Layered 3D

Tomographic Image Synthesis for Attenuationbased Light Field and High Dynamic Range Displays

Gordon Wetzstein Wolfgang Heidrich UBC Douglas Lanman Ramesh Raskar MIT Media Lab

Overview

Key Insights

Glasses-Free 3D Display

Lenslet Arrays Lippmann 1908

Parallax Barriers lves 1903

Layered 3D

Generalizing Parallax Barriers

Multiple Layers

Computed Tomography (CT)

source: wikipedia

Tomographic Light Field Synthesis

CT vs. Layered 3D

Computed Tomography reconstruct physical volume

sensor noise

- thin stack of optimized layers
- no noise

Multi-Layer Decomposition

Depth of Field for 3D Displays

How Do Layers Increase Depth of Field?

Review of Frequency-Domain Light Field Analysis

Chai et al. 2000; Durand et al. 2005; Veeraraghavan et al. 2007; Lanman et al. 2008; Ihrke et al. 2010

Emitted Light Field Spectral Support

16

17

Multi-Layer Depth of Field

*Includes integral imaging and parallax barriers

Conventional*

Layered 3D

Optimization: Number of Layers

Two Layers

Three Layers

Five Layers

Optimization: Display Thickness

"Square Root" Layers

"Square Root" Layers

Optimized Layers

Limitations: Field of View

Personal Glasses-Free 3D Display

Challenges for dynamic display:

- Real-time computation
- Engineering issues, moiré

Dynamic Multi-Layer LCDs

Dynamic Light Field Display using Multi-Layered LCDs, to appear in Siggraph Asia 2011 Douglas Lanman, Gordon Wetzstein, Matthew Hirsch, Wolfgang Heidrich, Ramesh Raskar

Photo-stéréo-synthesis

Computational Photography

Computational Displays

Datasets, code & videos on the website!

www.layered3d.com

Glasses-Free 3D Display

Hollogretrics Displays

Layered 3D

- alDdepetrsuesly inside enclosure
- oomputationhally cexpensiving parts
- Blaxphiestseefabildeneinolosure
- normpostintigopalitys efficient

Limitations: "Flip Animations"

Parallax Barriers

Multi-Layer Full Resolution Multi-Layer Reduced Resolution

Performance Assessment

Implementation

Tranbologieten Transpace Acry Proi Steaters

Prototype in Front of LCD (Backlight)

- Epson Stylus 2200 inkjet (300 dpi, six color primaries)
- 5 layers (5.7×7.6 cm), 1.27 cm thickness, 10° field of view

Implementation: Software

POV-Ray: 7 × 7 views (512 × 384 pixels), 10° field of view

- Depth of field tuned for combined antialiasing and display prefilter
- MATLAB: LSQLIN (independently for each color channel)
- 12 minutes on 2.4 GHz Intel Core 2 with 8 GB RAM