. Determine failure cases of measures
c. Pass 2 (all failure cases):

i. Open code reasons for failure
4. Axial coding and taxonomy building

a. Merge together the codesets between the investigators
b. Axial coding to create initial taxonomy from combi-

nation of separability and failure codesets
c. Refine taxonomy through using it

We now discuss the stages in more detail. Further details
(full dataset list, DR parameterization, coding results) can
be found in the supplemental materials.

1 — Choosing Variables for Study: Our study encom-
passes a range of datasets, DR techniques, and VE tech-
niques, which we call variables.

We wanted to use datasets with a broad range of charac-
teristics, yet of course at the start of the study we did not
know the factors that we would eventually construct in our
final taxonomy. We experimented with several data gener-
ators to construct synthetic datasets that matched our ini-
tial intuitions about interesting cases based on our previ-
ous experience with DR and VE techniques. In particular,
we generated data with random gaussian clusters, datasets
that have entangled or interwoven class structure in higher
dimensions that cannot easily be untangled by a linear
2D projection, and some synthetic grids. We also gathered
complex real datasets both from direct contact with col-
leagues [HB11, SNLH09, TAE∗09] and from online repos-
itories [SAP10, FA10, Uni11, Vis11, War11], also including
simpler benchmarks used for evaluation in previous work.
Class structure was either given as ground truth or was pro-
vided by our colleagues using clustering algorithms. We cat-
egorize our final collection of 75 datasets into four groups:

name #sets #points #dim. #classes
real 31 77-43500 3-159 2-53
synthetic-gaussian 16 100-500 5-10 3-5
synthetic-entangled 24 185-2318 3-15 3-15
synthetic-grid 4 905-1296 3-4 2-16

We chose a mix of popular and recent DR techniques:
the linear PCA technique is the first choice of most high-
dimensional data analysts [Jol02]; the Robust PCA algo-
rithm was designed to be tolerant to outliers [TF09]; non-
linear MDS [BG05], with the Glimmer algorithm designed
to work well with both dense and sparse datasets [IMO09];
and t-Distributed Stochastic Neighbor Embedding (t-SNE),
a recently proposed nonlinear DR method designed to sepa-
rate clusters well and show multi-scale structure [vdMH08].

We chose three VE techniques, all based on scatter-
plots. The most commonly used technique is the 2D scat-
terplot. Some DR systems reduce to three dimensions and

c© 2012 The Author(s)
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use 3D scatterplots [KSC∗10], under the logic that more in-
formation can be shown with the addition of an extra di-
mension (despite evidence of the perceptual difficulties of
understanding point clouds in 3D space [Mun09]). Other
DR systems use 2D SPLOMs to visually encode DR data
when the low-dimensional space has three or more dimen-
sions [IMI∗10]. Our rationale for choosing the measures is
covered in Section 2.

2 — Generate Dataset Instances and Compute Measures:
We define a dataset instance as a particular combination of
data×DR×V E. After pre-processing the data by deleting
duplicate points and non-numeric dimensions, we computed
all DR data using R for PCA, RobPCA and t-SNE, and Java
for Glimmer. We had to exclude 28 out of 300 data-DR com-
binations due to computational problems ranging from scal-
ability to singularity issues. Using the four DR techniques,
we reduced each of the 75 high-dimensional datasets to 2D
to create a single 2D scatterplot, to 3D to create a single 3D
one, and created a sequence of d × d SPLOMs by reducing
to d from 3 up to a maximum of dmax. We chose dmax based
on the original dimensionality of the dataset, on whether
the separability measures continued increasing with higher
dimensions, and on an absolute maximum of d = 15. All
scatterplot VEs were color-coded based on the given class
structure. The centroid and grid measures were computed
using code provided courtesy of Sips [SNLH09], on which
we built the extensions described in Section 2. We computed
both overall and class-wise values for 2D scatterplots, 3D
scatterplots, and the set of SPLOMs. For each data-DR com-
bination, each investigator individually picked one SPLOM
from the set of SPLOMs, based on their judgement of when
increasing the size of the SPLOM was no longer helpful for
understanding cluster structure. The maximum SPLOM size
selected was a 7x7 matrix. The final set inspected by each
investigator was 816 dataset instances. An accompanying
video shows a fast forward of all 816 instances, where each
image is annotated with both measure values.

3 — Open Coding and Failure Cases: The two inves-
tigators worked separately and coded the dataset instances
in two passes. In the first pass, they looked at all 816 in-
stances using static images for the 2D and SPLOM, and
for the 3D case a custom interactive 3D viewer designed
to present a similar visual appearance to the static scatter-
plots generated by R. For each dataset instance they judged
the measure’s overall performance on a three point scale of
ok, dubious, or poor, and additionally noted class-wise poor
cases where the overall measure was ok, yet one class-wise
value was extraordinarily off (excluding special cases such
as classes with only a single point). While making these
judgements, the investigators also open coded factors that
influenced cluster separability; that is, they gradually built
up a set of codes and noted when a particular code applied
to an instance. Because open coding is an iterative process,
some instances needed to be reanalyzed before the final set

of codes was settled upon. Multiple codes could be associ-
ated with each instance.

We combined the judgements from the two investigators
and partitioned all instance-measure pairs into one of two
categories: success and failure cases. The criterion for fail-
ure was that at least one investigator judged the measure’s
overall performance as dubious or poor, or at least one class
as class-wise poor. In the second coding pass, both investiga-
tors coded their failure cases for potential reasons underlying
the measure failure.

4 — Axial Coding for Taxonomy Building: The inves-
tigators merged the independent sets of codes that they had
built up in their first coding pass. The combined separabil-
ity codeset had 25 codes; the combined failure codeset had
22 codes. We began the taxonomy creation process with an
axial coding pass to merge and categorize the combined sets
of codes for both separability and failures. We often checked
back to inspect the instances when necessary [Cha06]. Ax-
ial coding is an iterative process; we refined and improved
the taxonomy through a sequence of over a dozen passes.
We further refined the taxonomy by testing its explanatory
power and clarity. We mapped the ranges of the failure cases
for each measure on the axes of our proposed factors, and
also some of the dataset instances. Figure 1 shows these
ranges on the final taxonomy.

5. Taxonomy

Our taxonomy of factors that affect visual cluster separation
is shown graphically in Figure 3. At the top level, we differ-
entiate between Within-Class factors that are solely based on
the structure or appearance of a single class, and Between-
Class factors depicting interactions between two or more
classes. Many Between-Class factors arise from the variance
of the base Within-Class ones; all of these dependencies are
encoded in the diagram by the horizontal arrow. For both the
Within and Between sets of factors we group them into the
high-level categories of Scale, Point Distance, Shape, and
Position. These categories are ordered, as shown in the di-
agram by the vertical arrow that indicates that higher levels
can influence those beneath them. The overarching factor of
class separation in the bottom right corner is thus influenced
by all other contributing factors.

5.1. Within-Class Factors

In the Scale category, we describe the Count factor as the
number of points in a class ranging from few to many, the
Size factor ranging from small to large as a cluster’s spread
in terms of 2D area or 3D volume. These Scale factors are
less interesting on their own, but more so when their variance
is considered with the corresponding Between-Class factors.

The Point Distance category contains three factors. The
Density factor is the ratio between the Scale factors

c© 2012 The Author(s)
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Count and Size, ranging from sparse with few points and
large spread to dense with many points and a small spread.
Following the naming conventions of scagnostics [WA05],
we use Clumpiness to depict different patterns of inter-
point distribution. We identified several landmarks on this
axis: pairwise equidistant points (a perfect grid is the ex-
treme case); a uniformly random distribution; one dense spot
(as in a gaussian distribution); many dense spots; clumpy.
The Outlier factor pertains to points that are distant to
the collection of the rest, ranging from none to many.

The Shape category pertains to the perceived Gestalt of
a point cloud [Wer23]. We describe it with two factors that
are orthogonal axes. Isotropy describes how directional
the shape of a class is, ranging from round to narrow; in
2D, narrow converges to a line, and in 3D to a planar layer
or a line. Curvature describes nonlinearity, ranging from
linear through convex to curvy.

The sole factor in the Position category is the Centroid,
an axis with evocative on one side and misleading on the
other. Using the centroid to robustly indicate the position of
a cluster essentially assumes that it is more or less a gaussian
distribution of points; if not, the centroid can be misleading.
For example, the centroid can fall completely outside the
point cloud when the factors in the Shape category have

particular values, namely a narrow Isotropy factor and a
curvy Curvature factor, as shown in Figure 4(a).

5.2. Between-Class Factors

Between-Class factors encapsulate the variance and combi-
nation of the Within-Class factors across multiple classes.
Our taxonomy contains the ones that we deem to be most
important based on our data study; we do not list all possible
combinations.

In the Scale category, the Class-Point Count factor
is the ratio between the number of classes and the number of
points of the dataset. We found that the case of few classes,
many points was easier to perceive than the cases of many
classes, few points. We also characterize the factors Vari-
ance of Size, and Variance of Count, which can
influence the ability to perceive clusters.

The first factor in the category of Point Distance is Vari-
ance of Densities, the mutual product of Vari-
ance of Size and Variance of Count. Consider
the example in Figure 4(b) where a big sparse class over-
shadows a small dense class. An overly simplistic separabil-
ity measure would rate the small class as poor, but it could
be that the large class is sufficiently sparse that the small
one can be easily identified. The Mixture factor describes

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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(a) (b)

Figure 4: (a) The combination of the narrow Isotropy
factor and the curvy Curvature factor in the blue class
lead to the Centroid factor being misleading because it
falls outside the point cloud. The X’s show the location of
the centroids. (b) The red large sparse class overshadows
the blue small dense class which remains distinguishable.

Point Distance characteristics of fully or partly overlapping
classes (see Class Separation axis below). We iden-
tify some specific bins as landmarks: random is the common
case where there is no apparent structure in the overlapping
area; equidistant describes overlapping areas where points
of different classes have pairwise similar or equal distances,
as we frequently found with the t-SNE DR technique in our
data study; interwoven represents a case described as prob-
lematic in previous work [SNLH09]. The Split factor dis-
tinguishes between clusters that are contiguous in the scat-
terplot, and those that are split apart into separate regions of
a plot, with another class appearing between their pieces.

The Variance of Shape factor ranges from similar
shapes for all clusters to very different shapes across them.

In the Position category, the Inner-Outer Posi-
tion factor describes a positional relationship between
classes where inner classes near the center can be surrounded
by outer classes on the periphery. We distinguish whether
such a relation is existent or non-existent. Several of our
study instances showed that inner classes were more difficult
to identify, especially those in the synthetic-gaussian data
family. This perceptual problem is particularly pronounced
for 3D scatterplots where inner classes can be occluded by
outer ones. Also, using a Centroid approach to deter-
mine Inner-Outer Position might be misleading, as
shown in Figure 4(a).

Finally, the overarching Between-Class factor is Class
Separation. While straightforward when considering
two equally scaled, round, and contiguous clusters, separa-
tion can be strongly influenced by nearly all other factors
that we discussed above. We illustrate the axis with this sim-
ple case: full overlap; partial overlap; adjacent; separate;
distant. For the classified data that we studied, we found that
the range of small or no overlap between clusters — adja-
cent, separate, or distant — was good enough for cluster
identification. For non-classified data that cannot be color-
coded, the adjacent case would not suffice.

Measure Data Total Failures Overall Overall Class-wise
Poor Dubious Poor

centroid all 816 400 22% 49% 29%
grid all 816 416 39% 54% 7%
centroid real 296 201 30% 33% 37%
grid real 296 193 43% 45% 12%

Table 1: Number of failure cases for each measure, and
breakdown showing percent of failures in each category.

6. Evaluation of Measures

We found a surprisingly high number of failure cases: 49%
of the overall instances for the centroid measure and 51%
for the grid measure. The performance is even worse when
we restrict the analysis to the real datasets: the centroid mea-
sure failed in 68% of the cases and the grid measure in 65%.
Table 1 shows the breakdown of these groups into the three
kinds of failures: overall poor, overall dubious, and class-
wise poor. The raw data, including all 816 dataset instances
along with the measure values and the coders’ judgments,
can be found in the supplemental material.

Based on these findings, we cannot recommend either
measure for a rigorous, reliable and robust cluster separation
judgement. Overall, we found that they worked well only for
very clearly separated classes, which is often not the case
with real-world datasets. For more realistic data characteris-
tics, certain assumptions in the measure design make them
prone to incorrect judgements.

We further analyzed the failure cases in terms of false neg-
atives, where the measure does not detect structure that is
actually apparent in the visualization, versus false positives,
where the measure yields a high value when clusters are in
fact not visually separated. We found a major disparity in
their distribution: 68% of failures for the centroid measure
and 85% of failures for the grid measure were false positives.
We conclude that the measure designers may have success-
fully reduced false negatives but neglected to carefully con-
sider the problem of false positives.

We now provide details about the reasons for measure
failures, explain them by using our taxonomy, and illustrate
them with examples of both real and synthetic datasets from
our study. We show the 2D scatterplot cases for clarity, but
these failures also appeared in 3D and SPLOM cases.

6.1. Centroid Measure Results

We found many examples where the position of one or more
centroids did not accurately reflect the position of a class be-
cause of other factors, resulting in false positives or false
negatives for both class-wise and overall measure values.
Figure 5(a) shows an example of a false positive: the red
class is fully overlapped with the blue and the black but has
a high value of 77 — where 100 is best and 0 worst, and
our judgment of high/low is adjusted to the original work on
these measures [SNLH09, TAE∗09]. Considering how the
centroid measure splits the image into Voronoi cells, it be-
comes clear how it fails to account for Variation of

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.
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(f)

Figure 5: 2D scatterplot examples for six example datasets, enriched with centroids and/or virtual grid used for the measures
computation. Attached to each plot are the relevant overall and class-wise measure values. (a) A synthetic gaussian with MDS.
False positive for centroid. (b) The real spamBase dataset with PCA. False positive for centroid. (c) The real shuttle-big
dataset with MDS (detail view). False negative for centroid. (d) The real fisheriesHarvestRule dataset with MDS. False
negative for centroid and grid. (e) The real hiv dataset with t-SNE. False positive for grid. (f) A synthetic entangled dataset
with t-SNE. False positive for grid.

Size in this example. Figure 5(b) shows how the Out-
liers factor can influence the centroid of class that is
nearly fully overlapped, resulting in an unreasonably high
class-wise value of 88 for the black class. Figure 5(c) shows
a zoomed-in detail view of the shuttle dataset, where the
Clumpiness and Variance of Shapes factors can
misleadingly influence the centroid: the green class is given
an extremely low score of 12, which we consider a false neg-
ative since useful structure is indeed visible. This example
also shows the tendency of classes with inner centroids to-
wards false negatives, a phenomenon that we observed in
many dataset instances. The centroid measure is also not ro-
bust against non-convex classes, as was stated in previous
work [SNLH09]; Figure 5(d) shows an example of a real
dataset where classes with a narrow shape have visible struc-
ture, but the overall measure yields a false negative with 29.
This value is also influenced by Outliers.

Our taxonomy implies that the Centroid factor can
be influenced by many other factors; these examples illus-
trate that the centroid measure alone is definitely not a reli-
able indicator of class separation. The centroid measure is
vulnerable with respect to Shape, Clumpiness, Out-
liers, Variance of Count, of Size, or of Den-
sity, and Inner-Outer Position. It is reliable only
under the assumptions of round-ish clusters with no more
than one dense spot, no outliers, and similar sizes, as shown

in Figure 1. This combination of assumptions is rarely ful-
filled for real datasets.

6.2. Grid Measure Results

We also found many examples of problems with the
grid measure. False negatives arise from narrow, adjacent
classes, as shown in Figure 5(d). The black and red classes
have suitably good class-wise values, but most classes had
overly low values in the range of 46 to 55. Points of differ-
ent narrow, adjacent classes fall into one grid cell and are
judged as poor, while the overall contiguity of the strings is
not detected.

Figures 5(e) and 5(f) show two false positive examples
where the grid measure yields 99 and 97 respectively, which
would not be judged as high by a human. The underlying
issue with Figure 5(e) is that the overlapping equidistant
Mixture layout produced by t-SNE led to many points
falling into their own grid cell. They are therefore judged
as good without considering their surroundings more glob-
ally. Figure 5(f) shows how the grid approach fails to detect
split classes.

We were particularly surprised that the grid measure per-
formed even more poorly than the centroid measure, given
the claims in previous work that it was the more power-
ful and robust of the two [SNLH09]. We knew from our

c© 2012 The Author(s)
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data study that a poor choice of grid size was part of the
problem, because the investigators had noted many cases of
overly small and overly large grid sizes in their coding. We
wondered if the measure could be improved with a straight-
forward automatic way to compute an appropriate grid size.
We investigated further by recomputing the measure values
of the 58 affected failure cases with a variety of different
grid size parameterizations. Despite the argument in previ-
ous work that the measure is “relatively insensitive to the
choice [of the grid size]” [SNLH09], we found that it was
relatively constant in only 14% of the cases and was sensi-
tive to grid size in 86% of the cases. We plotted all of these
examples to check if distinct features such as a knee, peak
or plateau appeared in these curves to hint at a viable algo-
rithmic approach, but we did not see any such features (see
supplemental material). Thus, there is no obvious solution to
the problem by simply adapting the grid size.

While relatively robust against false negatives, our data
study revealed severe problems with the grid measure in
terms of false positives. As shown in Figure 1, the grid mea-
sure, in particular, is vulnerable to the combination of spa-
tial overlap on the Class Separation axis and certain
inter-point characteristics stemming from Variance of
Density and Mixture, most critically equidistant struc-
tures. Even when classes overlap completely, the measure
might yield very good values depending on how the points
fall into grid cells. It also fails in detecting split classes
and might not be able to correctly detect narrow ones. For
these reasons, the grid measure is not robust for overlapping
classes and can only give reliable results for nicely separated
or distant, contiguous classes.

7. Discussion and Limitations

The goal of our taxonomy is operational guidance for mea-
sure developers and evaluators. As an example, we used the
taxonomy for explaining reasons for failures of two state-
of-the-art separability measures. Inherent with the induc-
tive qualitative research approach we chose, our measure
evaluation proceeded in parallel with the taxonomy devel-
opment. Conducting a qualitative data study is very time-
consuming – in our case data gathering and analysis took
over six months – so our goal was to abstract the findings
into a more general taxonomy, which then can be applied
broadly by others without having the overhead of a full-
blown qualitative data study.

In particular, we suggest that the taxonomy can be directly
used as a descriptive checklist device to inform the design of
more reliable separability measures. It can also be used in
the evaluation of measures. First, it can guide the choice of
datasets to study, both in selecting real datasets and in gen-
erating synthetic ones. Whether the goal is to carry out a
qualitative study as done here or a quantitative setup as done
by Tatu et al. [TBB∗10], mapping the chosen datasets onto
the taxonomy axes as we did in Figure 1 will provide useful

information about the coverage of relevant factors. Once the
datasets are mapped to the axes, analyzing which datasets
worked or failed for a particular measure allows the mea-
sure’s effective range to be mapped onto the axes as well,
helping untangle the underlying assumptions. We hope that
such taxonomy use will accelerate the development of more
reliable measures, ultimately leading to algorithms that pro-
vide sophisticated user guidance by automatically selecting
appropriate DR/VE combinations.

In this study we tested the centroid and grid measures
based on the findings of previous work [TBB∗10]. Many
other measures exist, including an older centroid-based ap-
proach by Dhillon et al. [DMS98] and a recent proposal
from Albuquerque et al. [AEM11] created by machine learn-
ing on the results of perceptual studies. We conjecture that
these measures may show a similar pattern of results, since
a close reading of these papers shows that they were de-
signed and validated with similarly simple datasets. In other
words, we suspect that mapping these datasets onto our tax-
onomy’s axes would result in a similarly restricted cover-
age of factors. After further investigation, we did find a
promising measure that was designed and tested on real
data [LZVB06]; it would be interesting to evaluate this k-
nearest neighbor approach as future work.

Our taxonomy does have limitations. It was constructed
and validated only with DR data, so while we also believe
that our taxonomy might be applicable for non-DR projects
as well, this conjecture has not been verified. We have fo-
cused on the visible appearance of DR data, which might
show artifacts of the visual encoding or the projection rather
than what is true or interesting about dataset structure. While
we strove for good coverage in our selection of datasets,
we are well aware that many possible dataset characteris-
tics were not covered by our study, and hope that others will
build on our findings and extend the taxonomy.

In service of replicability, extensive supplemental mate-
rials are available at http://www.cs.ubc.ca/labs/
imager/tr/2012/VisClusterSep.

8. Conclusion
We have presented a taxonomy that characterizes cluster
separability factors of DR data in scatterplots. It is based on
a qualitative study of 75 datasets, four DR techniques, three
scatterplot-based VE techniques, and two cluster separation
measures. The two studied measures failed to provide a ro-
bust and reliable judgement in nearly 50% of our cases; we
use the taxonomy to explain the reasons for this outcome. We
offer the taxonomy in hopes that it will guide others in de-
signing, using, and evaluating cluster separability measures.
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