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Figure 1: Steps to quadrangulating a design network of closed 3D curves (a) : Closed curves are independently segmented (b) and iteratively
paired and refined to capture dominant flow-lines as well as overall flow-line quality (c); final quadrangulation in green and dense quad-mesh
(d); quadrangulations are aligned across adjacent cycles to generate a single densely sampled mesh (e), suitable for design rendering and
downstream applications (f).

Abstract

We propose a novel, design-driven, approach to quadrangulation of
closed 3D curves created by sketch-based or other curve modeling
systems. Unlike the multitude of approaches for quad-remeshing
of existing surfaces, we rely solely on the input curves to both con-
ceive and construct the quad-mesh of an artist imagined surface
bounded by them. We observe that viewers complete the intended
shape by envisioning a dense network of smooth, gradually chang-
ing, flow-lines that interpolates the input curves. Components of
the network bridge pairs of input curve segments with similar ori-
entation and shape. Our algorithm mimics this behavior. It first
segments the input closed curves into pairs of matching segments,
defining dominant flow line sequences across the surface. It then
interpolates the input curves by a network of quadrilateral cycles
whose iso-lines define the desired flow line network. We proceed
to interpolate these networks with all-quad meshes that convey de-
signer intent. We evaluate our results by showing convincing quad-
rangulations of complex and diverse curve networks with concave,
non-planar cycles, and validate our approach by comparing our re-
sults to artist generated interpolating meshes.
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1 Introduction

Curves are a quintessential primitive of visual communication dat-
ing back millenia to early cave drawings. In current 3D design
practice, curves are universally used to depict both form and func-
tion, conveying the essence of a shape [Bordegoni and Rizzi 2011].
Sparse networks of closed 3D curves are indeed the foundation of
shape in both, traditional CAD modeling [Farin and Hansford 1999]
and increasingly popular sketch-based modeling interfaces [Bae
et al. 2008; Nealen et al. 2007; Schmidt et al. 2009]. Unsurpris-
ingly, recent research affirms that such 3D curve networks do ef-
fectively convey complex 3D shape [Mehra et al. 2009; de Goes
et al. 2011; McCrae et al. 2011] (Figure 1 (a)). We aim to re-
cover and compactly represent this conveyed shape (Figure 1 (f)),
for designer-drawn curve networks, such as those generated by Ab-
basinejad et al. [2011] from sketched 3D curves [Bae et al. 2008].

While arbitrary 3D curve cycles have highly ambiguous interpolat-
ing surfaces (Figure 2 (top)), designer created curve cycles, even
when highly complex, typically convey a uniquely imagined sur-
face (Figure 2 (bottom)). These curves are designed to serve as a vi-
sual proxy of the 3D object, with the expectation that every element
of surface detail is explicitly captured by the network [Gahan 2010].
To this end, design texts repeatedly emphasize the significance of

http://doi.acm.org/10.1145/2366145.2366189
http://portal.acm.org/ft_gateway.cfm?id=2366189&type=pdf


Figure 2: Closed 3D curves: ambiguous hexagonal 3D curve (top)
compared to complex curves with a clear design intent (bottom).

using representative flow-lines of the object [Bordegoni and Rizzi
2011; Gahan 2010], as curve network elements. While design lit-
erature provides no precise mathematical definition of flow-lines,
design and modeling references [Gahan 2010; Singh et al. 2004]
suggest that flow-lines are strongly correlated to sharp features and
lines of curvature but allow for artistic license at surface disconti-
nuities, over fine details and in umbilic regions.

These observations, confirmed by perception studies [Stevens
1981], suggest that any additional flow-line on the surface must
be expressible as a blend of the explicitly defined flow lines on
the designer-created curve cycles. Viewers complete the intended
shape by envisioning a dense network of such blended, gradu-
ally changing flow-lines. An examination of artist-drawn dense
networks (e.g. Figure 3) confirms this observation; moreover,
artists take advantage of this property by implicitly pairing oppo-
site representative flow-lines, and constructing curve sequences that
smoothly evolve from one input flow-line to its mate along the in-
terior surface. The resulting surface is described by the union of
these sequences, and forms a quad-dominant mesh. Consistent with
this examination, popular CAD tools capture the geometry of four-
sided curve cycles using Coons patches [Coons 1964] (Figure 4
(d)), whose iso-lines implicitly define a sequence of flow-lines that
bridge the opposite sides of each cycle.

Our surface-fitting algorithm aims to replicate this behavior. Be-
fore formally describing the algorithm, we introduce some termi-
nology. A 3D curve network is a graph of connected 3D curves,
where one or more curve cycles have been marked for surfacing
by the designer. A quadrangulated curve network (left, black)
requires that all curve cycles marked for surfacing be four-sided.

A single quad-mesh can be created from quad-
rangulated curve network cycles by sampling
parametric four-sided patches. The dual of a
quad network is a graph whose vertices corre-
spond to quad cycles, and whose edges corre-
spond to shared cycle sides. Each dual poly-
chord, drawn on the left in a different color, is

a sequence of dual edges that corresponds to a chain of quadrilater-
als sharing opposite sides [Daniels et al. 2008].

If we can extract the flow-line pairings that artists use, we can then
reconstruct the surface in a natural manner using a dual quadrangu-
lation approach, described below. The grand challenge, therefore,
is in obtaining a suitable segmentation of a curve cycle into pairs of
matching opposite flow-lines. As we expect internal flow lines to
change smoothly and gradually, these bridged segment pairs should
have similar orientation and shape. When examining artist gener-

Figure 3: Artist designed interpolating quad-meshes.

ated flow-networks, we observe that the preference for pairing seg-
ments becomes more pronounced as the degree of compatibility be-
tween them increases, often at the expense of sub-optimal pairing
of other segments. This effect is evident in the highlighted regions
in Figure 3. On the left, the strong preference for the blue pair
enforces the far less obvious red one. On the right, the dominant
yellow and blue matches enforce the far less attractive purple one.
Such dominant preference order can be formally described as a sta-
ble matching, where a matching is considered stable when there are
no two elements that prefer each other to their current match [Irv-
ing 1985]. We simultaneously compute the segmentation and its
corresponding stable pairing using a tailored discrete optimization
strategy which interleaves matching and segmentation steps.

Given the computed segmentation and pairing (Figure 1 (c)), we
construct a network of quadrilateral cycles (Figure 1 (d)) whose
dual poly-chords connect the matched flow-line curve segments and
interpolate those with tensor-product surface patches. Using this
construction, the iso-lines of the patches naturally align with the
matched curves, forming a dense flow-line network conveying the
intended surface. An arbitrarily dense quad-mesh describing the
target shape is then created by tracing patch iso-lines (Figure 1 (f)).

We demonstrate the quad meshes created by our method on a va-
riety of challenging inputs, including both synthetic models and
curve networks created by different modeling softwares, comparing
our outputs against those manually created by design professionals
(Section 5).

Contribution:

We present the first solution to constructing the imaginary surface
interpolating a general 3D design curve network. We represent this
surface using a quad mesh whose iso-lines capture the design flow
inherent in the network. Lacking a mathematical model of human
perception, we distill perception studies and guidelines from de-
sign literature into a mathematical formulation of flow-line match-
ing and segmentation. We evaluate this formalism by showing re-
sults that match both viewer expectation and artist created surfaces.
Our key technical innovation is a simultaneous segmentation and
pairing algorithm that locates suitable end segments for the dual
poly-chords of the interpolating quad mesh based on analysis of
the input curve geometry.

Quad-remeshing techniques often strive to generate rectangular
quad elements. We note that our primary objective is to capture
flow-lines; since these lines are often related to lines of curva-
ture, we will typically generate well-shaped quads. However, when
flow-lines conflict with quad orthogonality, we focus on capturing
the flow at the expense of irregularly shaped quads (see Figure 1).
This ensures that our output is consistent with designer expectations
(Figure 3).



Figure 4: Using Laplacian diffusion (b) or Thin-Plate Splines
[Finch and Hoppe 2011](c) to surface a four-sided cycle leads to
unintuitive results. (d) In contrast the flow lines on an interpolating
Coons patch, by construction, bridge opposite cycle sides.

2 Related Work

We build on previous research in the areas discussed below.

Quad Meshing: Our work draws on ideas from coarse-to-fine
planar meshing approaches, such as sub-mapping [Owen 1998;
Ruiz-Gironés and Sarrate 2010]. But in contrast to those it sup-
ports irregular quad connectivity, automatically introducing irreg-
ular interior vertices when warranted by the boundary shape (e.g.
Figure 12). More significantly it operates on 3D curves, without
the benefit of a well defined planar domain. While planar meshing
methods focus on element quality or shape, our goal is to recover
and quadrangulate a surface enclosed by designer-drawn curves.

Many recent publications addresses quad meshing of existing 3D
surfaces [Bommes et al. 2011; Daniels et al. 2009; Kälberer et al.
2007; Levy and Liu 2010; Tong et al. 2006; Bommes et al. 2010;
Marinov and Kobbelt 2006]. These methods aim to align the output
quad meshes with the principal curvature directions in anisotropic
regions generating smooth orthogonal families of flow-lines. In our
setup no underlying surface is available. Instead we aim to align
the output meshes with the flow-line directions conveyed by the
input designer curves, which as noted above strongly correlate to
curvature lines.

Surface Fitting to Curve Cycles: There is a large body of work
on interpolating closed curves with smooth surfaces, much of it in
the context of hole filling [Malraison 2000]. While a small portion
of the methods [Levy 2003; Das et al. 2005; Finch and Hoppe 2011;
Nealen et al. 2007; Rose 2007; Abbasinejad et al. 2011] can operate
on arbitrarily shaped curves, the majority assume that the cycle is
pre-segmented into n sub-curves and has a low-distortion mapping
to a convex planar n-sided polygon, e.g. [Coons 1964; Gao and
Rockwood 2005; Várady et al. 2011].

The former, more generic, approaches typically utilize a diffusion
process that optimizes surface fairness. They do not explicitly align
flow-lines or curvature directions with the input curves, failing to
capture designer intent on structured inputs (Figure 4 (b,c)). Us-
ing pre-defined normals along the input curves [Levy 2003; Mehra
et al. 2009] improves the output, but as the normals are diffused uni-
formly, dominant flow-line directions may be lost. Moreover such
normals are not part of a typical curve-based modeler output [Bae
et al. 2008; Nealen et al. 2007; Schmidt et al. 2009]. An alternative
approach of Rose et al [2007] fits developable surfaces to the in-
put cycles. This approach is too restrictive for a general modeling
setup, where many inputs, including the cycle in Figure 4 (a), aim
to convey non-developable surfaces.

Fitting to n-sided curve cycles A variety of popular techniques
are available for interpolating and approximating networks of regu-
lar quad or triangular patches [Farin 1992], see [Orbay and Kara
2011] for a recent sketching motivated approach. These meth-

Figure 5: (top) Using a purely topological approach and apply-
ing mid-point subdivision (forming either four or six sides) gener-
ates a quad mesh with poor flow line layout (left and center). Our
method (right) uses geometry driven segmentation and matching to
generate smooth flow lines and a predictable surface. (bottom) On
a concave cycle, parameterization onto a convex domain (a rect-
angle) leads to foldovers (left), our method automatically segments
the cycle into convex quadrilaterals leading to a fair surface (right).

ods, including the well-known Coons patches [Coons 1964], and
their discrete extension [Farin and Hansford 1999] (Figure 4, (d))
provide an effective solution which naturally aligns the surface
iso-lines with the flow-line sequences indicated by the boundary
curves. Design and perception literature indicate that designers
expect the curve cycle boundaries to correspond to representative
flow-lines implying surface curvature directions, a behavior cap-
tured by Coons interpolation (Figure 4, (d)), but not the other fit-
ting approaches. These methods are widely used by modelers and
designers as the resulting surfaces closely reflect designer intent.

For cycles with n > 4 existing approaches can be classified into
single surface fitting, e.g. [Gao and Rockwood 2005; Várady et al.
2011], or subdivision into quad or triangular cycles, e.g. [Schae-
fer et al. 2004; Nasri et al. 2009]. The first category of methods
interpolate the cycles with a single surface patch by utilizing suit-
able n-sided convex 2D polygons as parameter domains. As ac-
knowledged by Varady [2011] the fitted surface quality is strongly
dependent on the quality of the 2D parameterization.

Subdivision approaches, e.g. [Schaefer et al. 2004; Nasri et al.
2009], quadrangulate the input cycles, and then use available tech-
niques to interpolate or approximate the resulting quad network. In
the basic midpoint scheme a single vertex is placed in the center
of a patch and then connected to the middle of each side. To gen-
erate a watertight surface across heterogeneous networks, Schaefer
et al. [2004] and Nasri et al [2009] introduce more sophisticated
quadrangulation schemes that maintain a fixed number of intervals,
or sub-segments along each side while aiming to control both the
number and valence of the added extraordinary vertices [Nasri et al.
2009].

All methods in this category require the n-sides to be pre-defined
and use either network junctions or sharp corners on the cycle as
side end-points. As shown by figure 5 (top) using the actual shape
of the curves to determine the end-point locations and induced
topology as done by our method can significantly improve both the
flow line layout and the resulting surface shape. More significantly,
contrary to all the approaches above our method can operate on
curve cycles with large concavities (Figures 5 (bottom) and 1 (b)).



Figure 6: After the initial segmentation (a), we alternate matching and refinement steps to obtain a pair-based curve segmentation which is
converted into a quadrilateral network (c) . To minimize T-junction count (d) we compute global interval assignment, and use it to sample
iso-lines on discrete Coons patches.

3 Quadrangulating a closed 3D curve

This section describes our approach for quadrangulating the inte-
rior of a closed curve such that the iso-lines induced by the 4-
sided curve cycles capture designer intended flow-lines. The ex-
tension of this method to networks of curves is discussed in Sec-
tion 4. We use a dual based quadrangulation approach, where
we first compute the dual graph of the quadrangulation (Section
3.1), and then use it to induce the primal quad connectivity and
geometry (Section 3.2). This workflow is illustrated in Figure 6.
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To assemble the dual, we segment the input
curve into a small number of matching seg-
ment pairs that serve as opposite ends of dual
graph poly-chords and corresponding primal
quad-chains. In this respect, paired segments
are analogous to river banks that both bound

and define the flow between them; the poly-chord represents a
bridge across the flow, connecting the paired segments.

Simultaneously computing this segmentation and pairing is an am-
bitious problem; we want to explicitly minimize the average match-
ing cost, while avoiding outlier matches with very high cost. We
consider the average, rather than the sum, so that the cost is not af-
fected by the number of segments. To render this problem tractable,
we use a discrete iterative optimization strategy that interleaves
matching and segmentation. Given an existing segmentation and
an appropriate cost metric, the right pairing strategy is not simply
one that minimizes an overall cost, but instead one that prioritizes
strongly compatible segment pairs that define dominant flow-lines.
As noted in the Introduction, this can be mathematically formulated
using the concept of a stable matching; we can find such a stable
matching using the method of Irving [1985].

Once we have obtained such a pairing, we can then refine our seg-
mentation by looking for a subdivision that maximally decreases
our average matching cost without increasing the worst match cost
(Section 3.1.5). To find the optimal splitting point(s), we examine
the pairings in the current stable matching and consider strategies
that improve the current high-cost matches. This new segmenta-
tion can then be fed back into the matching stage. To generate the
desired segmentation and pairing , we start from an initial segmen-
tation and interleave segmentation and matching steps. Since we
aim for a compact quadrangulation, we use a coarse to fine seg-
mentation update strategy, starting with the minimal segmentation
for which the notion of opposite segments, or bridging directions,
is well defined. To avoid over-segmentation we stop the refinement
process once the improvement to the average match cost becomes
insignificant.

The final segmentation induces a poly-chord graph, which we use to
generate quad network connectivity. The generated interior curves
are positioned using an extension of the quadrangulation scheme of
Nasri et al. [2009] (Figure 6 (c)). A mesh of the entire network is

then computed as discussed in Sections 3.2 and 4 (Figure 6,(d,e)).

3.1 Segmentation and Matching

The pseudocode below describes the flow of our iterative segmen-
tation and matching process. Every iteration, we subdivide one
or more segments to maximally reduce the average matching cost,
without increasing the worst-match cost (Section 3.1.4). While the
number of curve segments, at intermediate steps of the algorithm
may be odd, each iterative refinement increments the number of
segments, typically by one, admitting a perfect segment matching
after one or two iterations. We continue to iterate until there is no
significant drop in the average matching cost, rolling back to the last
even segmentation when significant improvement is no longer pos-
sible (Figure 7). While this algorithm does not guarantee a globally
minimal average match cost, it captures our design goals admirably
in that it finds and preserves dominant segment pairs early and then
refines segments as necessary to reduce the matching cost of poorly
paired segments.

Notation: The above steps are described succinctly using no-
tation and pseudo-code as follows: Given a curve segmentation
σ = 1, .., n, we refer to (i, j) as a distinct segment pair with a
matching cost ci,j ((i, j) and ci,j are symmetric). ci,j captures
the compatibility of any two curve segments to form opposite sides
of dual poly-chord in our target quadrangulation. M(σ) is a per-
fect matching of σ, where each segment is uniquely paired, bar-
ring a solitary unmatched segment when the number of segments
||σ|| is odd. We define the average cost of a matching M(σ)
as cost(M,σ) = (

∑
(i,j)∈M(σ)

c2ij)/(2 · b||σ/2||c). A constant
drop = 1.25 captures the factor of average cost reduction below
which the iterative algorithm terminates.

1 σ= initial segmentation (Sec. 3.1.1);
2 M(σ)= stable matching of segment pairs (i, j) using match cost ci,j (Sec. 3.1.3);
3 U∗b =∞;
4 cost∗ =∞;
5 Repeat
6 if ||σ|| is even:
7 then σ∗ = σ;M∗ = M ; cost∗ = cost(M,σ)

8 U∗b = maxM ci,j ;
9 σ′=refine σ (Sec. 3.1.4);

10 M ′(σ′)= stable matching of σ′;
11 σ = σ′;

12 Until (||σ′|| is even) and
13 (drop ∗ cost(M ′, σ′) > cost∗ or U∗b < maxM′ ci,j );
14 create internal quadrangulation curves from poly-chord graph ofM∗(σ∗);

We now elaborate on the rationale and details of each step.

3.1.1 Initial Segmentation

As described in the Introduction we expect the flow-lines induced
between any pair of segments to be smooth. Motivated by this con-



Figure 7: Iterative segmentation refinement: (a) initial segmenta-
tion where the matching highlights correct dominant side matches.
The match quality is drastically improved by segmenting the bottom
curve (b), and repeating the process (c) to obtain an even segment
count. Further refinement has no real impact on matching cost.

tinuity property of flow-lines, we can use any robust corner finding
technique, such as computing discontinuities of discrete curvature
along the curve [McCrae and Singh 2009], for our initial segmen-
tation. We further refine this segmentation to ensure that the line
segments connecting curve end-points are near linear using a tech-
nique similar to [McCrae et al. 2011]. This property helps define
coherent bridge directions for matching cost evaluation, described
next.

3.1.2 Segment Pairing Cost

Paired segments have a two-fold impact on the final flow-line net-
work. They explicitly define the sequence of flow-lines evolving
from one segment to its mate. They also impact the family of flow-
lines intersecting this sequence. Since the pairing defines a chain of
quadrilaterals in the final quad network, these intersecting flow lines
connect the two segments by evolving from one pair of end-points
to another (see Figure 8 (a)). To generate the designer-expected
flow-line network, the matching cost must satisfy the following cri-
teria. First, to minimize the variation of flow-lines that evolve from
one segment to the next we aim for the segments to be similar.
Matching impacts the shape of the intersecting family of curves,
or bridge, which in general we want to be as straight as possible,
minimizing its curvature. Internal flow-lines should reflect input
curve geometry, thus we would like the bridge to be aligned with
intersecting flow lines evolving from input curve chains connecting
the two segments, or, since these chains can be very complex, to at
least align with intersecting sequences evolving from neighboring
segments. Lastly, to best capture the general correlation between
flow-lines and lines of curvature of the imagined surface, we expect
intersecting sequences of flow lines to be orthogonal. We capture
the last two requirements through a per-segment preferred bridge
direction, which depends on the segment and its two neighbors. We
use these directions to define bridge curvature bi,j . Our match-
ing cost combines bridge curvature, a term measuring similarity
between the segments si,j , and a weak distance term di,j used to
prioritize more close-by matches

ci,j = wbbi,j + wssi,j + wddi,j .

As the segments typically have fairly similar shape, bridge curva-
ture dominates the cost with wb = 0.8 and ws = wd = 0.1.

Bridge Curvature: To estimate the curvature of the anticipated
intersecting flow lines, or bridge, between segments i and j, we
use the predicted bridge directions ti and tj for both ends of the
bridge. As illustrated in Figure 8, the flow-line shape depends both
on these directions and the relative location of the segments. As
start and end positions, plus directions, allow for fitting of multiple
flow-line curves, explicitly evaluating flow-line curvature is prob-
lematic. Instead we use an angle based curvature predictor defined
as follows. Let p be a point on the segment i, and let p′ be the point
where the angle between the vectors ti and p−p′ is minimal on the
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Figure 8: Estimated bridge curvature for different segment layouts
measured as angle (red) between bridge direction ti and p− p′ (at
a point p). The dashed lines visualize representative intersecting
flow-lines (a). Shape similarity and distance cost terms (b).

segment j, i.e. p′ = argminx∈j | 6 (ti, x− p)|. Then, for a given
point, the angle 6 (ti, p′ − p) measures the angular difference be-
tween the shortest bridge between the segments and the one taken
when using the estimated bridge direction ti. To compute deviation
across the segment i, ai→j , we average the angular difference over
all points. Finally, we set the bridge curvature to the maximum of
the per-segment deviations, namely bi,j = max(ai→j , aj→i).

Bridge directions: The bridge direction ti is the predicted opti-
mal tangent direction for the flow-lines intersecting the segment i.

As such, it depends both on the segment orienta-
tion, and on the bridge directions at neighboring
segments.

Designer flow-line properties as seen in the inset
figure attempt to align a bridge direction perpen-
dicular to its segment’s orientation (magenta), as
well as parallel or orthogonal to the bridge direc-

tions of its neighboring segments (cyan). As the segments and their
pairings evolve, so do their bridge directions.

The initial bridge direction ti, for any segment i, is estimated from
the initial segmentation (Figure 9(a-c)) and then refined in every
subsequent algorithmic iteration (Figure 9(d)). The initial bridge
direction ti = ni, is set to capture a direction orthogonal to the
segment and lying on the imaginary surface emanating from it.
Specifically, we define ni as the perpendicular to the straight line
fi connecting its end-points, in the best-fit plane of the segments
i and its neighbors. Neighboring segments can also strongly in-
fluence bridge direction. An adjacent segment m is considered
to influence the bridge direction of i if it is of reasonable arc-
length l (1.5 ∗ lm > li), and if its general flow direction fm
is likely to form flow-lines intersecting those emanating from i
( 6 (fm, fi) ≤ 135 ◦). The bridge direction ti is refined to be the
average f of its influential neighbours (Figure 9(a)(b)), or left as ni
if none exist (Figure 9(c)).

Then, at every algorithmic iteration, we update bridge directions
(Figure 9(d)), using dominant pairs, i.e. pairs (i, j) such that
cij < dom, where dom = 0.15. First, we refine the bridge di-
rection of the dominant pairs. We update ti and tj of all dominant
pairs (i, j) to their current average (thus implicitly lowering their
bridge curvature estimate bi,j). Next, for any segment i that is not
dominantly matched but has a neighborm that is part of a dominant
pair, we use tm to update ti. Specifically, we attempt to set ti to
either align, or to be orthogonal to, tm. if the angle between ti and
tm is less than 135 ◦, we set ti to be orthogonal to tm in the plane
defined by ni. If 135 ◦ ≤ 6 (ti, tm) ≤ 225 ◦, we set ti = tm. If
ti has two dominant neighbors, we use the one with lower match-
ing cost for the update. The remaining bridge directions are left
unchanged in this iteration.



(d) updating ti (magenta): average ti’s for 
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Figure 9: Initial bridge direction ti of segment i is determined by
adjacent segment flow directions fm , fn and its normal.

Distance and Similarity: The distance di,j is simply the Eu-
clidean distance between the segment centers (Figure 8b). Given
two curve segments i, j, we measure their similarity in terms of
shape and scale. We measure scale as the difference in curve length
‖li − lj‖. To compare shape, we first compute a best-fit affine
transform Ti,j from i to j. We do this by resampling the curves by
arc-length using the same number of points, 50 for all our exper-
iments. We then use a linear least squares formulation to find the
affine transformation which minimizes the L2 distance between the
two point-sets. We use a generic affine transform instead of a rigid
one to allow for non-uniform scale and shear. We then measure
similarity as the L2 closest-point distance between the transformed
curve and its mate Li,j . All distances are normalized by the diam-
eter of the processed curve, i.e. by the maximal distance between
two points on the curve. Similarity between curves is then set to
si,j = 0.5‖li−lj‖+0.5(1−e−L

2
i,j/σ

2

). The second term measures
the affine invariant shape difference of two curve segments. Specif-
ically, we define a function that is zero if the curves are identical
and 1 if they are maximally different. We achieve this mapping us-
ing a Gaussian fall-off function applied to the L2 distance between
the curves segments. Normalizing this distance by the diameter of
the curve loop and setting σ = 1/3, set using the three-sigma rule,
results in the desired shape difference function.

3.1.3 Stable matching of segment pairs

Given a curve segmentation and a cost of pairing any two curve
segments to form opposite sides of a poly-chord, this step aims to
match segment pairs in a manner that maximally satisfies the dom-
inant pairing preferences producing a stable matching.

The standard algorithm for computing a stable matching [Irving
1985] consists of two phases. First, each segment “proposes” to
all other segments in order of pairing preference, continuing to the
next segment if and when its current proposal is rejected. A seg-
ment rejects a proposal if it already holds, or subsequently receives,
a proposal from a segment it prefers. In our setup, since matching
costs are symmetric, if the number of segments is even this step
ends with each segment holding a proposal from another segment.
If the number of segments is odd, one segment is left out by the
process and is ignored by the subsequent step.

Held proposals form a set S of ordered segment pairs (i, j), where
i holds a proposal from j (j is i’s current favorite). S is a sta-
ble matching if (j, i) ∈ S whenever (i, j) ∈ S. A second
phase of repeated co-rotations, described below, transforms S into
a stable matching. Suppose that (i, j) ∈ S, but not (j, i). For
each such i we identify the current second favorite to be the first
successor of j in i’s preference list who would reject their held
proposal in favor of i. A rotation relative to S is a sequence
(i0, j0), (i1, j1), ..., (ik−1, jk−1) such that (im, jm) ∈ S for each
m, and jm+1 is im’s current second favorite (all indices are modulo
k). A co-rotation replaces pairs (im, jm), with (im, jm+1)in S.

The standard method [Irving 1985] is proven to provide a stable
match for an even number of participants, unless an odd party is

found [Tan 1991], i.e. a rotation such that k is odd, and pi =
qi+(k+1)/2 for all i. In that case no stable matching exists. In the
rare case of an odd party, we have an odd-length cycle of segments
with equal pairwise costs, e.g. an equilateral triangle or three per-
fectly symmetric curves (Figure 12). This case can be seen as a
generalization of the standard midpoint splitting, and is resolved
by splitting each segment in the cycle into two. Once the split is
performed, a clear difference in cost emerges and the matching is
repeated.

3.1.4 Segmentation Refinement

The refinement process looks for a segment, or segments, to subdi-
vide so as to maximally decrease the average matching cost. Our
refinement examines two segmentation strategies, first searching for
a single edge refinement and then a global mid-edge split. Since the
number of segments is typically very small, a stable matching com-
putation is practically instantaneous. Using the first approach, we
quickly iterate over all segments, segmenting each one and evaluat-
ing the cost of the match computed with the refined segmentation.
We then select the segmentation that maximally lowers the cost.
Using this strategy, the one question we need to address is where to
place the split, as the location can impact the subsequent segmenta-
tion cost.

The basic strategy of splitting the segment in half is tested first, then
a more targeted strategy that leverages the computed matching is
applied to the currently matched segments. Given a current segment
i which is matched to j we search for all segments k that are either
unmatched, or that prefer to be matched to i rather than their current
mate l, i.e. ck,i < ck,l. In such situations, for instance the bottom
curve on the basket (Figure 7), splitting the curve strategically into
i1 and i2 can often satisfy this preference by generating matches
(i1, j) and (i2, k). To minimize the cost of (i1, j) and (i2, k) we
break i into two possible subdivisions i1, i2 based on arc-length (l)
ratio, where li1/li2 = lj/lk or li1/li2 = lk/lj , and li1 + li2 = li,
and test the matches induced by these segmentations.

While theoretically more comprehensive or global segmentation re-
finement strategies may exist, we found our approach to work well
in practice. It preserves dominant pairs and improves poor matches
as intended by our subdivision heuristic.

3.2 Quadrangulation

Once we have an acceptable perfect stable match whose cost can-
not be reduced by further segmentation, we use this segmentation
and matching and its induced poly-chord graph (see Figure 6), to
construct a quadrangulation.

Extracting Quad Connectivity: Using standard dual notations
[Daniels et al. 2008] we say that two poly-chords (i, j) and (k, l) in-
tersect in the graph theoretic sense if and only if their corresponding
curve segments are interleaved on the closed curve. For instance,
the purple and red segments on Fig. 10 are interleaved, resulting
in intersecting poly-chords. To generate a valid quadrangulation
we require that the poly-chord graph be connected . This is easily
accomplished by adding curve segments connecting end-points of
common segments of components of the poly-chord graph and turn-
ing each graph component into a smaller closed curve, for which
our algorithm can be re-run (Figure 10). To avoid T -junctions we
disallow the newly added segments from being further refined. To
make the quad layout more compact, we merge adjacent poly-chord
(i, j) and (i+1, j−1) when the transition between the consecutive
segments is smooth.

An intersection between two poly-chords corresponds to a quadri-



Figure 10: A disconnected dual graph (left) does not allow for a
valid primal quad mesh. Splitting the cycle into two by a temporary
curve segment (dashed) generates valid graphs for both parts which
combined together induce a valid primal quad mesh (right).

Figure 11: Two intersection orders induce different quad connec-
tivity, with the one on the right inducing a better quad shape, and
consequently a smoother flow.

lateral in the final network. Connectivity between these quads
is determined by the intersection order, e.g. determining the top-
down order of the intersections of the green poly-chord with the
blue and red ones in Figure 11. We define the quad connectivity
by incrementally embedding poly-chords into the layout of cells,
or regions, bounded by input boundary segments and previously
added poly-chords. Given the graph whose vertices are these cells
and whose edges connect adjacent cells, we embed a poly-chord by
computing the shortest path in this graph between the two vertices
or cells, corresponding to the boundary curve segments connected
by the poly-chord. This path minimizes the number of intersections
between the new poly-chord and those already embedded. This
choice minimizes the number of dual graph cycles. Such cycles cor-
respond to interior primal quadrangulation vertices adding which,
as discussed below, can reduce flow smoothness. Given two equal
length choices, we prefer one that induces better shaped quadrilater-
als, where quality is measured as the scaled Jacobian [Brewer et al.
2003] (Figure 11).

Extracting quad geometry: The dual graph defines the connec-
tivity of our quadrangulation. To position the interior vertices and
curves we use a two step process which leverages the quad topol-
ogy to generate interior curves best reflecting the flow directions.
Specifically we note that each chain of quads can be seen as a four-
sided uv patch interpolating two flow-line end segments. Associat-
ing the v coordinate with the end segments, we expect the patch u-
isolines to smoothly interpolate them. Our geometry computation
builds on the geometry construction in [Nasri et al. 2009] which
shares the same goal. We first compute the interior vertex posi-
tions that best satisfy our requirements, using a global optimization
of a per-vertex formulation [Nasri et al. 2009], that sets each ver-
tex G to a weighted sum of vertex positions in neighboring quads:

G =

∑n

i=1
(Ei + Ei−1 − Ci)/ai∑n

i=1
1/ai

(1)

whereEi are quad network vertices that share
side curves with G, Ci are the diagonal quad
corners between Ei+1 and Ei, and ai =

‖Ei − Ci‖‖Ci − Ei+1‖ is an estimate of the area of the corre-
sponding quad (see inset). We then generate straight-line edges
connecting these and boundary vertices as an intermediate approxi-
mation of the quadrangulation. Using this initial network each inte-
rior curve is now computed as a u-isoline on the quadrilateral patch
containing two bounding flow-lines and the curve paths connecting

Figure 12: We first position interior vertices (left) and then use the
chain-long quads to position the interior curves (center). Finally,
the resulting quad cycles are quad-meshed using discrete Coons
patches (right).

Figure 13: Our distance based weighing (right) generates
smoother flow line evolution than topology based one [Nasri et al.
2009].

them, using a discrete Coons formulation [Farin 1992] (Figure 12).
This formulation takes into account the distance of the new curve
from the bounding flow lines, improving on the original formula-
tion of Nasri et al [2009] (Figure 13).

Meshing: To fit a surface in the interior of each quad-patch we
can use any number of methods. The examples shown in the paper
use a quad mesh sampled on a discrete bicubic Coons surface [Sa-
lomon 2006]. This construction provides continuity across shared
boundaries when the cross tangents are continuous. More sophis-
ticated fitting tools which provide better cross-patch continuity can
be used as well.

Minimizing Flow Dislocation: The segmentation and pairing al-
gorithm optimizes the cost of the individual flow-line matches, does
not explicitly consider the impact of the quad patch connectivity on
the final flow. Specifically, at the matching stage it is hard to pre-
dict the impact of the introduction of interior patch vertices on the
smoothness of the flow lines. In some cases these vertices are es-
sential to forming a good surface such as on the top of the espresso
machine (Figure 19), but in other cases removing them can improve
the flow (Figure 14). Thus, given a quadrangulation, we test if re-
moving any of the interior vertices can improve the surface qual-
ity. Recall that each such vertex corresponds to a cycle in the dual
graph. We thus attempt to break cycles in the dual graph if the quad-
rangulation quality improves and the increase in the overall match-
ing cost is acceptable. Specifically, for each edge 〈(i, j), (k, l)〉 of a
cycle in the poly-chord graph we evaluate the consequence of swap-
ping segment pairs to (i, l) and (k, j), or (i, k) and (l, j). A swap
is valid if the following three criteria are satisfied: the quad quality,
measured using the scaled Jacobian, is improved, no new cycles are

Figure 14: Removing interior vertices: (Left) initial match (top)
and induced quadrangulation (bottom); (Right) the final match
with purple and green pairs flipped (top) has a slightly higher cost
but the induced quadrangulation (bottom) has no interior vertices,
leading to smoother flow-lines.
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(c) (d)

Figure 15: Separately processed cycles (a) introduce T-junctions.
We first resolve the T-junctions across pairs of neighbouring
patches by propagation (b), generating a well defined hierarchy of
matching primary segments. We then use integer programming to
compute interval assignments (c) that minimizes the number of T-
junctions, typically leading to a watertight mesh (d).

introduced into the graph and the cost of the matches after the swap
is no greater than the worst match cost before it. We thus perform a
valid swap for the poly-chord edge of the cycle with the minimum
increase in matching cost (Figure 14).

4 Processing Curve Networks

Up until now, we have only considered the meshing of a single
curve cycle. The reason for this is that in curve networks, the ma-
jority of vertices adjacent to two or more cycles define corners that
induce our initial segmentation. The remaining vertices form T-
junctions that should not bias the flow-lines within cycles where
the incident curves are continuous. Once the individual cycles have
been quadrangulated however, we must ensure that the geometry
is watertight across the common boundary of adjacent cycles. For
a quad-mesh fitting this requires the sampling, or interval count,
along shared boundaries to be the same on both sides. This goal is
easy to achieve for a conforming quad-patch layout, such as those
generated inside each input cycle, using a fixed number of intervals
per boundary curve. Special care is needed though, when meshing
curve networks where cycle segmentation creates T-junctions.

We optimize interval assignment using two modifications to the
basic cycle quadrangulation algorithm described above. The first
stage, performed after segmentation and matching process, de-
scribed above, for each cycle, resolves the initial, primary, T-
junctions between pairs of neighbouring cycles. A T-junction oc-
curs when one curve has a segment end-point, or vertex, at a bound-
ary point and another curve does not. Given a T-junction, we
first attempt to resolve it by merging adjacent vertices based on a
threshold distance, while keeping in place both sharp corners and
T-junctions present in the original artist input. Throughout our ex-
periments, we set our threshold to 5δ, where δ is the minimum Eu-
clidean distance between adjacent samples of the input polylines.
Intuitively, the finer the initial sampling, the more precise the algo-
rithm is, the smaller the merging threshold we need.

For any T-junctions that we cannot resolve in this manner, we split
the adjacent segment and its matching segment in the correspond-
ing cycle. We then refine the matching accordingly. This process
resolves all the primary T-junctions, but in turn introduces sec-
ondary T-junctions where the matching segments are split (Figure
15, (b)). These T-junctions are further reduced using another itera-
tion of threshold based merging.

Contrary to primary T-junctions, the secondary T-junctions are
guaranteed to be contained in primary segments that share clearly
defined primary vertices (Figure 15, (b)), a property we take ad-
vantage of in the final interval assignment stage. At this point, the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: Quadrangulation and meshing of closed curves.

network is converted to quad-patch topology using the method of
Section 3. In the final step, when generating the per-patch meshes,
we need to assign a consistent interval count to each segment. For
a given primary segment, we require that the number of intervals
on both sides of the segment are equal. We further require that each
secondary segment (one bounded by primary or secondary vertices)
and its matching segment have the same number of intervals. Fi-
nally, we wish to minimize the total interval count while enforcing
a minimum number of intervals per edge based on its length.

If we formulate all of these requirements as a wishlist, as shown by
Mitchell [1997], there may exist configurations where no valid as-
signment by Mitchell [1997], there may exist configurations where
no valid assignment exists. We therefore relax our watertightness
requirement, which allows us to reformulate this problem in terms
of a minimization. Consider a pair of adjacent primary segments L
andR. By virtue of the first step, we know that L andR share com-
mon endpoints; however, they may each contain a differing number
of secondary segments. If l is a secondary segment on L and r is
a secondary segment on R, let nl,R and nr,R represent the number
of intervals that the secondary segments l and r are divided into, re-
spectively. We can then express our minimization condition as the
following function:

min f(x) = w
∑
(L,R)

(
∑
l∈L

nl,L −
∑
r∈R

nr,R)
2 +

∑
L,l

(nl,L)

The first term in this equation seeks to minimize the number of
mismatched interval counts along a given pair of adjacent primary
segments. The second term seeks to minimize the total number
of intervals for the entire mesh. We use w = 1000 to minimize
the number of mismatches as much as possible. This minimiza-
tion is subject to a number of constraints. We require that opposite
segments of each quad patch have the same number of intervals.
Additionally, we require that the number of intervals on a given
secondary segment does not fall below a specified minimum. This
minimum is determined by dividing the secondary segment length
by a user-specified desired (local or global) interval length. To-
gether, the minimization function and constraints form a quadratic,
mixed-integer programming problem, which we solve using Tom-
lab /CPLEX. This approach lead to valid assignments for all the
inputs we tested. The assigned intervals are used to optimize the po-
sitions of the secondary T-junctions and generate the final meshes.

5 Results

Closed Curves: We generated a number of synthetic test inputs
to evaluate the behavior of our method on a variety of closed curves



Figure 17: Quad meshes of complex closed curves including interior cycles.
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Figure 18: Artist generated meshes (left) and ours (right) exhibit
very similar flow-line patterns.

with different side configurations demonstrated in Figures 16 and
17. These included a variety of convex regions (Figure 16 (a-f))
with different degrees of planarity and different number of bound-
ary discontinuities. For some of the inputs the expected surface
shape, is best captured by introducing an extraordinary interior ver-
tex (c,d). For other regions with n > 4 sides such as (e,f) a reg-
ular connectivity better captures the intended shape. Our method
makes the appropriate choice based on analyzing the relationships
between the input curve segments,and the degree of parallelism be-
tween them. This is in contrast to purely connectivity methods,
e.g. [Nasri et al. 2009], where the choice is strictly based on the
number of segments. Figure 16 (b) shows an a-typical two sided
region, nevertheless reasonably fittted by our method, while (g,h)
show non-convex regions, where the optimal pairing is found auto-
matically through refinement of initial segments. The letters in Fig-
ure 17 show the robustness of the method in the presence of com-
plex non-convex curves as well as processing of faces with interior
loops. To handle such models, we first locate a pair of matching
segments on different loops with minimal matching cost and intro-
duce the shortest straight segment connecting those. The method
then proceeds as usual on the resulting single cycle.

Curve Networks: We tested our method on a variety of input
curve networks (Figure 1, 6, 19) generated by different model-
ing systems [Bae et al. 2008; Schmidt et al. 2009; Rose 2007].
As demonstrated by the figures these networks contain a variety
of complex, non-convex cycles. Our method successfully captures
the designer intent conveyed by the networks generating predictable
and smoothly flowing quad-meshes interpolating the input curves.
While the airplane (Figure 19) was created using a classical CAD
modeling system, many of the other inputs (car, espresso maker,
submarine, starcraft) (Figure 19) were generated using sketching
tools, which easily introduce noise and inaccuracies that hamper
traditional surfacing. Our method is robust to such artifacts.

We compare our outputs on the boat and starcraft to those generated
by an artist (Figures 3 18). The flow-line structure of our meshes
is largely identical to artist generated one, with only minor differ-
ences, such as flow on the side of the boat cabin, where both our
and artist interpretations are feasible (our outputs contain a few ex-
tra cycles not present in the artist models).

input output quad mesh interior
cycles cycles size vertices

Sphere Bag 3 9 987 0
Boat 30 82 4464 9
Spaceship 41 94 5008 6
Car 26 70 5020 13
Espresso 54 75 6904 5
Speaker 13 42 8548 1
Plane 140 192 10705 10
Submarine 39 103 16600 31

Table 1: Algorithm statistics for different curve networks.

Quantitative Evaluation: On an Intel i7 CPU 870 2.93GH ma-
chine our method takes on average two seconds to quadrangulate
a single curve cycle (most of the time spent on matching), making
it amenable for interactive surfacing in a sketch based modeler like
ILoveSketch [Bae et al. 2008]. The most time consuming regions
are the front of the car (166s) and the top of the speaker (66s) (Fig-
ure 19). Intervals assignment is practically instantaneous, taking
0.1s for a an average network and taking 2s to process the largest
model (plane). The quad statistics for the models we tested are
summarized in Table 1 and include numbers of input cycles, num-
ber of output quad cycles, mesh size(s), and the number of added
extraordinary vertices, All the generated meshes are watertight.

Limitations: Our approach has three broad limitations which can
be addressed by future research.

Global context: The biggest limitation of our method is lack of
global context. Our flow-line analysis for each input cycle in a
network is independent. In practice however, most adjacent cycles
meet at sharp corners, typically resulting in a similar segmentation
and flow across shared curve segments. The context of adjacent cy-
cles could be useful in enforcing flow line continuity across cycles
and predicting the flow within an individually ambiguous cycle.

Failure cases: While our algorithm works well on design curve
inputs from a variety of sources, it may not provide meaningful
results for arbitrarily shaped curve cycles with no perceptible flow-
lines. The absence of corners on a completely smooth curve cycle
will not provide us a meaningful initial segmentation to refine. In
such cases we can impose an initial segmentation based on curva-
ture maxima and arc-length of the input curve.

Algorithmic complexity: While our central idea of flow-line seg-
mentation and matching is conceptually clear, various aspects of
our implementation could be streamlined. For example, while most
of the parameters used by the method were derived based on clear
algorithmic goals, a few such as drop in Section 3.1) are based on
trial-and-error, and could be learned from designer quadrangulated
examples.

6 Conclusions

We presented the first, to our knowledge, method for quadrangu-
lating general designer specified closed 3D curves and curve net-



Figure 19: Quadrangulation and meshing of curve networks. The stars indicate the network locations of the highlighted complex regions.

works. Our results show the approach to robustly process complex
curve networks, generating interpolating quad meshes consistent
with designer intent. Our key insight is an interleaved segmentation
and matching algorithm, that pairs dominant flow-lines and uses
poor matches to guide segmentation refinement, computing a poly-
chord graph that captures user-intended bridging directions across
a closed curve. We advocate the use of stable matching as the prin-
cipled way to formulate our quadrangulation goals and anticipate it
to be well-suited to other problems relating to shape matching or
coherence, where both dominant components and their correspon-
dence is sought.

Our work points to a number of future directions. Rather than re-
strict our input to a constrained geometric definition of a design
curve network, we attempted to quadrangulate any 3D curve net-
work as a designer would, using the principle of flow-line segmen-
tation and matching. A formal perceptual study of the precise dif-

ference between ambiguous and design curves (Figure 2) is thus
an ambitious but worthy goal. While our segmentation refinement
strategy works well in general, approaches with theoretical guar-
antees of match quality are also worth exploring. Our method fo-
cuses on quad-only meshing, however in some cases designer in-
tent is better served by allowing a small number of triangular ele-
ments (e.g. Figure 16 (b)), motivating a technique for mixed but
predominantly-quad meshes. We would also like to apply our tech-
nique as-is to the finite-element meshing of closed planar domains,
balancing flow-line alignment against mesh quality.
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