
SIGRAD 2012
A. Kerren and S. Seipel (Editors)

Glint: An MDS Framework for Costly Distance Functions

S. Ingram†1 and T. Munzner1

1University of British Columbia, Canada

Abstract

Previous algorithms for multidimensional scaling, or MDS, aim for scalable performance as the number of points
to lay out increases. However, they either assume that the distance function is cheap to compute, and perform
poorly when the distance function is costly, or they leave the precise number of distances to compute as a manual
tuning parameter. We present Glint, an MDS algorithm framework that addresses both of these shortcomings.
Glint is designed to automatically minimize the total number of distances computed by progressively computing
a more and more densely sampled approximation of the distance matrix. We present instantiations of the Glint
framework on three different classes of MDS algorithms: force-directed, analytic, and gradient-based. We validate
the framework through computational benchmarks on several real-world datasets, and demonstrate substantial
performance benefits without sacrificing layout quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Human-centered Computing]: Visualization—
Visualization systems and tools

1. Introduction

Multidimensional Scaling, or MDS, is a method for posi-
tioning the points of a dataset into a user-specified, low-
dimensional space. The technique is used when the given
description of the points is overly verbose, making visual
analysis unwieldy or algorithmic analysis intractable. Input
dataset descriptions processed by MDS come in two types:
points, where each point is described by an equal number of
spatial coordinates, or a distance matrix, where the rows
and columns of the matrix represent a nonnegative value
computed by a distance function of the two points.

Plotting the low-dimensional MDS output enables visual
analysis of the proximity relationships between data points
that are obscured in high-dimensions. This technique is em-
ployed in psychophysics, marketing research, and unsuper-
vised learning [BG05, Gre75, HTF09]. MDS visualizations
can be readily incorporated into other interactive applica-
tions [IMS12], providing a rich overview of the data.

All MDS algorithms work by minimizing an objective
function quantifying the distortion of the points in the low-
dimensional space relative to their original input configura-

† E-mail: {sfingram,tmm}@cs.ubc.ca

tion. Though the different MDS algorithms compute coordi-
nates in a wide variety of ways, in each case the computa-
tional work can be divided into two parts: distance calcula-
tion, where the inter-point distances are calculated from the
input points, and layout calculation, which reads the com-
puted high-dimensional distances and positions the points in
the low-dimensional space.

The contribution of this paper is Glint, an iterative al-
gorithm framework for automatically minimizing distance
calculation in MDS. Structurally, Glint forms an outer loop
around a modified MDS algorithm. It starts with an empty
distance matrix, densifying the matrix as the outer loop it-
erates, automatically terminating when the MDS layout is
stable. Glint separates the distance calculation portion of the
MDS algorithm from layout calculations and provides an au-
tomated termination procedure.

The time cost of individual high-dimensional distance
calculations have a profound effect on the run time of an
MDS algorithm. Even for an efficient metric like the 10-
dimensional Euclidean distance function, the time spent cal-
culating high-dimensional distances occupies almost 80%
of the algorithm run time using the Glimmer force-directed
MDS algorithm [IMO09]. Many real-world problems where
MDS is used require more costly distance functions than the

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

Euclidean case. In these more expensive cases, total distance
costs occupy more than 99% of MDS run time using the
same algorithm. Thus, an efficient MDS algorithm should
seek to minimize the total work done, minimizing the sum
of both the distance and layout work.

Previous work has assumed that individual distance com-
putations are fast to calculate and thus has not sought to au-
tomatically resolve the balance between distance and lay-
out work. Current fast MDS algorithms that handle distance
matrices either compute many more distances than neces-
sary [IMO09], or leave the total number of distances to com-
pute as a tuning parameter and so do not have a fully au-
tomatic way to terminate [BP07, dST04]. The Glimmer al-
gorithm is an example of the overcomputation shortcom-
ing [IMO09]. It computes an iterative MDS approximation
using force-directed heuristics. The Glimmer minimization
strategy defines a cheap iteration and then iterates until con-
vergence is detected. Within each iteration, both distance
calculations and layout calculations are done. Glimmer au-
tomatically chooses the number of distance calculations to
make before terminating, but computes more than are strictly
necessary. The Pivot MDS algorithm is an example of the
termination shortcoming [BP07]. It computes a one-step an-
alytic MDS approximation. The MDS work is cleanly di-
vided between distance calculation up front followed by a
single contiguous layout calculation. Pivot MDS computes
all the distances it uses up front, but does not know how
many to select.

The above examples motivate a synthesis of the benefits
of the two algorithms, keeping the automatic termination of
algorithms like Glimmer while separating the distance work
from the layout work as in algorithms like Pivot MDS. The
goal of Glint is thus to not only compute far fewer distances
than the iterative approximation, but also to remove the tun-
ing parameter from the analytic approximation.

To demonstrate the generality and robustness of the
Glint approach, our contribution includes Glint instantia-
tions for three very different classes of MDS algorithm:
force-directed, analytic, and gradient-based. We present the
design of the Glint components for each instantiation, where
each is tailored to the requirements of the underlying MDS
algorithm. We show that these Glint instantiations drastically
reduce total run time on datasets with costly distance func-
tions without penalizing the final layout quality.

2. Distances In MDS

The distances between the points in a low-dimensional MDS
solution are intended to closely model those in the high-
dimensional input dataset. The core premise of MDS is that
the input contains redundant information, allowing for cor-
rect output even with an incomplete set of distances as input.
Glint exploits this redundancy by iteratively constructing a
subset of distances that is as small as possible. This section

describes two issues concerning these distances: the exis-
tence and effect of expensive distance functions, and how
sparse the input distance matrix can be.

2.1. Expensive Distance Functions

Minimizing the total number of distances computed is es-
pecially important when the time spent computing distances
dominates the time spent computing the layout. Many real-
world applications involve datasets with expensive distance
functions. Even the straightforward Euclidean distance met-
ric can be costly if the number of dimensions is large
enough, for example in the millions. In image processing,
the Earth Mover’s Distance, or EMD, compares the simi-
larity of color distributions between images and is useful
for ranking images for querying and nearest-neighbor-type
calculations [RTG00]. Its calculation requires solving a lin-
ear program, often a costly operation relative to the layout
calculation per point. Computational complexity is not the
only reason for distance calculation cost. Distances based
on database lookups are costly due to the relative speed of
disk I/O to memory reads. Distances that involve elicitation
of human judgement can be the most costly of all, because
the time scales of human response are so much longer than
of automatic computation. Human-elicited distances are of
interest in many domains; in a marketing example, a single
distance is derived from the averaged similarity judgements
elicited from survey takers comparing two items [LMF07];
in a psychophysics example, distances are derived from just
noticeable differences in haptic stimuli [TM08].

In all of these cases, distance calculations can comprise
well over 99.9% of the total time to compute the MDS lay-
out. We will show that using the Glint framework can dras-
tically reduce the time spent computing distances without
compromising the final quality of the MDS layout.

2.2. Experimental Analysis of Sparse MDS Solutions

Spence and Domoney conducted a series of data experiments
to determine if there could be an a priori way to select an
optimal subset of distance matrix entries to compute prior
to MDS layout [SD74]. Their experiments investigated the
effect of controlling three factors pertaining to layout qual-
ity. The first two factors, the amount of noise in the distance
measurement and the number of input data points, are given
in practice. The last experimental factor they tested, which
an algorithm can indeed control in practice, is distance ma-
trix density, or how densely sampled the approximation of
the distance matrix is compared to the full version.

The experiments resulted in two key findings that pertain
to our work. First, only a fraction of the matrix, ranging from
20% to 60% of the distances on their example data, needed to
be computed to accurately approximate the full layout. This
finding verifies that the goal of minimizing distance compu-
tations is a reasonable one. Second, their results imply that

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

there is no direct way to assess in advance exactly how many
distances need to be computed. We thus designed Glint to
run online, determining the optimal number of distances to
compute on the fly.

3. Related Work

MDS refers to an entire family of algorithms with different
objective functions, computational complexities, and qual-
itative results [BG05, FC11]. The common thread is that
they all minimize objectives that are some function of the
difference between the Euclidean distances of the lower-
dimensional layout coordinates and the magnitude of the
original high-dimensional dissimilarities. Here, we discuss
the four major classes of MDS algorithms in terms of their
shortcomings in handling costly distances.

3.1. Coordinate-Based Algorithms

MDS input can take the form of a table of coordinates
or a distance matrix. When the points are given as coor-
dinates, the number of input dimensions m is often much
smaller than the number of points N. The PLMP [PSN10]
and LAMP [JCC∗11] algorithms build on this assump-
tion to rapidly compute low-distortion layouts for very
large datasets. The profound acceleration that the algorithms
achieve is hindered when the number of dimensions equals
or exceeds the number of points, as is precisely the case
when the input format is a distance matrix. Because Glint is
designed for the distance matrix use case, coordinate-based
algorithms are not suitable as components for Glint.

3.2. Analytic Algorithms

The original MDS algorithm, now called Classic
MDS [Tor52], computed a one-step analytic minimum
of an objective function called Strain. The algorithm relies
on computing the full SVD of a dense N2 matrix, and is
therefore too computationally complex to be suitable for
large datasets or problems with costly distance functions.

Several scalable Classic MDS approximation algorithms
based on the Nyström approximation of the SVD have been
presented [Pla05]. For example, both Pivot MDS [BP07] and
Landmark MDS [dST04] work by having the user select a
number of “pivot” or “landmark” points. These particular
columns in the distance matrix are then computed and pro-
cessed by the algorithm to map the remaining points into
low-dimensional space.

The main drawback to this strategy is the manual nature of
selecting the proper number of landmark points. The Pivot
MDS authors suggest a human-in-the-loop strategy where
the user iteratively adds landmarks until visually determin-
ing the stability of the layout. The Landmark MDS authors
propose an iterative strategy based on cross-validation, but
do not present any benchmarks for this termination criterion.

3.3. Force-Directed Algorithms

The Glimmer [Ing07, IMO09] algorithm and its antecedent,
by Chalmers [Cha96], are MDS approximation algorithms
that iteratively sample high-dimensional distances and pro-
portionally nudge the layout points in the direction of the
residual distances. The movement of the points is controlled
using a dampened force-directed simulation heuristic.

While force-directed algorithms typically exhibit a rapid
convergence to a minimum, they often suffer from com-
puting more distances than are strictly necessary. The al-
gorithms are designed to compute high-dimensional dis-
tances prior to each force simulation time step, regardless
of whether enough distance information has already been
sampled to achieve a quality layout. This oversampling be-
comes especially inefficient when distances are costly. As
we show later in the paper, force-directed algorithms can
sample fewer high-dimensional distances and suffer little to
no degradation in quality.

3.4. Gradient Algorithms

Other MDS techniques use exact gradient information to
calculate layout coordinates. Some of these algorithms
use backtracking gradient descent on the Stress func-
tion [BSL∗08], while the SMACOF algorithm [dLM09]
minimizes a sequence of majorizing quadratic functions.
These techniques are more costly but the most flexible, per-
mitting weights and missing values, while also converging
to a lower-error minimum than randomized techniques.

As shown in their application to graph drawing [GKN04,
KHKS12], gradient techniques can harness a sparsely pop-
ulated distance matrix as input with good results. However,
like analytic approximation techniques such as Pivot MDS,
the precise number of distances to compute in advance to
converge to a quality minimum is left up to the practitioner.

4. Glint Algorithm Framework

Glint is an algorithm framework: an algorithm with modular
components that are themselves algorithms. Figure 1 shows
a diagram of these three components; each corresponds to a
step in the Glint outer loop. Glint starts with an empty dis-
tance matrix and a random layout and then loops over the
following three main steps to determine a final layout. First,
in the Densify Matrix step, it selects a new subset of the dis-
tance matrix to compute with the distance matrix densifica-
tion strategy DS and then updates the matrix with the com-
puted values. In the Lay Out Points step, it updates the layout
using the new distance information as input to the MDS lay-
out algorithm M. Finally, in the Check Convergence step, it
checks to see if the change in the objective function S is be-
low a threshold ε. If convergence is detected, the last layout
is returned, otherwise the loop repeats.

The MDS layout algorithm M takes as input a low-
dimensional point configuration as the starting point and a

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

Densify Matrix (DS) Lay Out Points (M) Check Convergence (S)

D't D't+1 layoutt layoutt+1 St St+1

eps

iteration

dS

Glint Outer Loop

Figure 1: Diagram of Glint execution.

sparse distance matrix. To qualify for use in Glint, M must
possess three characteristics. First, it must be able to com-
pute a layout given a distance matrix. Next, it must be able
to handle an incomplete – that is, sparse – distance matrix,
given the Glint strategy of gradual densification. Finally, M
must compute a layout from a given starting position rather
than starting from scratch each time, so that subsequent outer
loop iterations start M from a state closer to the final layout
configuration. We discuss M further in Section 5.1.

Controlling the density rate and pattern of the distance
matrix is the job of the densification strategy DS. Some MDS
algorithms, such as Pivot MDS and Landmark MDS are able
to compute layouts with incomplete matrices, but the pre-
cise sparsity pattern of the incomplete distance matrix may
be constrained. Because matrix sparsity pattern requirements
vary from algorithm to algorithm, we must tailor the selec-
tion of computed distances DS to the MDS algorithm M. We
discuss DS further in Section 5.2.

Glint requires a cheap, monotonic objective function S in
order to measure layout convergence; it must also be tailored
to the MDS algorithm M. It should not invoke a costly full
stress function that requires computing all the high- and low-
dimensional distances, which would obviate all performance
benefits of the system. We discuss S further in Section 5.3.

4.1. Glint Outer Loop

The Glint algorithm consists of a single threshold-controlled
loop, similar to algorithms like gradient descent where the
algorithm loops until the change in measured progress be-
comes very small. Figure 1 lists pseudocode for Glint. The
algorithm initializes with a random configuration of points
layout and then iterates through the main loop. In the main
loop, we first call the densification strategy DS. On the first
call it constructs the initial sparsity pattern Pt of the distance
matrix D′t , and on subsequent calls it densifies the pattern
by filling in more nonzero entries. Specifically, the sparsity
pattern Pt contains the set of nonzero indices of the D′t at
time t. After selecting the precise entries to change, Glint
updates the sparse distance matrix D′t by invoking the dis-
tance function for each pair of points contained in Pt . Next,

Algorithm 1 Pseudocode for Glint, with variable definitions.
function GLINT(ε)

layout← RANDOMLAYOUT

while !converged do

Pt+1← DS(Pt)
D′t+1← DISTANCE(D′t , Pt+1, d)

layoutt+1← M(D′t+1, layoutt)

Snew← S(Pt , D′t+1, layoutt+1)
converged← |Sold−Snew|/Sold < ε

Sold ← S(Pt+1, D′t+1, layoutt+1)

return layout

Variable Description
Pt the set of computed point pairs at iteration t
D′t the sparse distance matrix with nonzeros

specified by Pt
St scalar objective function value at iteration t
d the distance function
t the current Glint iteration
ε termination threshold

the MDS algorithm M runs to termination with the starting
point layout and the input distance matrix D′. Glint itself
terminates when the change in the objective function S is
less than the termination threshold ε.

The objective function S takes three parameters: the spar-
sity pattern P that specifies the pairs of points over which we
compare high-D and low-D distances, the distance matrix
D′ from which is read the distances specified by pairs in P,
and the low-dimensional layout coordinates layout from
which we compute the low-D distances. The reason for in-
cluding the pattern P as an input instead of simply summing
over the entirety of D′ is subtle, but important. Glint termi-
nates when the objective function converges; that is, when
it stops changing between subsequent iterations. Thus, the
objective function must compare results at time t + 1 to re-
sults at time t. However, not only do the points in the layout
change between iterations, but the number of terms in the
distance function changes, because there are more nonzero
entries in D′t+1 than in D′t . To properly measure conver-
gence, we need to compare functions with the same number
of terms. Including the same sparsity pattern in the objective
calculation ensures that we compare objective functions with
equivalent terms at each iteration, by specifying which en-
tries of the matrix to use. Thus, in the Figure 1 pseudocode,
Snew is computed with the sparsity pattern from the previ-
ous iteration, Pt , to determine which entries to include in the
computation, while using the actual values derived from the
current layout at time t +1.

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

5. Glint Instantiations

A Glint instantiation substitutes implementations of three
concrete components into the abstract framework of the
Glint algorithm. We describe three Glint instantiations, one
for each of the three different MDS algorithm families de-
scribed in Section 3: force-directed, analytic, and gradient.

Several of the Glint instantiations require choosing input
parameters, as discussed in detail below. Table 1 summarizes
the default value of each parameter and our method for se-
lecting it. It also includes our analysis of the tradeoffs, with
the results for setting the parameter too small or too big.

5.1. Component M: MDS Algorithm

The M component takes as input the low-dimensional input
coordinates and places them in a new configuration based on
the current distance matrix D′ as output. For the analytic in-
stantiation we substituted the Pivot MDS algorithm [BP07]
for M, and for the gradient implementation we substituted
the SMACOF algorithm [dLM09] for M. The Pivot MDS
algorithm is used without change, but the other instantia-
tions require algorithm parameter choices or internal mod-
ifications which we detail in the following subsections.

5.1.1. Gradient-Based Instantiation

For the gradient-based instantiation, the SMACOF MDS al-
gorithm has two tuning parameters: the inner termination
threshold, ε, and the maximum number of inner-loop itera-
tions before termination, numIters. We use the same value
for ε as in the the main Glint algorithm.

We observed that the gradient of the stress function for
very sparse input matrices quickly shrinks in proximity to
a minimum. Setting numIters too large results in over-
optimizing with incomplete distance information, while set-
ting it too high leads to computing more distances than are
necessary. We select 100 as a good balance over all our
benchmarks between these two extremes.

5.1.2. Force-Directed Instantiation

In the force-directed instantiation, we substitute a modified
version of the Glimmer [Ing07,IMO09] algorithm for M. We
used the version of Glimmer that supports distance matrix
calculations in addition to handling points [Ing07]. To make
the Glimmer algorithm suitable as the M component, we
must alter the randomized sampling regime used by the algo-
rithm. In Glimmer, sampling is uniform and unconstrained
over the entire distance matrix. Glint, however, only feeds a
sparse subset of the distance matrix D′ to M for each outer
loop iteration. To compensate, we constrain Glimmer sam-
pling to be uniform over the given nonzeros of the sparse
distance matrix D′.

5.2. Component DS: Densification Strategy

The DS component determines which distances to compute
at each Glint iteration. For each instantiation, we follow a
strategy of adding numDists new distances per point to the
matrix D′. By default, the numDists parameter is initially
set to dlog10 Ne.

Setting the numDists parameter to an overly small
value would result in an objective function S change that
is less than the termination threshold ε and thus an incor-
rect algorithm termination after the first iteration. A small
numDists is analogous to performing gradient descent
with too small a gradient step-size. To ensure numDists
is large enough, we follow a simple strategy of doubling
numDists during the first iteration until we achieve a
change in the objective function S greater than ε.

The distribution of new distances across the matrix D′

varies for each instantiation. We describe these distributions
on a per-instantiation basis.

5.2.1. Gradient Instantiation

The gradient instantiation DS is the simplest of the densifica-
tion strategies. At each iteration, the DS uniformly samples
numDists distances per point without replacement.

5.2.2. Force-Directed Instantiation

The force-directed DS is similar to the gradient instantia-
tion, except for a single modification addressing Glimmer
point hierarchies. The Glimmer algorithm divides points into
a pyramid of levels, with the fewest points contained in the
top level and increasingly larger sets of points at lower lev-
els [IMO09]. Sampling uniformly without replacement from
the distance matrix would often lead to the case that, at the
top level, several points will not have any distances com-
puted between any of the other points in the top level, only
distances computed to points in lower levels. To solve this
problem, the force-directed DS samples numDists dis-
tances without replacement once for the points contained in
each level. The sampling for a given level is constrained to
be uniform over only the points contained in that level.

5.2.3. Analytic Instantiation

Pivot MDS works by operating on a subset of complete
columns of the distance matrix. The uniform sampling of
distances per point used by the other instantiations would
violate this constraint by allowing zeros within columns. We
instead compute numDists new columns of the distance
matrix at each iteration. New columns are chosen using the
MaxMin strategy described in the Pivot MDS paper [BP07]
starting from a single column chosen uniformly at random.

5.3. Component S: Objective Function

Glint objective functions S are fast approximations of the
true objective functions F that are far more costly. In each of

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

Parameter Name Instantiation Default Selection Method If Too Small If Too Big
ε all 0.001 benchmark T:slower Q:better T:faster Q:worse
numIters gradient-based 100 benchmark LT:faster DT:slower LT:slower DT:faster
numDists all logN parameter doubling T:faster Q:worse T:slower Q:better
numRunsF force-directed 5 benchmark LT:faster Q:worse LT:slower Q:better
numRunsA analytic 10 benchmark LT:faster Q:worse LT:slower Q:better
trainSize force-directed,

analytic
3 benchmark T:faster Q:worse T:slower Q:better

Table 1: Parameters used in Glint instantiations, their default values, how they were chosen, and the tradeoffs in setting them
too small or too big. T is total time, LT is layout time, DT is distance calculation time, and Q is layout quality.

the Glint instantiations, S fits the following template:

S(hi, lo,sel) =
∑(i, j)∈sel(P)(lo(i, j)−hi(i, j))2

∑(i, j)∈sel(P) hi(i, j)2

Here, hi(i, j) and lo(i, j) are functions defining the high
and low-dimensional distances between points i and j. The
hi function varies from dataset to dataset, while lo is always
the Euclidean distance function. The sel function is an index-
selection function that selects a subset from set of nonzero
distance matrix indices P. Intuitively, this function just mea-
sures the normalized sum of distance residuals between the
layout points and the data, but only for a small set of point
pairs instead of all pairs of points.

Because they are stress-based techniques that minimize
distance residuals, the force-directed and gradient-based in-
stantiations use D′i j for hi(i, j) and the low-dimensional
Euclidean distance for lo(i, j). The analytic instantiation
is strain-based, minimizing the inner-product residuals. To
measure strain, we set hi(i, j) to be the inner product of ith
and jth rows of the double-centered matrix C and set lo(i, j)
to be the inner product of the ith and jth layout coordinates.
The interested reader should refer to original Pivot MDS pa-
per for more details on the computation of C [BP07].

For the analytic and gradient-based instantiations, the
index-selection function sel selects the entirety of the
nonzero matrix indices P. In contrast, the force-directed in-
stantiation selects a subset of P. The precise subset of P is
the set of point indices contained in the union of per-point
random sample caches used by the Glimmer algorithm. In
the force-directed instantiation, S is equal to the sparse stress
function computed at the end of each Glimmer run [IMO09].

Each instantiation employs randomized sampling of new
distance matrix indices after each Glint iteration, as men-
tioned in Section 5.2. In the case of the gradient-based in-
stantiation, this random sampling does not impart enough
random noise to the observed values of S to induce an unex-
pected termination. However, in the force-directed and an-
alytic cases, we observed enough noise in the sequence of
S values that early termination was regularly observed. In

this section we describe our strategy for creating a smooth S
from the noisy series of raw objective function values.

A simple approach would be to filter the sequence of raw
values using a moving average. Since the noise in the signal
is white noise, with equal power across all frequencies, it
would manifest itself after filtering any bandwidth, so this
approach would not solve the problem.

Fortunately, the observed noise can be modelled by a
Gaussian distribution. Stochastic processes where any sub-
set of process samples are normally distributed are known as
Gaussian processes and can be accurately modelled by the
machinery of Gaussian process regression (GPR) [RW06].
(We confirmed normality with a Shapiro-Wilk test result of
p = 0.55 [SW65].)

In order to perform GPR we must select the forms of the
two functions that completely determine a Gaussian process,
the mean and the covariance function. The mean of the Gaus-
sian process encodes information about the shape of the un-
derlying process, for example whether it is linear or constant.
We chose a mean prior of zero, indicating that we have no
advance knowledge about the signal. We select the squared
exponential function, one of the most commonly chosen co-
variance functions [RW06], because it models smooth tran-
sitions between adjacent values of S, a behavior that matches
our expectations for the convergence curve.

We can improve our smooth estimate of the mean of S by
increasing the number of samples computed at each outer
loop iteration. In the force-directed case, we compute more
samples by restarting M with the same initial layout and a
different random seed. Since the analytic case proceeds de-
terministically, the same technique cannot be used. To com-
pute a set of random samples for the analytic case, for each
sample we select numDists columns uniformly at random
to leave out of P.

For the parameter designating the number of computed
samples per Glint iteration, there is a parameter tradeoff be-
tween the fidelity of the estimated mean, which affects the
likelihood of observing a false termination, and the speed of
algorithm. We empirically find that computing 5 runs for the
force-directed numRunsF parameter and 10 runs for the an-

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

alytic and numRunsA parameter yields good results over all
our benchmark datasets.

Using GPR requires initialization of the so-called pro-
cess hyperparameters of the squared exponential covari-
ance function. These include the length scale, or degree of
smoothness, and the noise level. The hyperparameters can
be efficiently learned from a small set of observations com-
puted during the first trainSize iterations of the Glint
outer loop, by optimizing a likelihood function using conju-
gate gradients. We empirically find that using 3 iterations for
training yields good results over all our benchmark datasets.

5.4. Instantiation Design Summary

Table 3 summarizes the Glint component design decisions,
emphasizing the underlying algorithm features that cross-
cut the three instantiations. Consideration of these features
could guide designers of future instantiations. For example,
an algorithm using the entire sparse input distance matrix,
like Pivot MDS and SMACOF, can remain unaltered for M.
Algorithms with objective functions S that are noisy, such as
Pivot MDS and Glimmer, can employ GPR smoothing.

6. Results

We present the results in terms of a benchmark performance
comparison and an assessment of convergence. We first de-
scribe the benchmark datasets in detail. We compare the effi-
ciency and quality of Glint instantiations against the standard
algorithms in terms of time and stress using these bench-
marks. We then discuss convergence issues and demonstrate
convergence behavior of each instantiation.

6.1. Dataset and Distance Function Description

The molecule dataset contains 661 points representing
polymer-based nanocomposites. The distance function is
cheap: it is the Euclidean distance metric where the number
of dimensions m is 10. We include this dataset as a baseline
where the Glint requirements are not met and unmodified al-
gorithms should be employed instead. The 4000 points in the
concept dataset are biomedical terms where the distance
function to determine their co-occurrence in journal articles
requires running database queries. The Flickr dataset con-
tains 1925 images culled from the first author’s public photo
collection, with distances computed using the Earth Mover’s
Distance (EMD) [RTG00]. The BRDF dataset is an exam-
ple from the computer graphics literature, where computa-
tions involving 100 points representing images use the Eu-
clidean distance function. The number of dimensions m is
four million [MPBM03]; this function is expensive despite
being Euclidean because of the huge number of dimensions.
The videogame dataset was created by gathering human
judgements in response to survey questions about 96 games.
While the exact timing information for the judgments was

not reported [LMF07], our conservative estimate is that the
sum of the response times of the human participants took an
average of 10 seconds for each pairwise comparison. Table 2
summarizes our benchmark distance functions and costs.

d cost (sec) Distance Calculation Benchmark
0.00001 Euclidean m = 10 molecule
0.001 DB Query concept

0.01 Earth Mover 83 signature flickr
1.0 Euclidean m = 4M brdf

10.0 Human Elicited videogame

Table 2: The cost d of a single distance calculation for the
benchmark datasets in seconds rounded to the nearest power
of 10. Here m represents the number of dimensions of the
input data in the case of using a Euclidean distance function.

6.2. Benchmark Speed and Quality Comparison

We validate Glint by comparing the benchmark performance
of our implementations against the previous work in terms
of speed and quality. Speed is measured in seconds to ter-
mination and quality is measured in terms of the full objec-
tive function F using the entire distance matrix D. For the
force-directed and gradient-based instantiations, F is the full
normalized stress function [BG05]. For the analytic instan-
tiation, F is the full normalized strain function. We compute
F only for performance validation; it is never computed in
practice. All recorded values are averaged over 5 runs on an
Intel Core 2 QX6700 2.66 GHz CPU with 2 GB of memory.

For the original approach in the force-directed and
gradient-based performance comparison, we ran the Glim-
mer and SMACOF algorithms, respectively, with the same ε

for these as used in Glint. For the original approach used in
the analytic performance comparison, we know of no algo-
rithms with termination criteria. Instead, we used a human-
in-the-loop Pivot MDS setup, where the first author added
numDists pivots at a time with a keystroke, and manu-
ally halted the process after visually assessing layout conver-
gence. The Pivot MDS algorithm is unable to handle incom-
plete distance matrix columns, so we omit the videogame
benchmark, which possesses many missing matrix entries,
from the analytic results.

Figure 2 and Table 4 compare the execution time and final
layout quality of Glint to the original approaches.

The speedup of the force-directed instantiation ranges
from 20 to 115 for the costly target cases, while the origi-
nal Glimmer algorithm is several times faster for the cheap
baseline. The main benefit of the fully automatic analytic
Glint instantiation is the elimination of the need for man-
ual monitoring and intervention. The Glint instantiation was
faster than Pivot MDS with a manual operator in the loop
for molecule and flickr, but slower for concept and

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

Alg. Class M DS S
force-directed altered sampling uniform pointwise

for each hierarchy
GPR smoothed stress-based across sample-cache sets

gradient-based unchanged uniform pointwise stress-based across P
analytic unchanged uniform columnwise GPR smoothed strain-based across P

Table 3: Glint component design summary for each MDS algorithm class.

Benchmark Glint
F

Orig.
F

Glint
Time

Orig.
Time

Speed
up

Force-Dir.
molecule 0.03 0.03 14 4 0.2
concept 0.18 0.18 49 1016 20
flickr 0.08 0.09 2.4K 98K 40
brdf 0.03 0.04 3K 304K 115

videogame 0.45 0.45 23K 482K 20
Analytic
molecule 0.35 0.42 3 23 9
concept 0.93 0.94 96 63 0.7
flickr 0.48 0.59 1.2K 2.9K 2
brdf 0.078 0.233 40K 6K 0.2

Gradient
molecule 0.01 0.03 360 700 1.9
concept 0.18 0.18 0.1K 113K 880
flickr 0.06 0.04 8K 71M 8.8K
brdf 0.008 0.005 4K 859K 200

videogame 0.16 0.13 19K 430K 220

Table 4: Comparison of full objective functions, time (in sec-
onds), and speedup between Glint instantiations and origi-
nal MDS algorithms.

brdf. The speedup of the gradient-based Glint instantiation
is dramatic: several orders of magnitude in the target cases,
and a factor of two in the baseline case of molecule where
the distance function is cheap.

The quality values for Glint are roughly the same magni-
tude and variability for each benchmark in the force-directed
case. For the analytic instantiation, the quality values are
equal or better than the manual Pivot MDS method. In
the gradient case, most of the final quality values, except
molecule, are slightly worse than the standard approach
using the full distance matrix. The gradient Glint instantia-
tion provides a speed and quality compromise between the
extremely costly but accurate full gradient approach, and the
fast but approximate force-directed Glint instantiation.

6.3. Convergence

We illustrate the convergence behavior of each Glint instan-
tiation in Figure 3. Each log-scale plot displays two curves:
the blue curve represents the value of the full, slow objective

function F of the layout after each Glint iteration, while the
orange curve shows the value of the smoothed, fast objective
S. For those instantiations that employ GPR smoothing, we
also plot the random samples used in the regression as gray
dots. Similarly, for those instantiations that employ an iter-
ative layout algorithm M, we plot the values of S after each
M iteration. As in the benchmark comparison, F is the full
normalized stress function for Glimmer and SMACOF, and
F is the full strain function for Pivot MDS.

The magnitude of the change in the cheap objective S ap-
proximates that of the change in costly F function. In the
case of Pivot MDS, the smoothed S series is slightly offset
from the gray random samples due to the effect of using spar-
sity patterns from the previous iteration. These benchmarks
validate the claim that setting ε to a given termination thresh-
old will terminate Glint when the corresponding change in F
falls below the threshold modulo some sampling noise.

7. Conclusion

We have illustrated how expensive distance calculations
change the efficiency of existing MDS algorithms. Algo-
rithms like Glimmer and SMACOF compute more distances
than are required for an existing quality of layout, while an-
alytic algorithms require manually tuning the number of dis-
tances to compute as an input parameter. We solve both these
problems with Glint, an algorithm framework with three
components: a distance matrix densification strategy DS, an
algorithm M, and an inexpensive objective measure S. Given
these components, Glint samples distances from the distance
matrix in fixed batches, updating the low-dimensional layout
with new information until the layout quality converges. We
show how careful design of termination criteria can over-
come the noise effect of random sampling on convergence.
We present and validate Glint instantiations for three sepa-
rate types of previous MDS algorithms: the force-directed
Glimmer, the analytic Pivot MDS, and the gradient-based
SMACOF.

The Glint instantiations provide essentially equivalent
layout quality in all cases. The analytic instantiation was
roughly equal in time performance to Pivot PDS, with some
cases of speedup and some of slowdown; the main contri-
bution of Glint in this situation is to remove the need for
manual monitoring and intervention. The iterative instan-
tiations showed substantial speedups against Glimmer and
SMACOF in all of our target cases with costly distance func-

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

Force-Directed Analytic Gradient-Based
S
p
e
e
d

0 5 10 15

MOLECULE

0 500 1000 1500

CONCEPT

0 50K 100K 150K

FLICKR

0 100K 200K 300K 400K

BRDF

0 100K 200K 300K 400K 500K 600K

VIDEOGAME

0 5 10 15 20 25

MOLECULE

0 50 100 150

CONCEPT

0 1000 2000 3000 4000

FLICKR

0 1K 2K 3K 4K 5K

BRDF

0 200 400 600 800

MOLECULE

0 50K 100K 150K

CONCEPT

0 20M 40M 60M 80K

FLICKR

0 200K 400K 600K 800K 1M

BRDF

0 1M 2M 3M 4M 5M

VIDEOGAME

Q
u
a
l
i
t
y

MOLECULE

CONCEPT

FLICKR

BRDF

0 0.1 0.2 0.3 0.4 0.5

VIDEOGAME

MOLECULE

CONCEPT

FLICKR

0 0.2 0.4 0.6 0.8 1

BRDF

MOLECULE

CONCEPT

FLICKR

BRDF

0 0.05 0.1 0.15 0.2

VIDEOGAME

Figure 2: Comparison of speed (top) and quality (bottom). In each pair, the top blue bar is the original MDS algorithm, and
the bottom orange bar is the Glint instantiations. The black lines indicate 95% standard error bars.

0 500 1000 1500
10

−3

10
−2

10
−1

10
0

S
tr

es
s

(L
og

 S
ca

le
)

Force−Directed Iterations

Force−Directed

10 15 20 25 30
10

−6

10
−4

10
−2

10
0

S
tr

ai
n

(L
og

 S
ca

le
)

Analytic Iterations

Analytic

0 500 1000
10

−4

10
−2

10
0

S
tr

es
s

(L
og

 S
ca

le
)

Gradient−Based Iterations

Gradient−Based

Figure 3: Log-scale Glint convergence curves on each instantiation generated using the brdf dataset. The orange S curve is
derived from the noisy grey samples. S is designed to match the convergence behavior of the costly F series in blue.

tions, ranging from 20 to 115 with the force-directed Glint
instantiation and from 200 to 8800 with the gradient-based
Glint instantiation.

The Glint framework uses modified versions of existing
algorithms to more efficiently compute low-dimensional lay-
outs on problems with costly distance functions. Glint re-
duces the total time spent computing distance information
by automatically selecting a reduced number of distance ma-
trix entries to compute based on monitoring layout quality.

Glint reduces the time and cost of analyzing distance-based
datasets with MDS, opening the door for practitioners to ap-
ply MDS to problems with expensive distance functions at
an entirely new scale.

8. Acknowledgements

This work was supported through a NSERC Strategic Grant,
with partial travel support from UBC ICICS and FOGS.

S. Ingram & T. Munzner / Glint: An MDS Framework for Costly Distance Functions

References

[BG05] BORG I., GROENEN P. J. F.: Modern Multidimensional
Scaling Theory and Applications, 2nd ed. Springer-Verlag, 2005.
1, 3, 7

[BP07] BRANDES U., PICH C.: Eigensolver methods for progres-
sive multidimensional scaling of large data. In Graph Drawing,
Kaufmann M., Wagner D., (Eds.), vol. 4372 of Lecture Notes in
Computer Science. Springer, 2007, pp. 42–53. 2, 3, 5, 6

[BSL∗08] BUJA A., SWAYNE D., LITTMAN M., DEAN N.,
HOFMANN H., CHEN L.: Data visualization with multidimen-
sional scaling. Journal of Computational and Graphical Statis-
tics 17, 2 (2008), 444–472. 3

[Cha96] CHALMERS M.: A linear iteration time layout algorithm
for visualising high dimensional data. In Proc. IEEE Visualiza-
tion (1996), pp. 127–132. 3

[dLM09] DE LEEUW J., MAIR P.: Multidimensional scaling us-
ing majorization: SMACOF in R. Journ. Statistical Software 31,
3 (8 2009), 1–30. 3, 5

[dST04] DE SILVA V., TENENBAUM J.: Sparse multidimensional
scaling using landmark points. Technical report, Stanford, 2004.
2, 3

[FC11] FRANCE S., CARROLL J.: Two-way multidimensional
scaling: A review. IEEE Trans. Systems, Man, and Cybernetics,
Part C: Applications and Reviews 41, 5 (2011), 644–661. 3

[GKN04] GANSNER E. R., KOREN Y., NORTH S. C.: Graph
drawing by stress majorization. In Graph Drawing (2004),
pp. 239–250. 3

[Gre75] GREEN P.: Marketing applications of mds: Assessment
and outlook. The Journal of Marketing (1975), 24–31. 1

[HTF09] HASTIE T., TIBSHIRANI R., FRIEDMAN J.: The Ele-
ments of Statistical Learning: Data Mining, Inference, and Pre-
diction, Second Edition. Springer Series in Statistics. Springer,
2009. 1

[IMO09] INGRAM S., MUNZNER T., OLANO M.: Glimmer:
Multilevel MDS on the GPU. IEEE Trans. Visualization and
Computer Graphics (TVCG) 15, 2 (2009), 249–261. 1, 2, 3, 5, 6

[IMS12] INGRAM S., MUNZNER T., STRAY J.: Hierarchical
Clustering and Tagging of Mostly Disconnected Data. Tech.
Rep. TR-2012-01, University of British Columbia Department of
Computer Science, May 2012. 1

[Ing07] INGRAM S.: Multilevel Multidimensional Scaling on the
GPU. Master’s thesis, University of British Columbia Depart-
ment of Computer Science, 2007. 3, 5

[JCC∗11] JOIA P., COIMBRA D., CUMINATO J. A., PAULOVICH
F. V., NONATO L. G.: Local affine multidimensional projection.
IEEE Transactions on Visualization and Computer Graphics 17,
12 (2011), 2563–2571. 3

[KHKS12] KHOURY M., HU Y., KRISHNAN S., SCHEIDEGGER
C.: Drawing large graphs by low-rank stress majorization. Comp.
Graph. Forum 31, 3pt1 (June 2012), 975–984. 3

[LMF07] LEWIS J. P., MCGUIRE M., FOX P.: Mapping the men-
tal space of game genres. In Proc. ACM SIGGRAPH Symp. Video
Games (2007), pp. 103–108. 2, 7

[MPBM03] MATUSIK W., PFISTER H., BRAND M., MCMIL-
LAN L.: A data-driven reflectance model. ACM Trans. Graphics
(Proc. SIGGRAPH 2003) 22, 3 (2003), 759–769. 7

[Pla05] PLATT J. C.: FastMap, MetricMap, and Landmark MDS
are all Nyström algorithms. In Proc. Intl. Workshop on Artificial
Intelligence and Statistics (2005), pp. 261–268. 3

[PSN10] PAULOVICH F., SILVA C., NONATO L.: Two-phase
mapping for projecting massive data sets. IEEE Trans. Visual-
ization and Computer Graphics 16, 6 (2010), 1281–1290. 3

[RTG00] RUBNER Y., TOMASI C., GUIBAS L.: The Earth
Mover’s Distance as a metric for image retrieval. Intl. Journ.
Computer Vision 40, 2 (2000), 99–121. 2, 7

[RW06] RASMUSSEN C. E., WILLIAMS C. K. I.: Gaussian Pro-
cesses for Machine Learning. MIT Press, 2006. 6

[SD74] SPENCE I., DOMONEY D.: Single subject incomplete de-
signs for nonmetric multidimensional scaling. Psychometrika 39
(1974), 469–490. 2

[SW65] SHAPIRO S., WILK M.: An analysis of variance test for
normality (complete samples). Biometrika 52, 3/4 (1965), 591–
611. 6

[TM08] TERNES D., MACLEAN K. E.: Designing large sets of
haptic icons with rhythm. In Intl. Conf. Haptics: Perception,
Devices, and Scenarios (EuroHaptics) (2008), Springer LNCS
5024, pp. 199–208. 2

[Tor52] TORGERSON W.: Multidimensional scaling: I. theory and
method. Psychometrika 17 (1952), 401–419. 3

