
Digital Micrography

Ron Maharik
Mikhail Bessmeltsev

University of British Columbia

Alla Sheffer
University of British Columbia

INRIA Rhône-Alpes

Ariel Shamir
The Interdisciplinary Center

Nathan Carr
Adobe Systems Incorporated

Figure 1: Micrography images created using our system. Closeups of parts of the images shown in the middle. Left: excerpt from Alice in
Wonderland, target size 110x110cm. Right: Song of Songs, target size 42x60cm. Please zoom into the images using the digital version to
read the fine text. See supplementary material for large images.

Abstract

We present an algorithm for creating digital micrography images,
or micrograms, a special type of calligrams created from minuscule
text. These attractive text-art works successfully combine beautiful
images with readable meaningful text. Traditional micrograms are
created by highly skilled artists and involve a huge amount of te-
dious manual work. We aim to simplify this process by providing
a computerized digital micrography design tool. The main chal-
lenge in creating digital micrograms is designing textual layouts
that simultaneously convey the input image, are readable and ap-
pealing. To generate such layout we use the streamlines of sin-
gularity free, low curvature, smooth vector fields, especially de-
signed for our needs. The vector fields are computed using a new
approach which controls field properties via a priori boundary con-
dition design that balances the different requirements we aim to
satisfy. The optimal boundary conditions are computed using a
graph-cut approach balancing local and global design considera-
tions. The generated layouts are further processed to obtain the
final micrograms. Our method automatically generates engaging,
readable micrograms starting from a vector image and an input text
while providing a variety of optional high-level controls to the user.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; J.5 [Computer Applications]: Arts and Humanities

Keywords: calligraphy, micrography, digital typography

Links: DL PDF VIDEO

1 Introduction

A calligram is an arrangement of words or letters designed to create
a visual image. Calligrams enjoy a rich tradition and wide variety of
styles limited only by the artist’s imagination. As stated by British
book designer Thomas James Cobden-Sanderson: “The whole duty
of Typography, as of Calligraphy, is to communicate to the imag-
ination, without loss by the way, the thought or image intended to
be communicated by the Author”. A special type of calligraphy
known as micrography (or microcalligraphy) utilizes minute letters
to provide a unique interplay between textual content and image -
presenting a story or poem at the small scale and forming an image
when viewed as a whole. The gap in scale between lettering and
image is a defining characteristic of micrography and distinguishes
it from other types of calligrams.

Micrography places a large emphasis on the readability of the
text, with traditional micrography images, or micrograms, typically
drawn by professional scribes. While there are wonderful exam-
ples of this art throughout history (see [Apollinaire and Greet 1980;

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf
http://www.youtube.com/user/ImagerSIGGRAPH2011

Figure 2: Examples of artist generated micrograms,
by (left to right) G. Apollinaire, G. Klopstock (gilk-
lop.co.il/apage/35286.php), and J. Sibal (jonsibal.com). Used with
permission.

L
O R

E M I P
S U M D

O L O R S I T
A M E T , C O

N S E C T E T U
R A D I P I S I C I N
G E L I T , S E D D
O E I U S M O D T E
M P O R I N C I D I D U
N T U T L A B O R E E
T D O L O R E M A G N A
A L I Q U A . U T E N I M A
D M I N I M V E N I A M , Q
U I S N O S T R U D E X E R C
I T A T I O N U L L A M C O L A B
O R I S N I S I U T A L I Q U I P E
X E A C O M M O D O C O N S E
Q U A T . D U I S A U T E I R U R E
D O L O R I N R E P R E H E N D E
R I T I N V O L U P T A T E V E L I T
E S S E C I L L U M D O L O R E E
U F U G I A T N U L L A P A R I A T
U R . E X C E P T E U R S I N T O

C C A E C A T C U P I D A T A T N O N
P R O I D E N T , S U N T I N C U L P A

Q U I O F F I C I A D E S E R U N T M O
L L I T A N I M I D E S T L A B O R U M .

S E D U T P E R S P I C I A T I S U N D E
O M N I S I S T E N A T U S E R R O R S I T V

O L U P T A T E M A C C U S A N T I U M D O L
O R E M Q U E L A U D A N T I U M , T O T A M R

E M A P E R I A M , E A Q U E I P S A Q U A E A B I
L L O I N V E N T O R E V E R I T A T I S E T Q U A S I

A R C H I T E C T O B E A T A E V I T A E D I C T A S U N T
E X P L I C A B O . N E M O E N I M I P S A M V O L U P T A T

E M Q U I A V O L U P T A S S I T A S P E R N A T U R A U T O
D I T A U T F U G I T , S E D Q U I A C O N S E Q U U N T U R M A G

N I D O L O R E S E O S Q U I R A T I O N E V O L U P T A T E M S E Q U I
N E S C I U N T . N E Q U E P O R R O Q U I S Q U A M E S T , Q U I D O L O R E M I P S U M Q U I A D O L O R S I

T A M E T , C O N S E C T E T U R , A D I P I S C I V E L I T , S E D Q U I A N O N N U M Q U A M E I U S M O D I T E M P O
R A I N C I D U N T U T L A B O R E E T D O L O R E M A G N A M A L I Q U A M Q U A E R A T V O L U P T A T E M . U
T E N I M A D M I N I M A V E N I A M , Q U I S N O S T R U M E X E R C I T A T I O N E M U L L A M C O R P O R I S
S U S C I P I T L A B O R I O S A M , N I S I U T A L I Q U I D E X E A C O M M O D I C O N S E Q U A T U R ?
Q U I S A U T E M V E L E U M I U R E R E P R E H E N D E R I T Q U I I N E A V O L U P T
A T E V E L I T E S S E Q U A M N I H I L M O L E S T I A E C O N S E Q U

A T U R , V E L I L L U M Q U I D O L O R E M E U M F U G I A
T Q U O V O L U P T A S N U L L A P A R I A T

U R ?

Figure 3: Choosing a poor text layout such as simply using hor-
izontal lines (left), can create lines that are too short in thin fea-
tures and do not depict the overall shape. Our layout algorithm
(right) better conveys the shape and avoids the creation of short,
fragmented, text lines.

Avrin 1981; Vahe 2009] and Figure 2), they tend to be very rare due
to the immense time investment required to create them, as well as
the technical precision necessary to scribe legible text at the desired
minuscule resolution. In this paper we present a method for creat-
ing digital micrograms starting from a given text and an appropri-
ate input vector-graphics image. Our goal is to automate the highly
technical and time consuming components of microgram creation
while providing optional high level tools for user control. The mi-
crograms created using our system effectively convey the input im-
ages using readable text and are visually appealing (Figure 1).

Not every image can be used to create a meaningful microgram.
Micrograms usually contain several continuous regions of text con-
veying large image components, as well as individual text lines rep-
resenting image strokes. Some also contain non-textual elements
(Figure 2, center) enhancing the visual appeal of the image. Hence,
the natural input to our system is vector graphic images where such
regions and lines are well defined. More complex images can be
simplified and converted to such a representation using standard
tools [Adobe 2010]. In the remainder of this paper we work exclu-
sively with vector representations, which are practically resolution
independent. Reproducing such vector art on various media and
for various sizes and colors is a separate topic with its own litera-
ture [Sharma 2002; Ostromoukhov and Hersch 1999; Knuth 1997].

Traditional micrograms were rendered in black and white with text
alignment used as the main tool for conveying the structure of the
image [Avrin 1981]. Today, we can use color, but textual layout is
still the main challenge in creating micrograms. The dual nature
of a microgram dictates two sets of requirements: one concerning
textual readability and the other concerning image recognition and
aesthetics. Hence, our goal is to define a method for text layout
that depicts the input image using a set of readable text lines, in an
automatic or user-guided setting.

Figure 4: The streamlines of a smooth vector field aligned with
region boundaries (left) capture the shape of the region, but can
have high curvature and lack coherence, making the text hard to
read and the image less appealing. Our layout (right) selectively
relaxes the alignment requirement to provide both a readable text
and a visually appealing representation of the input image. Text
from “Jigsaw Puzzle” (Wikipedia)

Readability of text is translated to text flow; the reader must be able
to follow the lines of text in a smooth and natural manner [Zachris-
son 1965; Tondreau 2009]. At the single line level this means that
lines should have low curvature with no sharp changes in direc-
tion. They should also have some minimal length to support read-
ability (Figure 3). At the region level this means some minimal
spacing should be preserved between lines of text. At the whole
image level this means that lines inside each region and text across
regions should follow a natural ordering for readability, (e.g. a gen-
eral left-to-right, top-to-bottom ordering in English). Note that or-
dering requires a coherent line orientation with smoothly changing
line directions within each region, such that a natural ordering is
indeed possible (Figure 4).

To depict a given image the text should adhere to the shape and
shading of the image. This is similar to the use of strokes or lines
in sketches. Since the text layout defines the outline of the shape,
the text line directions should align with the image region bound-
aries when possible (Figure 3). Specifically, acute angles between
boundaries and text directions should be avoided since they cre-
ate an aliasing effect. Low-curvature, coherent, and well spaced
lines are important not only for readability but also for visual ap-
peal. When color or tone is not used, the text direction along shared
boundaries between adjacent image regions should be different or
even orthogonal to make the boundaries clear and each of the re-
gions distinct (Figure 10 center). Our challenge is to design text
flow that conforms with this set of sometimes contradictory require-
ments, some of which are more critical than others, some local and
some global.

The streamlines of a smooth vector field aligned with region bound-
aries provide aligned, smooth and well-spaced lines for text layout,
thus serving as a natural starting point for our method. However,
forcing alignment everywhere along the boundary will by necessity
create areas of high curvature, and depending on the choice of vec-
tor field formulation used can introduce singularities leading to loss
of coherence (see Figure 4). Our challenge is therefore to balance
alignment with readability by selectively relaxing the alignment
constraint. One possible methodology to achieve this is through
outlier-robust optimization techniques, which allow one to balance
a set of constraints, selectively relaxing hard-to-satisfy ones. How-
ever, these methods are typically numerically expensive and would
require solving a large non-linear system throughout the image re-
gions. Instead, we observe that in our settings we can explicitly
compute the set of satisfiable alignment constraints before solving
for the field inside the region. In our case a satisfiable set of con-
straints is one providing the desired balance between alignment and
readability, e.g. for the puzzle piece in Figure 4 our method only en-

forces alignment along the more horizontal sides of the piece while
for the part in Figure 3 alignment is relaxed at the two tips.

To define these constraints we sample the image region bound-
aries and build a graph whose nodes are the sample points and
whose edges contain weights defining different relations between
these points. This construction reduces our boundary condition set-
ting problem to a graph-cut, albeit one with a mixture of positive
and negative weights. We use a stochastic quadratic programming
search algorithm to find a solution, then compute a smooth vector
field within each region which satisfies the selected alignment con-
straints. The streamlines of the computed fields (Figure 4 right)
satisfy our set of requirements providing the basis for the layouts.
Next, we trace these streamlines inside each region using a modi-
fied tracing method adapted to our needs. We then compute a con-
sistent ordering between them within and between regions which
optimizes the overall text readability. In the general case an opti-
mal ordering defines the shortest Hamiltonian path, with respect to
some distance metric, and is NP-Hard to compute. For text layout
purposes we leverage the left-right, top-bottom layout conventions
to obtain an acceptable ordering in a reasonable amount of time.
Lastly, we place text along the ordered set of lines, adaptively scal-
ing and warping it as necessary to create well-defined and evenly
shaded regions.

Our method can provide a fully automatic solution for a given in-
put text and vector image. In addition, we provide a user inter-
face to allow artists more specific control over the layout. This
includes specifying layout direction preferences, font size and type,
and other specific controls on the different requirements for various
artistic effects.

2 Previous Work

Text Art: The labor intensive nature of artistic expression using
text art is well recognized. For this reason text form generation, or
text art, has garnered attention in computer graphics in a number of
different areas. For example, technologies for the placement of text
along user-specified paths have been well explored [Surazhsky and
Elber 2000; Asente 2010] and are widely available in commercial
vector design packages such as Adobe Illustrator [2010]. While we
rely on these tools in our work, automating text placement alone is
not sufficient for creating sophisticated micrography images. Speci-
fying dozens and sometimes hundreds of lines to convey a complex
image and/or a long text is a daunting task to perform manually.
More significantly, designing a suitable, ordered set of lines for si-
multaneously conveying both a readable text and a complex image
is far from trivial (see Figures 3 and 4).

Computer aided design of text-based art-forms has been explored
in a number of different contexts. The work of Xu et al. [2010]
showed how to generate structure-based ASCII art by careful anal-
ysis of line structures. Such work aims at approximating shape
with a limited set of symbols under rigid rules for alignment and
position but does not attempt to place meaningful text in a legible
form. Macroscopic calligram generation, as explored by Xu and
Kaplan [2007a], packs and warps a single word or a small set of
text characters into a given shape. In contrast our method specif-
ically focuses on microcalligraphy, where entire text passages are
contained within the generated art. A number of software packages
produce readable text in the form of grid-aligned text-mosaics [Hel-
mond 2010; Froumentin 2010]. Micrography draws from a much
broader artistic palette using shape at both the macro image-level
and the micro font-level. Our system aims at delivering this greater
degree of freedom.

Non-textual layout: Our goal of laying text inside a set of regions
is related to a number of other layout problems, such as design of
ornamental patterns, maze creation, NPR rendering, and hatching.
The criteria for designing ornamental patterns are quite similar to
those for laying out text. Wong et al. [1998] proposed a greedy
layout method which has limited applicability and raised the need
for a global layout strategy in their future work section. Our work
introduces such a global strategy in the context of text layout. Com-
puter generated mazes [Pedersen and Singh 2006; Xu and Kaplan
2007b] pack evenly spaced paths into a given region but contrary
to our goal of readability, they encourage such paths to wind and
bend. Lastly, hatching and NPR rendering methods use shape in-
formation to place strokes that best convey a 3D input shape [Praun
et al. 2001; Jodoin et al. 2002]. Our input is a 2D image, and we
aim to convey not only individual strokes but also use readable text
to shade whole image regions.

Layout using vector fields: Smooth fields and particularly di-
rection fields have played an important role underpinning many lay-
out tasks such as texture synthesis, uv parameterization, mosaics,
and quad-remeshing [Xu et al. 2009; Ray et al. 2009; Li et al. 2010;
Bommes et al. 2009; Palacios and Zhang 2007]. In all of these set-
tings the boundary conditions for the field are fixed, and design flex-
ibility comes from balancing smoothness, curvature and singularity
count. Ray et al. [2008] and Crane et al. [2010] construct direction
fields with a user-defined set of singularities. Fisher et al. [2007]
and Bommes et al. [2009] attempt to minimize the occurrence of
singular points without direct user control. Ray et al. [2009] pro-
vide a trade-off between curvature and singularity count. In our
setup, singularities are undesirable as they reduce the coherence of
the resulting text layout, but may be unavoidable when other, more
critical requirements are enforced. Contrary to all those settings we
have the additional freedom to modify boundary conditions, trading
alignment for lower curvature and singularity count.

The image depiction and sizing requirements raised by our text lay-
out are quite similar to the criteria optimized in the layout of struc-
tured textures [Xu et al. 2009] and anisotropic image mosaics [Li
et al. 2010]. Both methods use smooth vector fields as the major
layout tool. Xu et al. [2009] align an anisotropic texture with fea-
ture lines on a 3D surface, while Li et al. [2010] align a vector field
with manually selected directions approximating an image gradi-
ent. Both methods try to satisfy the given alignment constraints in a
least-squares sense, typically at the expense of introducing high cur-
vature and singularities into the resulting fields. Using such fields
for text layout creates sub-optimal results (e.g. Figure 14). In our
setup we use the additional flexibility of designing the boundary
conditions for the fields based on a combination of considerations
including alignment, coherence and low curvature. We selectively
relax the alignment requirement to allow for the desired low level
of curvature and coherence, arriving at vector fields better suited for
our task (Figures 12 and 14).

3 Algorithm Overview

Preprocessing: Our micrography algorithm uses as input a vec-
tor graphics image and a given text. The input image can contain
three components: regions that need to be filled with text, individ-
ual strokes used directly for lines of text, and additional graphical
elements which are left untouched by our method (see Figure 10
for some examples). In addition to the colors already present in the
images, users can specify additional parameters such as font type
and size. They can also influence the text layout by specifying local
alignment preferences.

If the user does not specify a typeface size, we set it based on the
ratio between the area of the regions being filled and the area of a

(a) (b) (c) (d) (e)

Figure 5: Overview: Given the input vector image (a), we first compute the optimal boundary conditions for a desired vector field expressed
via region boundary alignment constraints (b), where green points are labeled 1 (or aligned) and red are labeled 0 (or non-aligned). We
then calculate a smooth vector field (c) that satisfies these boundary conditions. Next, we trace the field streamlines, orient and order them,
blue-to-red coloring visualizes line order inside each region (d); and finally place the text along them (e).

rectangle used to layout the user given text using a default typeface
size. This value is clearly just an estimate as lines can never be
packed to fill the regions with perfectly even spacing. The final
text placement stage adjusts both font size and other parameters
to obtain an accurate fit between the text and the generated set of
streamlines.

Vector field design: The first and main stage of our method com-
putes a vector field across each region such that the streamlines of
the field define the line layout (Section 4.2). To compute the desired
field we first design the suitable boundary conditions for it (Sec-
tion 4.1, Figure 5b). Specifically, we specify for every point along
the boundaries of each region whether the vector field should be lo-
cally aligned with the boundary or not. These alignment constraints
are computed so as to balance boundary alignment with curvature,
coherence, and streamline length considerations. Given the com-
puted alignment constraints we solve for a smooth 2-RoSy vector
field [Palacios and Zhang 2007] inside each region which satisfies
these constraints in a least-squares sense (Section 4.2, Figure 5c).

Line tracing: We trace a set of desired streamlines in the gen-
erated field using a modified line tracing mechanism that aims to
avoid the formation of short lines, optimize spacing, and prefer co-
herent end-point placement (Section 5). We then orient the lines
and find a traversal, or layout, line order (Section 6, Figure 5d).
Finding an optimal traversal order with respect to a distance met-
ric is equivalent to solving the shortest Hamiltonian path problem,
which is known to be NP-Hard. Our method therefore relies on the
coherence of the traced streamlines to obtain an order that agrees
with traditional ordering conventions.

Text Placement: Finally, the text is placed along the lines with
user-provided color, font, and size information, and adjusted to en-
sure a good fit over the entire image as well as at each individual
line, in terms of both look and readability (Section 7, Figure 5e).

4 Vector Field Design

The goal of this step is to design a vector field suitable for our needs.
Since we aim to use the field streamlines for laying out the text, a
correctly designed field should facilitate the formation of stream-
lines that a priori satisfy the image and readability requirements
discussed above. While some requirements such as spacing are only
relevant for the streamline tracing and subsequent steps, others can
be taken into account in the field design step. These include low
curvature, minimal lengths, region boundary alignment, coherence,
and distinction.

While various techniques exist for computing smooth vector fields

Figure 6: The graph constructed for the jigsaw example in Fig-
ure 5. Left: a depiction of the attraction to the 1 (aligned) label for
each vertex in the two regions, visualized by a red to green range,
with green representing maximal attraction. Center: a subset of
the weighted-edges graph from one vertex node to its neighbor-
hood, vertex and edge color show similarity weights, with nega-
tive weights in red, positive in green. The full graph contains such
edges from all vertices. Right: one of the local optimum solutions
encountered during the stochastic search. The best labeling found
is shown in Figure 5b.

that satisfy conditions such as alignment or distinction, such fields
are not necessarily coherent or have low curvature. Boundary
aligned smooth fields can still contain high-curvature regions and
singularities, which prevent intuitive streamline ordering (see Fig-
ure 4 left). Singularities in particular correlate with undesirable
artifacts in almost every layout application, and our case is not dif-
ferent. Our method is capable of handling singular points (see Fig-
ure 11 lower right), but these should be avoided when possible.
Many previous works focus on reducing the number of singulari-
ties or providing user control over their location and characteris-
tics [Palacios and Zhang 2007; Crane et al. 2010]. In contrast, we
aim to avoid such singularities a priori by defining suitable bound-
ary conditions. Specifically, we aim to selectively relax the bound-
ary alignment constraints in parts of the boundary to reduce both
singularity counts and curvature, while simultaneously taking into
account length and distinction considerations. Such selective relax-
ation was not, to our knowledge, addressed by previous vector field
design research.

We require a method of controlling boundary conditions, such that
we enforce alignment where it is critical and relax it elsewhere.
One possible approach is to use an iterative constraint reweighing
scheme, somewhat similar to Xu et al. [2009], or a more formal
outlier-robust optimization approach that balances smoothness and
alignment. However, such approaches can become numerically ex-
pensive for large regions and can be hard to control. Instead, we
observe that in our setup the process can be broken into two steps,
where we first compute a suitable set of boundary conditions and
then use a simple linear solver to obtain the vector field throughout.

4.1 Boundary Conditions Design

The only type of boundary condition, or constraint, we aim to use
for the field design is alignment with region boundaries. To design
the conditions we therefore only need to decide for each point on
the boundary: should the text be aligned to the boundary at that
point or not? To make these decisions we use a discrete setup by
sampling the boundaries with vertices, and aim to assign a boolean
value per vertex: 0 for non alignment or 1 for alignment.

We formulate this assignment as a global labeling problem for all
vertices along region boundaries. There are two factors that af-
fect the assignment of each vertex: the individual labeling prefer-
ences or attraction of the vertex based on global constraints, and
the similarity or dissimilarity preference between pairs of vertices
in the same neighborhood. Such problems are often formulated as
a graph-cut by representing each vertex as a node in the graph and
the pairwise preferences as weights on the edges between nodes.
We build such a graph and add an edge between the nodes of each
vertex and all other vertices that are “visible” from it, meaning that
the line between them does not intersect the region boundaries (see
Figure 6 center).

Weights: The edge weights reflect the degree of similarity or dis-
similarity we aim to have between the node labels. Since we want
a coherent, low-curvature field we would expect the desired field at
nearby vertices to have similar directions. Consequently, if nearby
vertices have similar tangents, one would prefer them to have the
same label, while if the tangents are orthogonal one would prefer
them to have different labels. This requirement can be encoded as
a positive or negative weight assignment wij on edges between the
nodes i and j:

wij = Fa(aij) · Fd(dij) (1)

where dij is the distance between the vertices of nodes i and j, and
aij is the angle between their normals. The angle factor is a hyper-
bolic tangent function that smoothly varies from -1 to 1 depending
on the angle:

Fa(aij) = tanh(
4

π
(|π
2
− aij | −

π

4
)) (2)

With appropriate scaling, this results in a smooth transition from
a weight of 1 for perfectly aligned tangents to -1 for orthogonal
ones. To make the correlation between vertex labels become weaker
with distance, the distance factor is set to a Gaussian function of
d̃ij = max(dij − dmin, 0). Both these and other distances in the
formulation below are normalized by, or expressed as a multiple
of, the font size in each region. We use dmin = 5 as the minimal
acceptable line length, where we want the labeling correlation to be
strongest. We therefore have

Fd(dij) = e−d̃
2
ij/σ

2
d

with σd = 10 providing a good balance between coherence and
individual vertex alignment preferences discussed below.

If we have more than one region and use the direction of text as a
method for distinction, as we do in the jigsaw (Figure 5), we dupli-
cate the nodes of boundary vertices on each shared boundary and
use one node per region. We then introduce an edge with a max-
imal negative weight of wij = −1 between them. Otherwise the
graph-cut problem is solved independently per-region.

Attraction: As a default, a labeling of 1 is preferred for each
node, with the exception of nodes corresponding to vertices at sharp
corners where no meaningful tangent direction is available. How-
ever, the strength, or weight, of this attraction to 1 can vary based
on global considerations and specifically the impact of alignment

choice on the length of traced streamlines, and consequently text
lines. While it is hard to predict the length of a streamline aligned
with a boundary at any given point a good estimate of the length
of a non-aligned, or orthogonal streamline is the feature diameter
at that point. Hence, since we aim to reduce the number of short
streamlines, the attraction should be inversely proportional to this
diameter.

One way to measure the diameter and define the attraction strength
is to use the local feature size [Amenta and Bern 1999] and the
degree to which the tangent at the vertex is aligned with the local
feature skeleton. However, robustly computing local feature size,
the skeleton and the matching between the boundary and the skele-
ton are non-trivial tasks. Instead, similar to Shapira et al. [2008],
we use an approximate “diameter” measure by evaluating the dis-
tance and degree of alignment between the normal at each vertex
and the normal at the “opposite” boundary of the region. For node
i representing vertex vi, we define the opposite boundary vertex as
the closest intersection of the boundary with a ray emanating from
vi in the opposite normal direction. The distance to the intersection
approximates twice the local feature size, while the angle between
the normals (or tangents) at vi and its opposite vertex reflects the
degree of alignment with the local skeleton. To avoid inaccuracies
due to slight variations in a normal, we consider a cone of rays
around the opposite normal of vi and not just a single ray. We trim
the resulting set of opposite vertices to remove outliers in terms of
distance and normals, and use an averaged distance di and average
normal direction ai in the attraction weight αi for node i (Figure 6
left):

αi = F+
a (ai) · F+

d (di) (3)

This formulation is very similar to the inter-node weight function in
Equation 1 with two changes. First, we haveF+

a = max(0, F (ai))
as we aim for default non-negative attraction. Second, to encourage
alignment even for large features we use a larger value of σ = 20
for the distance Gaussian distribution F+

d (di).

To make the comparison between the quadratic similarity-weight
component and the linear attraction one independent of sampling
density we scale αi by ‖W‖/‖α‖ where W is the symmetric
weight matrix and α the attraction vector.

We finally arrive at a classical labeling problem based on graph cut
where we search for a minimum of the quadratic functional:

min
∑
ij

wij(li − lj)2 + ω
∑
i

αi(1− li) (4)

subj. to 0 ≤ li ≤ 1

The coefficient ω controls the tradeoff between coherence and at-
traction and has default setting of ω = 1.

Solving: If all wij were positive, Equation 4 would be a standard
convex problem. However, with negative weights the problem be-
comes much harder. In fact, if the attraction component is zero, by
flipping the negative and positive weights the graph-cut problem be-
comes one of finding a maximal cut, one of the twenty-one classical
NP-complete problems [Karp 1972]. In our setup due to the weight
settings the problem is somewhat more constrained, since our solu-
tions tend to have similar labels for consecutive boundary vertices
with a small number of discontinuities where the label changes (see
solutions in Figures 6 and 5). Consequently, we are able to use a
tailored stochastic search approach to compute a good solution.

Specifically, we generate a set of randomized initial guesses and
search locally for the best solutions near these guesses. For the local
optimization we use an active set based quadratic programming ap-
proach [Gill et al. 1981], which is well suited for this type of prob-
lem. For the first initial guess we use a neutral setting of li = 0.5

for all i. Intuitively, given this setting the method is most likely to
move the labels according to the similarity weights, keeping them
together when they are similar and separating them when not. Con-
sequently, we use a local randomization strategy, where each new
initial guess is alternatively generated either from the best global
solution so far, or from the most recent solution. To generate an-
other guess from a given solution, we randomly select consecutive
portions along each region boundary and invert their labels. This
strategy is suitable for our problem as in the final labeling there are
very few discontinuities. The location of the inverted region and
its length are selected randomly and with equal probability. Ten to
twenty iterations are typically sufficient to arrive at a good result.

Since the labeling is obtained using a numerical approach we can
have non-integer labels. Thanks to the similarity weighting the
number of such labels is typically very small. To remove those
from consideration we clamp all labels smaller than 1− ε to zero.

4.2 Computing the vector field

Once the boundary conditions are computed, we solve for a smooth
field within each region. Several types of fields have been used
successfully for layout tasks, including direction and orientation
fields, N-symmetry fields and general vector fields. We chose to
follow the method of Palacios and Zhang [2007] by solving for 2-
rotational symmetry (2-RoSy) fields, which exhibit a high degree
of smoothness and are very efficient to compute. A possible alter-
native is to use advanced field design schemes such as those of Ray
et al. [2009] or Fisher et al. [2007]. Methods that avoid singulari-
ties at all costs [Crane et al. 2010] are less suitable for our needs as
they tend to compensate for those with an undesirable increase in
curvature.

We triangulate each region and compute the field indirectly by solv-
ing for its corresponding representation vector field R:

Ri =

(
cos2θi
sin2θi

)
where θi ∈ [0, π) is the angle of the 2-RoSy field at vertex i in the
triangulation. The representations R′l of the tangents at the region
boundary vertices labeled as 1 by the boundary constraint design
algorithm are added into the system as soft constraints on the cor-
responding representative field values Rl with unit weights,

min
∑
ij

‖Ri −Rj‖2 +
∑
l

(Rl −R′l)2

Users can control the field design either by directly specifying di-
rectional constraints inside a region or by modifying the boundary
conditions. We found the latter to be more intuitive. Boundary
conditions can be edited by adjusting the weight ω that controls the
balance between attraction and coherence, or by specifying a subset
of labels li as hard constraints (see Section 8 for some examples)
and then solving for the rest of the labels.

We found that the fields generated using our two-step approach are
singularity free and low-curvature whenever a solution exists that
does not violate other, more critical, requirements such as user con-
straints or line length. An example of a singularity generated due
to user-imposed alignment constraints is shown in the lower right
corner of Figure 11, where users required the text to be aligned
with both the top and the sides of the head. Figure 1 (left) con-
tains a few regions where coherence and low curvature cannot be
satisfied without introducing very short lines. Consequently, higher
curvature or one or two singularities are introduced automatically
to allow for longer streamlines.

Figure 7: Basic tracing mechanism creates both short and unorga-
nized lines (left). Using our strategy the lines are better organized
for text flow (right).

5 Tracing Lines

Since the generated fields satisfy the coherence and flow require-
ments a priori, we can use a fairly simple tracing approach [Jo-
bard and Lefer 1997] to generate the desired set of lines with a few
changes directed at improving readability. To maximize text read-
ability we aim to mimic, as much as possible, the reading flow of
rectangular text regions. This can be translated to two main objec-
tives: first, that lines should begin and end close to each other in
a direction orthogonal to the field (i.e. as if they are “flushed” to-
gether to a margin), and second, that line length should be as long as
possible. Consequently, we try to trace long streamlines and cluster
their end points (Figure 7).

Finding seeds: Similar to previous tracing methods [Jobard and
Lefer 1997; Chen et al. 2008] we use a priority queue of potential
seed points for new streamlines. At each iteration, the next seed
is removed from the queue and if it is sufficiently distant from the
boundaries and nearby streamlines, it is used to trace a new stream-
line. During tracing, points at a fixed distance in a perpendicular
direction to the streamline on either side are added to the queue as
new seed candidates.

The seed priority function is adapted to our settings. To cluster
end points together we prefer to select seeds above or below the
end points of existing streamlines in the orthogonal direction of the
streamline. Hence, seeds have higher priority the closer they are to
an existing end point.

To ensure good approximation of the region boundary we initial-
ize the queue with seeds placed near boundary vertices where the
field is aligned with the boundary (at an offset equal to half of a
line height). Later, we will grow such seeds in both directions. The
left-most such point is selected as the first seed to facilitate a read-
able order, with a left-to-right convention. To create a continuous
flow of lines, the priority of the remaining initial seeds is set to
be lower than the priority of the seeds generated during tracing of
streamlines.

Tracing streamlines: We trace streamlines from seeds using
standard line integration with the midpoint rule. Lines are termi-
nated whenever they reach the boundary, come within a minimal
distance to another streamline, or turn sharply, as streamlines with
high curvature are unsuitable for placing text. We add the turning
test as sometimes, due to user preferences, the field generated does
not have sufficiently low curvature.

Since in our setup the streamlines are a tool rather than a goal in
themselves, we allow them to deviate slightly from the field direc-
tion. This is done by modifying the field during tracing to reduce
aliasing and extend the line lengths. We augment the input field
with a weak field that repels streamlines away from the boundary

(a) (b) (c)

Figure 8: Orientation and ordering demonstrated on a subset of
streamlines: (a) initial adjacency graph, with edge color represent-
ing weights (b) spanning forest of oriented lines, with connection
edges highlighted in black (c) final order of lines (blue to red).

and existing streamlines, and decays exponentially with distance.
This field is weak enough to only affect tracing of streamlines that
are near and parallel to the boundary or to previously traced stream-
lines. This field prevents premature termination of streamlines as
they are weakly repelled from boundaries and other streamlines.

Post processing: To finalize the set of streamlines we perform
a few cleanup operations: stitching together nearby tangentially
aligned streamlines, aligning nearby start and end points in the
orthogonal direction, and discarding very short lines. A compar-
ison between basic tracing [Jobard and Lefer 1997] and our result
is shown in Figure 7.

Smoothing and Enrichment: Depending on the setup, we may
want the spacing between the streamlines to be uniform or not. Uni-
form spacing results in uniform region shading as seen in the bear
and skull examples in Figure 11, while non-uniform spacing can
add richness to the output (e.g. girl image in Figure 10). To cre-
ate the final spacing we use a weighted smoothing approach, iter-
atively moving streamline vertices toward the weighted average of
their closest points on the two neighboring streamlines in the or-
thogonal direction. For non-uniform spacing, we use randomized
weights when smoothing.

6 Line Orientation and Ordering

Laying out text along a set of arbitrarily oriented streamlines re-
quires selecting a text orientation along each line and computing a
line ordering.

Orientation: A basic requirement for intuitive line orientation
within each region is that adjacent parallel lines have the same ori-
entation. Depending on the curvature of the lines, this requirement
may not always be satisfiable. For instance, consider one line that
bends around another as on the skull forehead in Figure 11. Our
method aims to find a consistent global orientation that is similar
on adjacent lines, when possible.

We define a weighted graph where each node corresponds to a
streamline and directed edges connect each pair of adjacent par-
allel streamlines. The weight associated with each edge from one
streamline to another is set to be the percentage of the length of
the first streamline where the two lines are adjacent. Note that two
adjacent streamlines will have two directed edges, but these edges
may have different weights (Figure 8a).

The orientation within each region is defined using a prioritized
breadth-first traversal on this graph. To initialize the traversal we
select a line that has a clear orientation preference, i.e. it is largely
horizontal, and has sufficient length (at or above the average line
length in the region). The initial line is oriented left-to-right and this
orientation is propagated through the graph using a breadth traver-
sal order based on the edge weights. If no line has a strong left-right

preference, e.g. if all streamlines are vertical, we use a bottom-up
orientation instead, consistent with a left-right line order.

Ordering: The requirement for intuitive ordering involves both
region ordering and line ordering within each region. Inside a re-
gion, for any two adjacent parallel lines, the lower one with respect
to the determined orientation should, whenever possible, come af-
ter the upper one. This requirement defines a partial, rather than
full, order inside the region, as a streamline can have more then one
adjacent line above or below it. Moreover, this partial order can
contain loops when lines have high curvature, potentially wrapping
around other lines, as is the case in the previously mentioned skull
example. To define ordering we must convert this partial order to
a full order. In the general case, solving this problem with respect
to some metric is equivalent to finding a shortest Hamiltonian path,
and is NP-Hard. The algorithm we use is targeted at finding an in-
tuitive, readable order when the partial order is consistent, and a
plausible one when loops are present.

To find the ordering we use a subset of the streamline graph de-
fined for orientation, discarding edges from lower streamlines to
the streamlines above them. Next, we compute an optimum branch-
ing [Edmonds 1967], which defines a spanning forest of the graph
(Figure 8b). To create a full order we need to connect the forest
into a single graph. We traverse the nodes of all trees to locate the
shortest edge connecting two trees and add it to the graph. This
process is repeated until all the trees are joined together or no edges
linking trees are found. In the latter case we treat each sub-graph as
a separate region for text layout.

To traverse and order the combined graph, we pick as a root the
left-most orphan node (i.e. one with no incoming edges) with re-
spect to the frame defined by the line orientation. We traverse the
graph starting from the root. Each time we encounter a node with
more than one parent, we traverse all branches above this node in
a left-to-right order and only then traverse the node itself. At each
branching point with multiple children we use the same left-to-right
order to traverse those (Figure 8c).

To order the regions themselves, we use a similar process, but on a
region graph instead of a lines graph. The order here is more vague
as we have no clear notion of adjacency or parallelism. Instead
region nodes are connected by edges based on global adjacency
computed using a Voronoi diagram, and edge weights are set to
be inversely proportional to the distance between the regions, and
directly proportional to the dot product of the transition direction
between regions and the preference direction. The preference can
follow a lexicographic left-right, top-bottom order, or some mix of
the two directions set by specifying an arbitrary direction vector
such as (1, 1). We then use a similar graph traversal mechanism
where the local frame is set based on the average of the line orien-
tations in adjacent regions.

To order individual strokes (text lines not included in a region) we
can treat each as a stand-alone region, or we can treat them all as
a single region. While we cannot claim that the ordering computed
is necessarily globally optimal, we found that our results agree, in
general, with manual ordering both inside and in between regions.

7 Text Generation

Given the ordered streamlines, we place the text along them using
the text engine in Adobe Illustrator. It partitions the text into seg-
ments of appropriate size, and provides the tools necessary to map
these segments to the curved streamlines as well as myriad options
for font styling and colorization.

Any given set of extracted streamlines will exhibit some variation

Figure 9: The text layout for a single petal of the poppy in Figure 10
without text warping (left), and with warping (right).

in spacing between neighboring curves. To avoid visual gaps in the
image, we adaptively warp the height of the text to fill the space
more uniformly [Asente 2010]. A similar mechanism is used to
adjust text width. The width adjustment is used to achieve two
important goals. First, even though an a priori estimate is used to
set font size in a way that aims to fit the given text exactly into the
image, the length of the generated streamlines is never exactly equal
to the estimate. Hence, text width needs to be globally adjusted
to accurately fit the content into the image. Second, as we want
to avoid breaking words in line breaks, we need to adjust the text
width to fit each line of text into the corresponding streamline.

Whenever the text lines are not aligned with the boundary of the re-
gion, some aliasing artifacts may occur. These artifacts are reduced
by our careful vector field design and streamline tracing methods.
However, they can still occur as we balance other considerations as
well. In addition, along highly curved boundaries even orthogonal
layouts can cause some aliasing. To reduce this effect we warp the
text along the line using a gradual warp propagation. The warping
adjusts the text at the ends of the lines, and propagates the distor-
tion inward to the middle of the line for a smooth effect (Figure 9).
While the warping steps improve image aesthetics, resolving alias-
ing artifacts and promoting uniform shading, they can also reduce
readability, especially when the font size is fairly large compared to
the local feature size of the image (e.g. in the pupils of Figure 13).

8 Results and Discussion

Throughout the paper we show a diverse selection of micrograms
created with our system from graphics and text available freely on-
line. Part of the artistry of micrography lies in selecting source
graphics that have the proper amount of detail, along with the right
amount of text. If the image is very detailed or the font too large
then individual letters begin to play a crucial role; we thus leave
the realm of micrography for that of general calligraphy, which is
outside the scope of this work. In our system, the choice of sources
remains entirely up to the user. Unless stated otherwise, the lay-
outs for all results were computed automatically based on the input
graphics and text, which allowed us to rapidly experiment with dif-
ferent fonts and texts to achieve a result that we liked. Please zoom
into the images using the digital version to read the fine text. See
attached supplementary material for larger images.

The motif image in Figure 1 was created using text from Lewis Car-
roll’s “Alice in Wonderland”, with user specified font size. Manu-
ally tracing the hundreds of lines would be a tedious task, and even
just choosing the preferred layout direction per region is difficult.
This example also shows the challenge of weighing between read-
ability and image requirements. For most regions a singularity free
solution exists, which naturally aligns with the narrow features. The
pink region at top-right has six narrow regions with different direc-
tions, which are very hard to reconcile. Consequently our solution
places one singular point inside the region to obtain what is deemed

Figure 12: Vector field generated by Xu et al. [2009] (top left) is
not suitable for text alignment due to high curvature and singular-
ities. Our method creates a coherent field and readable text layout
(top right, bottom left), albeit not symmetric. Adding symmetric
constraints using edge weights creates a symmetric field and result
(bottom right). Text: Lorem ipsum, target size 20x20cm.

Figure 13: A black and white microgram where region distinction
is achieved through variation in font size and type. “Dark Eyes”
(translation by Katya from russmus.net), target size 104x54cm.

an acceptable tradeoff between coherence and alignment. The girl
image is combined with the words of the Song of Songs. The hair
consists of two highly intricate regions with smooth random varia-
tion in size used to create the visual effect of hair strands.

Figure 10 shows several other micrograms generated by the system.
The poppy example uses the famous poem “In Flanders Fields” as a
text replicated in every region of the image. The line layout in each
region was automatically adjusted to fit the text into the regions, and
randomized line thickness is used to enrich the visual effect. The
Mona Lisa image uses text from “Portrait of a Lady” and exem-
plifies a black and white classic-style micrography where different
regions are visually distinct because of text direction. The fedora
microgram shows an example of using text for both regions and out-
lines creating an interesting visual interplay between the two. The
eyes example (Figure 13) combines graphical content with a trans-
lation of the well-known Russian poem “Dark Eyes” generating a
compelling black and white image where font properties are used
to visually separate the image regions.

User control: The bear example in Figure 11 shows two results
created from the same input using different font sizes, highlighting
the flexibility offered to artists when using our tool. In this example
our method converts a very simple input into a visually appealing,
intricate design by combining a textual microgram output with a

Figure 10: A variety of micrograms created using our system. Color variation, fonts, and size variability were specified by the user. The
original image input is shown at the top. Left: “In Flanders Fields”, target size 22x17cm. Center: “Portrait of a Lady”, target size 36x45cm.
Right: “Fedora”(Wikipedia), target size 26x26cm.

color layer specified by the user. Such effects are very easy to apply
as our output results are naturally created as vector graphics, which
can be easily edited. The insect examples show variations in both
color and typeface.

We considered a number of mechanisms for users to control the de-
sign of boundary conditions and consequently the text vector field,
such as a direct editing interface for the different parameters, an a
posteriori vector field editor [Palacios and Zhang 2007], or selection
among different local minima of the QP boundary condition setting
problem. We found a direct visual interface where users specify
preferred (or undesirable) alignments to be most intuitive. Specifi-
cally, users can either a priori define preferred text directions inside
regions or specify them once given an automatically generated mi-
crography image. The specification can be done using two types of
notation: sketching preferred directions as strokes inside the rele-
vant regions, or highlighting existing boundaries as ones that should
(or should not) be aligned with the field. The user preferences are
then added as strong attraction weights for boundary design. The
process can be iteratively repeated until the user is satisfied with the
output. An example of such user preference is shown on the Jolly
Roger flag in Figure 11, where the automatically generated field is
better in terms of the criteria we use (top), while the user guided
solution (bottom) prefers strong alignment with the forehead.

Comparisons: We compare our field design to two previous
works that produce smooth fields. Figure 12 compares our results
to XU et al. [2009]. While their field in general is symmetric, it is
not suitable for text layout. Our default output results in a readable
layout but does not maintain symmetry. After imposing symmetry
constraints through similarity weights in boundary condition com-
putation we produce a text layout that is symmetric, but has more
curved lines. Figure 14 shows the consequences of using a vector
field designed by a recent mosaic layout method [Li et al. 2010]
for microgram layout. As demonstrated the resulting text layout
is incoherent, with multiple singularities. Using our approach on
a segmented version of the input image creates more coherent re-
sults. The black-and-white example in this figure illustrates the use
of the distinction constraint to separate the background from the

foreground, creating visibly clear region boundaries.

Run times: The majority of the computation time in our cur-
rent implementation is spent on two stages: first, the boundary
conditions computation which uses a MATLAB implementation of
quadratic programming optimization, and second, the actual text
layout which uses the Adobe Illustrator text engine [Adobe 2010].
The first takes one to five minutes per region, but can be clearly
optimized significantly by switching from MATLAB to a C++ im-
plementation. The second takes on the order of two to five minutes
for an average sized input. All the rest of the computations take
under a minute altogether.

9 Conclusion

We presented a method for computerized creation of digital mi-
crography images, an appealing and intricate text-art form. Manual
creation of micrograms like the ones demonstrated in this paper re-
quires both a high degree of expertise and a huge amount of tedious
work from users, while using our system such designs can be cre-
ated from standard vector art in a matter of minutes. In its default
setting, suitable for novice users, the method requires no additional
input beyond the vector image and text. For advanced users we pro-
vide a range of artistic controls such as font styling and local text
directions. The visual appeal of the final microgram will depend
on these choices as well as on proper selection (or creation) of the
source material.

The key technical component of our work is the introduction of a
novel approach for designing boundary conditions for vector fields,
such that smooth fields that satisfy those conditions adhere to addi-
tional user requirements. In our specific case we require the field
to be singularity free and have low curvature. This approach can
be potentially used for other applications that use vector-fields as a
design tool, such as creation of anisotropic textures and mosaics.

In our current approach, details of the text to be placed are not used
to inform the process. The text engine, while powerful, was not
designed specifically for this type of task. Better text placement in-

Figure 11: Change of parameters: the user can change font size, color and typeface, producing endless variations of a microgram. The
user can also mark a preferred direction inside a region. The jolly roger flag at the top was created with automatic vector field alignment
and has singularity free long text lines. With user preference for horizontal alignment on the forehead the field is less coherent with a wedge
singularity formed, but the overall effect is arguably more appealing. Top left: “California” (Wikipedia), target size 28x18cm. Bottom left:
Genesis 1, target size 29x32cm. Right: “Dead Man’s Chest”, target size 223x158cm.

formed by knowledge of the shape of individual words and letters
could be used to reduce artifacts, achieve more uniform density, im-
prove readability, and to insert local calligraphic effects, as authors
of traditional micrography often do.

Our work introduces a number of interesting areas for future re-
search. One area would be to map and expand the range of styles
supported by the framework: while most micrograms can be gener-
ated using piecewise smooth fields, there are examples where this
approach requires unintuitive partition of the image into regions.
Another is text line ordering: while our method performs quite well
on the inputs tested, given the NP-hard nature of the problem ad-
dressed it is not guaranteed to provide an optimal result. It would be
interesting to consider approximation techniques or other, perhaps
perception-based, approaches for ordering a set of text lines such
that the reading order is most natural. Accelerating our method is
a necessary step for converting it into a more user-friendly tool,
and while some steps such as conversion from MATLAB to C++
are straightforward, further speedup of the core algorithmic steps
might require more effort. Lastly, it would be interesting to work
closely with artists to observe what specific controls of the system
they may want in addition to or instead of the ones we provide.

Acknowledgements

We thank Christine Depraz and Ruby Mawira for their help with
creating input images, Paul Asente for assistance with Adobe
Illustrator, and C. Wang for helping with image conversion.
This research was partly supported by Adobe Systems, NSERC,
MITACS NCE, and GRAND NCE. We also wish to thank the
reviewers for their considerable effort and significant contributions
to the finalized version of this work.
The following sources were used in accordance with their
respective license: vector4free.com/vectors/id/277,
vector.net/2010/summer-girl, allfreevectors.com/

Free-vector-abstract-illustration!-14584.html,
russmus.net/song.jsp?song=S:1172202987, commons.

wikimedia.org/wiki/File:Heraldisch_Lippische_Rose.svg,

Figure 14: Using the smooth vector field from Li et al.[2010] to
place text creates an incoherent layout (left), as can be seen when
colors are removed (second from right). Using our method with a
set of extracted regions generates a coherent singularity-free lay-
out, that follows the boundaries whenever possible (second from
left). This is even more evident when colors are removed (right).
Text: “The Cat Came Back”, target size 40x40cm.

vector4free.com/vectors/id/277
vector.net/2010/summer-girl
allfreevectors.com/Free-vector-abstract-illustration!-14584.html
allfreevectors.com/Free-vector-abstract-illustration!-14584.html
russmus.net/song.jsp?song=S:1172202987
commons.wikimedia.org/wiki/File:Heraldisch_Lippische_Rose.svg
commons.wikimedia.org/wiki/File:Heraldisch_Lippische_Rose.svg

en.wikipedia.org/wiki/File:Fedora_line_drawing.svg,
spraypaintstencils.com/a-zlistings/mona-lisa-image.gif,
en.wikipedia.org/wiki/File:Flag_of_Edward_England.svg,
en.wikipedia.org/wiki/Jigsaw_puzzle, en.wikipedia.org/

wiki/California en.wikipedia.org/wiki/Fedora

Sources for Figures 12 and 14 provided by the original authors.

References

ADOBE, 2010. Illustrator CS5 adobe.com/products/
illustrator.

AMENTA, N., AND BERN, M. 1999. Surface reconstruction by
voronoi filtering. Discrete and Computational Geometry 22.

APOLLINAIRE, G., AND GREET, A. H. 1980. Calligrammes :
poems of peace and war (1913-1916): A Bilingual Edition. Uni-
versity of California Press, Berkeley.

ASENTE, P. 2010. Folding avoidance in skeletal strokes. In Sketch
Based Interfaces and Modeling, Eurographics, ACM.

AVRIN, L. 1981. Hebrew Micrography - One Thousand Years of
Art in Script. Israel Museum, Jerusalem.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Trans. Graph. 28 (July).

CHEN, G., ESCH, G., WONKA, P., MULLER, P., AND ZHANG,
E. 2008. Interactive procedural street modeling. ACM Trans.
Graph. 27, 3.

CRANE, K., DESBRUN, M., AND SCHRÖDER, P. 2010. Triv-
ial connections on discrete surfaces. Computer Graphics Forum
(SGP) 29, 5, 1525–1533.

EDMONDS, J. 1967. Optimum branchings. Journal of Research of
the National Bureau of Standurds 71B, 233–240.

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. ACM Trans. Graph. 26
(July).

FROUMENTIN, M., 2010. Textorizer lapin-bleu.net/
software/textorizer.

GILL, P. E., MURRAY, W., AND WRIGHT, M. H. 1981. Practical
Optimization. Academic Press.

HELMOND, A., 2010. Textaizer mosaizer.com/Textaizer.

JOBARD, B., AND LEFER, W. 1997. Creating evenly-spaced
streamlines of arbitrary density. In Eurographics Workshop, Eu-
rographics, 43–56.

JODOIN, P.-M., EPSTEIN, E., GRANGER-PICHÉ, M., AND OS-
TROMOUKHOV, V. 2002. Hatching by example: a statistical ap-
proach. In Proceedings of the 2nd international symposium on
Non-photorealistic animation and rendering, ACM, New York,
NY, USA, NPAR ’02, ACM, 29–36.

KARP, R. 1972. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations, R. Miller and
J. Thatcher, Eds. Plenum Press, 85–103.

KNUTH, D. E. 1997. Digital Typography. Cambridge University
Press, New York, NY, USA.

LI, Y., BAO, F., ZHANG, E., KOBAYASHI, Y., AND WONKA, P.
2010. Geometry synthesis on surfaces using field-guided shape
grammars. IEEE Transactions on Visualization and Computer
Graphics 99, RapidPosts.

OSTROMOUKHOV, V., AND HERSCH, R. D. 1999. Multi-color
and artistic dithering. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
SIGGRAPH ’99, ACM, 425–432.

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field
design on surfaces. ACM Trans. Graph. (Proc. Siggraph 2007)
26 (July).

PEDERSEN, H., AND SINGH, K. 2006. Organic labyrinths and
mazes. In Proceedings of NPAR’06, ACM, 79–86.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
2001. Real-time hatching. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, SIGGRAPH ’01, ACM.

RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. N-
symmetry direction field design. ACM Trans. Graph. 27 (May),
10:1–10:13.

RAY, N., VALLET, B., ALONSO, L., AND LÉVY, B. 2009. Ge-
ometry aware direction field processing. ACM Transactions on
Graphics.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonization using the shape diam-
eter function. The Visual Computer 24, 4 (April), 249–259.

SHARMA, G. 2002. Digital Color Imaging Handbook. CRC Press,
Inc., Boca Raton, FL, USA.

SURAZHSKY, T., AND ELBER, G. 2000. Arbitrary precise orienta-
tion specification for layout of text. In Proceedings. The Eighth
Pacific Conference on Computer Graphics and Applications, Eu-
rographics, 80 – 86.

TONDREAU, B. 2009. Layout Essentials: 100 Design Principles
for Using Grids. Rockport Publishers.

VAHE, 2009. Micrography: Text art and
typography. gawno.com/2009/05/
micrography-text-art-and-typography.

WONG, M. T., ZONGKER, D. E., AND SALESIN, D. H. 1998.
Computer-generated floral ornament. In Proceedings of the 25th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’98, ACM.

XU, J., AND KAPLAN, C. S. 2007. Calligraphic packing. In
Proceedings of Graphics Interface 2007, ACM, New York, NY,
USA, GI ’07, ACM, 43–50.

XU, J., AND KAPLAN, C. S. 2007. Image-guided maze construc-
tion. In ACM SIGGRAPH 2007 papers, ACM, New York, NY,
USA, SIGGRAPH ’07, ACM.

XU, K., COHEN-OR, D., JU, T., LIU, L., ZHANG, H., ZHOU, S.,
AND XIONG, Y. 2009. Feature-aligned shape texturing. ACM
Transactions on Graphics, (Proceedings SIGGRAPH Asia 2009)
28, 5, 108:1–108:7.

XU, X., ZHANG, L., AND WONG, T.-T. 2010. Structure-based
ascii art. ACM Trans. Graph. 29 (July), 52:1–52:10.

ZACHRISSON, B. 1965. Studies in the Legibility of Printed Text.
Almqvist & Wiksell.

en.wikipedia.org/wiki/File:Fedora_line_drawing.svg
spraypaintstencils.com/a-zlistings/mona-lisa-image.gif
en.wikipedia.org/wiki/File:Flag_of_Edward_England.svg
en.wikipedia.org/wiki/Jigsaw_puzzle
en.wikipedia.org/wiki/California
en.wikipedia.org/wiki/California
en.wikipedia.org/wiki/Fedora
adobe.com/products/illustrator
adobe.com/products/illustrator
lapin-bleu.net/software/textorizer
lapin-bleu.net/software/textorizer
mosaizer.com/Textaizer
gawno.com/2009/05/micrography-text-art-and-typography
gawno.com/2009/05/micrography-text-art-and-typography

