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ABSTRACT

We use the principles of information visualization to guide the design of systems to best meet the needs of
specific targets group of users, namely biologists who have different tasks involving the visual exploration of
biological networks. For many biologists who explore networks of interacting proteins and genes, the topological
structure of these node-link graphs is only one part of the story. The Cerebral system supports graph layout in
a style inspired by hand-drawn pathway diagrams, where location of the proteins within the cell constrains the
location within the drawing, and functional groups of proteins are visually apparent as clusters. It also supports
exploration of expression data using linked views, to show these multiple attributes at each node in the graph.
The Pathline system attacks the problem of visually encoding the biologically interesting relationships between
multiple pathways, multiple genes, and multiple species. We propose new methods based on the principle that
perception of spatial position is the most accurate visual channel for all data types. The curvemap view is an
alternative to heatmaps, and linearized pathways support the comparison of quantitative display as a primary
task while showing topological information at a secondary level.

1. INTRODUCTION

Information visualization systems provide visual representations of datasets intended to help people carry out
some task more effectively. In short, pictures help us think by substituting perception for cognition. The value
of using external representations is that it frees up the limited amount of cognitive and memory resources for use
in higher-level problems.1 For example, when confronted with a table of numbers that represents measured gene
activity, understanding the overall pattern of the data requires considerable conscious thought and attention:
numbers must be read, internally stored, and internally compared against other numbers to find values like the
min and the max. It is difficult to store enough information in our limited mental buffers to have a detailed
overview of the numerical distribution. In contrast, when we look at a visual encoding of the information using a
visual channel like color to show those values, we can immediately see overall patterns without conscious effort.

Visualization is appropriate in when two conditions are met. First, when there is a need for the human to
be in the loop and the goal is to augment, not replace, human cognition. It is relevant for the many problems
that cannot be automated. For instance, the problem may be sprawling and not fully understood, with complex
and shifting decision criteria. Another common use of visualization is when a proposed automatic solution must
be vetted by people before deployment. Second, when simple summary statistics alone are not adequate. While
statistical measures are a powerful and necessary tool for characterizing a dataset, they often do not adequately
characterize the full story of the complex distribution of values within the dataset.

Anscombe’s quartet is a compelling example.2 It is four datasets with identical statistical properties, including
mean, variance, correlation coefficient, linear regression lines, and several other measures. However, looking
at a visual representation of the datasets in the form of scatterplots instantly shows the completely different
characteristics of the datasets, as shown in Figure 1. One is a loose linear distribution, another is clearly
nonlinear, one is a very tight linear distribution with one outlier, and one is linear in a completely different
direction from the regression line with a very different single outlier. Although this dataset is quite small, the
idea carries through to larger and more complex datasets: we often need to see the details that underlie simple
summaries.

Visualization can facilitate not only hypothesis discovery, but also hypothesis confirmation – and disconfir-
mation. Data cleansing or wrangling is just one example; the nearly inevitable result of loading even the most
well-curated dataset into a new visualization system is discovery of previously unknown problems. Despite the
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Figure 1. Anscombe’s Quartet shows four datasets with identical simple statistical properties: mean, variance, correlation,
and linear regression line.2 However, visual inspection immediately shows how their structures are quite different. Image
from http://en.wikipedia.org/wiki/File:Anscombe’s quartet 3.svg, under CC Attribution-ShareAlike license.

frequent mindset that the main goal of visualization is to provide fundamentally new capabilities, the most
common case is that visualization provides speedup by accelerating existing workflows, as Christian Chabot of
Tableau pointed out in his VAST 2008 keynote.

2. SEPARATION OF CONCERNS

Designing an effective visualization is a tricky task, because there is such a huge space of design alternatives and
so many of the choices lead ineffective systems. Principled reasons to make these choices are usually not obvious
to untrained people, and moreover there are often conflicting tradeoffs that make the design a difficult problem
even to people who have visualization design experience. The nested model of visualization design provides
guidance in designing, analyzing, and validating visualization systems by separating the set of concerns into four
different levels, with different threats to validity at each level.3

The nested model has four levels: problem, abstraction, encoding and interaction, and algorithm. The
first level is characterizing the problems of real-world users: identifying gaps, breakdowns, and slowdowns that
might be addressable by a visualization system. The threat to validity at this level is “users don’t do that”.
Understanding the problems of real-world users is a difficult problem that can be attacked through methodologies
from human-computer interaction and ethnography.

The second level is abstracting from domain problems into operations on data types. Generic operations
include sorting, filtering, browsing, comparison, characterizing trends and distributions, finding anomalies and
outliers, finding correlation, and so on. Data types include tables of numbers, relational networks, and spatial
fields. Often the abstraction involves extensive transformations to the original data into a more useful configu-
ration, in order that the operation can be more effectively addressed by drawing the derived data. The threat
to validity at this level is “you’re showing them the wrong thing”. Identifying the set of operations and data
types that are used as the building blocks of visualization is a fundamental part of the information visualization
research agenda.

Designing visual encoding and interaction is often considered the heart of visualization. We can analyze
visual encodings in terms of two crosscutting aspects: geometric marks such as points, lines, and areas; and
visual attributes that communicate information atop these marks using channels such as spatial position, color,



threat: wrong problem

 validate: observe and interview target users

     threat: bad data/operation abstraction

          threat: ineffective encoding/interaction technique

          validate: justify encoding/interaction design

              threat: slow algorithm

validate: analyze computational complexity

                      implement system

              validate: measure system time/memory

          validate: qualitative/quantitative result image analysis

          [test on any users, informal usability study]

          validate: lab study, measure human time/errors for operation

      validate: test on target users, collect anecdotal evidence of utility

      validate: field study, document usage of deployed system

 validate: observe adoption rates

Figure 2. The nested model proposes a split into four different levels of visualization design choices, with different validation
methods at each level based on the relevant threats.3

shape, size, orientation, and so on. Interaction choices include selection, navigation, reordering, and many other
ways to change the visual representation dynamically. The threat to validity at this level is “the way you show it
doesn’t work”. Weighing the effectiveness of encoding and interaction techniques requires knowledge of human
perception, drawing on cognitive psychology and vision science.

The fourth level is creating algorithms to automatically execute the techniques specified at the level above.
The threat at this level is “your code is too slow”. Algorithm design and evaluation are classic computer science
problems, and sometimes this layer of design benefits from computer graphics and computational geometry
knowledge.

The benefit of separating the design into these four levels is that we can use appropriate methods for validation
at each of the levels, in order to understand how and whether the visualization system has achieved its goals.
Figure 2 summarizes the framework. At the problem level, an immediate validation approach is to interview and
observe the target users to ensure that the problem is correctly understood by the designers. One downstream
way to validate whether a visualization system has solved its intended problem is to note the extent to which is
is adopted by members of the target user group. Adoption is of course a noisy signal, in that many good systems
do not win in the marketplace and vice versa. Nevertheless, knowing that a system has crossed the gap from a
research prototype used only by the authors of the system to a system in active use does provide some useful
information.

A good approach to validation for the abstraction level is to observe usage by the target group in real-world
contexts with their own data. This observation may take the form of formal and systematic field studies, or more
informal deployment to collect anecdotal evidence of whether the users are in fact able to work faster or more
effectively. At the encoding and interaction level, an immediate form of validation is to carefully justify the design
according to known principles. One downstream validation approach is the qualitative or quantitative analysis
of the visualization system output, for example by comparing images generated by one visualization system to
those from another. Another is a formal measured-response laboratory experiment, to measure human time and
errors in carrying out abstract tasks using the system. Finally, the algorithm level can be validated immediately
with computational complexity analysis, and downstream by running benchmarks to measure system time and
memory usage.

We developed the nested model in part from the experience of designing visualization systems in a wide
range of domains, including computer networking,4 computational linguistics,5 web logs,6,7 large-scale system
administration,8 and several areas of biology.9–11 We will illustrate the role of these information visualization



Figure 3. The Cerebral interface includes a large graph interaction window, small multiples colored by experimental
condition, and a parallel coordinates view of the measurement data.

principles with a detailed walkthrough of the design decisions of two visualization systems that deal with biological
networks, Cerebral12 and Pathline.13

3. CEREBRAL

The Cerebral system 12 was joint work with Aaron Barsky, Jen Gardy, and Robert Kincaid. It was designed in
collaboration with innate immunity researchers at the UBC Hancock lab who needed to compare gene activity
levels from multiple experimental conditions within the context of a systems biology graph model. Figure 3
shows the Cerebral interface, which includes a large window for interacting with the systems biology graph,
small multiple windows with the graph nodes colored by experimental condition, and a parallel coordinates view
on the bottom showing the experimental measurements directly.

We will discuss design choices at three of the levels, starting the problem of supporting the model-experiment
cycle in systems biology. We will then cover the visual encoding choice of creating a custom graph layout and the
algorithm choice of using simulated annealing for layout. We will then discuss two more choices that are at the
encoding and interaction level: using small multiple views of the graph, and showing side by side views of both
the graph and the measured data. We will conclude with the Cerebral example in a discussion of validation.

3.1 Problem: systems biology

A pervasive model in systems biology is the network of known interactions between biomolecules. In this node-
link graph, nodes represent proteins, genes, DNA, or RNA; links represent known interactions. These graphs



Figure 4. Local neighborhood around the TLR4 biomolecule, with 54 nodes and 74 edges.

are carefully curated, where each link has provenance information about the specific publications that provide
evidence for its existence. They are not only complex, but also constantly updated as research progresses, so
even biologists very familiar with a specific field do find value in seeing the latest version.

Cerebral was intended to help accelerate the workflow of the model-experiment cycle, where experiment
results need to be interpreted in the context of the current graph model, with the outcome that modifications to
the model are proposed to refine it. In this case, experiments on cells produce measurements of gene expression
levels for nodes in the graph using microarrays, but the particular technology used to create the quantitative
data is not important for the purposes of visualization design.

Before Cerebral, the biologists were constrained to looking at a very limited region of the graph model,
centered around a single biomolecule, because of the difficulty of creating comprehensible images through manual
layout. Figure 4 shows an example of a local neighborhood around the TLR4 biomolecule, with around 50 nodes.
The goal of the Cerebral system was to allow them to interact with the entire immune system, which is an order
of magnitude larger with over 700 nodes and 1200 edges, as shown in Figure 5.

3.2 Encoding: custom graph layout

Graph layout is a very heavily studied problem, with hundreds of papers over the past thirty years, and an
ongoing annual Graph Drawing conference. Force-directed methods based on Fruchterman and Reingold14 and
hierarchical layouts based on Sugiyama15 have become extremely popular, and a vast amount of work has gone
into more sophisticated general graph layouts that scale up to larger datasets.16

Why, then, did we choose to create yet another layout algorithm? The difficulty is that the general graph
layout problem is exactly and only to create a layout in the two-dimensional plane that best captures the
topological structure of a set of nodes connected by links. In contrast, the needs of biologists engaged in the model-
experiment cycle are to see biological knowledge, and the topological relationships within the systems biology
graph model are only a subset of the bigger dataset. In this case, one of the most relevant aspects of additional
knowledge was the location within the cell where the interaction between biomolecules occurs. Biological cells
are divided into compartments by membranes, and interactions generally occur within a compartment. The
location of the interaction is often known as part of the model, in the form of metadata for the node. Stylized
hand-drawn diagrams, where subcellular location is spatially encoded along a vertical axis so that all of the
items within a compartment are on the same large horizontal band, are very common in biology textbooks and
papers. The key design decision was to create a biologically relevant layout method that is similar in spirit to
these hand-drawn diagrams, where the vertical spatial position reveals the location inside the cell, but that runs
completely automatically.



Figure 5. Entire immune system, with 760 nodes and 1263 edges.

3.3 Algorithm: simulated annealing
At the algorithmic level, we designed a new algorithm based on simulated annealing. Previous attempts along
these lines17–20 did not scale beyond small graphs of around 100 nodes because they had O(V 3) algorithm their
core, requiring time cubic in the number of vertices V . Our method21 uses a fast discretization-based framework
that achieves in O(E

√
V ) time, where E is the number of edges.

3.4 Encoding/Interaction: small multiples
Cerebral uses an array of small multiple views, showing one graph instance for each experimental condition.
These windows all share the same spatial layout, which is also used in the main graph interaction window. What
differs between the windows is the coloring of the nodes, according to that condition. The main window either
shows the coloring of the currently selected small multiple, or a view showing the difference between two of them
using a color coding of their differences.

Another seemingly obvious possibility would be to use animation, especially since often the experimental
data is a time series. However, this dataset is an excellent example of the problems with animation as a visual
encoding mechanism for multi-frame dynamic data with complex changes at each step. Animation works well
for spotting small changes between two complex scenes by flipping back and forth between just two frames, as
in the blink comparator technique used by astronomers. It also works well for storytelling where the motion
in each frame is highly choreographed so that the viewer’s eye is drawn to exactly the right place at the right
time.22 However, in this case, global comparison is extremely difficult because so many things change all over
the view at each step, and there are many steps. Creating a flipbook movie of the views in each small multiple
illustrates the problem clearly. The viewer can focus attention on one node and notice the sequence of changing
colors, but completely loses track of what happens anywhere else in the scene.



The limits of animation compared to side by side visual comparison have been documented in the research
literature. The fundamental issue is that human memory has a very limited capacity, and so we do more poorly
comparing the memory of what we saw before to what is visible at any moment, as opposed to quickly moving
our eyes back and forth between simultaneously-visible multiple views. Tversky et al. present a very thorough
meta-review of empirical studies on animation use and find that it does not facilitate in most cases; many
seemingly positive results arose from studies that did not sufficiently control for the fact that animated views
presented more information than static views.23 Plumlee and Ware present a detailed example of the strengths
of multiple-view interfaces versus zooming as dynamic change in a single view.24 Robertson et al. present a
careful empirical analysis of the use of Gapminder-style animation that comes to similar conclusions.25

Another alternative to small multiple views are glyphs, where information about the multiple conditions is
embedded as a chart inside the visual representation for each node, as proposed by Westenberg et al.26 While
this approach works well when zoomed in to inspect a very small number of nodes, when the charts are clearly
visible, it does not scale up to providing an overview for larger graphs. When zoomed out, the viewer cannot
possibly see the details of within each chart, because there are so few pixels available for each node that only
one value can be shown at each node, typically with color coding.

3.5 Encoding/Interaction: multiple views

In addition to small multiples, Cerebral also uses multiple views. The potentially confusing terminology for
interfaces with more than one window is a historical artifact. In the language of Munzner’s taxonomy,27 the
multiple view approach is where each view has a different visual encoding that shows different aspects of the
dataset most clearly, and linked highlighting between is powerful because it shows when items that fall into a
contiguous region in one view are also nearby or widely distributed in another view. (In contrast, with small
multiples each view has the same visual encoding but for different datasets, typically with shared axes between
frames so that comparison of spatial position between them is meaningful.)

The choice in Cerebral was to show two different visual encodings. In the graph view, spatial position is used
to show topological structure of the systems biology graph, and measurement information is shown with color.
Thus graph structure is primary, and measurement information is secondary. In the parallel coordinates view,
measurement data is primary, since it is encoded with spatial position.

One seemingly obvious question is why the graph views need to be shown next to the measurements: why
not simply show the measurements alone, as the new information gathered in the scientific experiment? The
measurement data could support data-driven hypothesis generation, where clusters in gene expression would
provide evidence for similar functions of those genes within the cell.

The answer is that the biologists consider purely data-driven clusters to be untrustworthy evidence with a
strong chance of being an artifact because their data is intrinsically very noisy. Their experience is that the
many clustering algorithms all give different results, so they do not trust any of them. Thus, the measured data
needs to be evaluated in the context of the graph view: clusters must be further supported by corresponding to
some information in the graph view with respect to previously known biological function, before they are worth
investigating further. Thus, the design rationale in Cerebral was to provide linked highlighting between both a
graph-primary and a measurement-primary view, simultaneously visible.

3.6 Validation

At the problem level, the Cerebral design was validated throughout the design cycle by working in collaboration
with a specific target group of researchers, from the initial requirements gathering phase through iterative
refinement of a series of interactive software prototypes.

Cerebral was released as an open-source plugin to the popular Cytoscape biological network visualization
platform,28 with an early version released in 2007 for the custom graph layout and a later version in 2008 that
included support for multiple experimental conditions. Since several years have now elapsed, we can usefully
consider the adoption rates as a downstream validation of our domain problem analysis.



Cerebral has indeed been adopted by the Hancock Lab innate immunity research group, our collaborators
during its design process. It is featured prominently in their flagship InnateDB database,29 and was cited in six
of their other research papers.30–35

A literature search in January 2011 of papers that cite Cerebral yielded 15 biology or bioinformatics research
papers from other research groups with whom we have no direct connection, where Cerebral was used as part
of the biology research process.36–50 This count includes papers that mention Cerebral in their methods section
or have research-content figures generated with it. In contrast, we classified 18 other citations as being from
algorithm-oriented or survey-style papers, and do not count them as adoption evidence.

At the visual encoding and interaction levels, one validation method in the original paper 12 was the qualitative
discussion of system usage and visual results in the case studies section. Another validation method was the
careful justification of the design rationale, both in that publication and in further detail in this paper. At the
algorithm level, Cerebral was validated through both complexity analysis and benchmark timings.12,21,51

4. PATHLINE

The Pathline system 13 was joint work with Miriah Meyer, Bang Wong, Mark Styzynski, and Hanspeter Pfister.
It was designed in collaboration with researchers studying metabolism in yeast at the Regev lab of the Broad
Institute. Figure 6 shows the Pathline interface, which shows information on metabolic pathways in the linearized
pathway view on the left, about gene expression in the curvemap view on the right, and phylogeny information
with the tree in the middle.

We will discuss design choices at three of the levels, starting the problem of supporting comparative functional
genomics and continuing with the abstractions of data and tasks. We will discuss two visual encoding level
choices in detail, the linearized pathway and the curvemap views. We will conclude the Pathline example with
a discussion of validation.

4.1 Problem: comparative functional genomics

The problem of functional genomics is to understand how genes work together to perform different functions
within a cell. Biologists measure gene expression levels indicating how much a gene is turned on or off. They
make these measurements for many genes and for many samples, where the samples could be time points, tissue
types, or species. Biologists also have a graph model, similar to the previous example, but focused on cell function
in the metabolic network. In this graph, the nodes are metabolites, and links represent genes whose products
catalyze chemical reactions. The biologists do not typically study the entire metabolic network at once, but filter
it by breaking it down into known pathways of around a dozen reactions each. They then study the gene and
metabolite levels for only a handful of these pathways simultaneously.

In comparative functional genomics, the further question is how to understand how gene interactions vary
across different species. The biologists thus must compare all of this data across multiple species. The ancestral
relationships between species are important for their analysis, so they must consider the phylogenetic tree of
evolutionary relationships between them rather than just considering species as an unordered list.

The yeast researchers thus needed to see at multiple genes at multiple time points, across multiple pathways,
all across multiple related species. Previous tools could only show them a subset of this complex heterogeneous
dataset at once.

4.2 Abstraction: data and tasks

We first discuss the data abstractions. A metabolic pathway was considered to be a small directed graph of
around one dozen nodes, representing metabolites, that could contain cycles or branches. The total number
of pathways of interest was between 10 and 50, but only a small number needed to be seen at once. The
gene and metabolite levels data was treated as an abstract 3D table with a single quantitative value at each
cell. One table axis was the 6000 genes and 140 metabolites, another was the 6 time points at which biologically
interesting events occurred, and the third was the 14 species of yeast under study. The phylogeny of evolutionary
relationships was treated as a binary tree. Finally, the biologists computed a similarity score for each single gene
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Figure 6. The Pathline interface features a linearized pathway view on the left, a curvemap view on the right, and a
phylogenetic tree in between.

or metabolite across multiple species. Their dataset included multiple similarity scores for each, computed with
different algorithms.

The task abstractions that we identified after extensive discussions with the biologists were to study expression
data as a time series, to compare a limited number of time series, to compare similarity scores along a small set
of pathways, and the comparison of multiple similarity scores.

4.3 Encoding: linearized pathway

The common practice with node-link graphs is to use two-dimensional planar position for a graph layout that
emphasizes topological structure. Even in the Cerebral example above, where one of those dimensions was
partially reserved for showing subcellular position, the emphasis was on showing topological structure.

However, the topological structure of these fairly short pathways is not complex: they are most often linear
chains, with occasional cycles and branches. Moreover, the set of pathways under study is small enough that
many of them are quite familiar to the researchers. We determined after task analysis that while the topological



structure of the pathways was of interest, the quantitative measurements at each pathway node were even more
important. Mackinlay’s principle of effectiveness dictates that the most highly ranked visual cue should be used
for the most important dimension of the data.52 A key principle of visual encoding is that spatial position is
the most highly ranked visual cue. In particular, spatial position within a common aligned frame is the most
accurately perceived visual cue for quantitative data.53 We thus use spatial position within a shared frame
to show the quantitative similarity scores as the primary aspect of the linearized pathway view, and relegate
topological structure to secondary information, shown with with stylized marks that indicate unrolled branches
and cycles.

The horizontal axis shows the similarity score values, and the vertical axis shows the position of the item within
the pathway. Multiple pathways are abutted vertically, retaining the common frame. Gene levels are encoded
with circles while metabolites are shown with bars, creating visual layers that can be selectively attended to or
seen together. The different similarity scores can be encoded with shapes along the same common scale, allowing
high-precision visual comparison.

4.4 Encoding: curvemap

The extremely common practice in biological applications is to show gene levels using heatmaps,54 where color
is used to visually encode the quantitative information. However, as in the discussion above, people can make
perceptual judgements about curve shape more accurately than those about color changes.55 Moreover, our task
analysis revealed that the biologists discussed their tasks using shape-oriented language like peaks and valleys.

We thus proposed the curvemap view, with a matrix of filled, framed line charts rather than colored blocks,
in order to enhance shape perception. In this case the rows are species, following the leaves of the phylogenetic
tree, and columns are genes or metabolites. Overlays to the side and bottom allow direct comparison between
curve shapes, to enhance trend perception. A column in the curvemap view provides the details underlying
a circle or bar in the linearized pathway view; clicking in that view controls which columns are shown in the
curvemap.

4.5 Validation

As above, the problem-level validation of Pathline was carried out by working in close collaboration with a
target group through the entire design cycle. An adoption success is that it remains in daily use by the yeast
researchers. The tool was released as open source only six months ago, so it is not surprising that there are not
yet any citations of use from the biological community. At the abstraction level, we have anecdotal evidence
that the tool allowed the researchers to verify previous analyses far more quickly, and to make new discoveries.
Our collaborators are actively working on papers that resulted from discoveries made using this tool. Again, as
above, the validation at the encoding and interaction levels included both qualitative discussion of case studies
and justification of the design rationale.13 No explicit validation was carried out at the algorithmic level beyond
the baseline of providing a working software system, since no claims of contribution were made at that level.

5. CONCLUSION

We have elaborated on the principles of information visualization presented in the nested model framework3 by
providing a detailed walkthrough of decision decisions for two biological applications, Cerebral12 and Pathline.13

Both feature biological networks, but as part of a larger context of relevant information rather than as the only
aspect of interest. We discussed the reasons for making design decisions that diverged from common approaches
in previous work, through a combination of the careful abstraction of tasks and data, and a knowledge of visual
encoding principles.
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