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1. Introduction

In this document, we present some additional back-

ground material for our work. The sections are organized

as follows: Section 2 expands on parts of derivation in the

main paper. Section 3 gives a few synthetic results in addi-

tion to the real results presented in the paper. And finally,

Section 4 gives an analysis of effects of noise on our algo-

rithm.

2. Additional derivations

In this section, we include more details on some aspects

of the derivation described in the technical paper.

2.1. MLE of Laplace distribution mean

Here we derive the maximum likelihood estimator of the

mean of a Laplace distribution. If a random variable X has

a Laplace distribution,

X ∼ Laplace(µ ,b), (1)

where µ is the location parameter and b > 0 is the scale

parameter, then the probability density function is given by

f (x|µ ,b) =
1

2b
e−

|x−µ |
b . (2)

The maximum likelihood estimator of µ is given by

µ̂ = argmax
µ

(
log∏

i

1

2b
e−

|xi−µ|
b

)
= argmin

µ
∑

i

|xi −µ | .

(3)

This result shows that the maximum likelihood estimator of

mean of a Laplace distribution can be computed using L1

norm.

2.2. Gradient properties of the residual glare, rS

In our paper, we introduced a low energy, high fre-

quency, shift variant component ρ̂ of the light transport

function H, that captures cross-screen filter diffraction ef-

fects rS present in the captured image. In this section, we

derive statistical properties of this function rS which we use

in our paper (Equation 9 in the paper). First, we present em-

pirical properties of derivatives of ρ̂ , and then relate them

to derivatives of rS.

Figure 1: Histogram of ∂ r
∂v

has a highly peaked structure, which

can be closely approximated with a Laplace distribution.

The rS function accounts for wavelength-dependent vari-

ation is the PSF. There is no need to exactly model its spec-

tral characteristics in our application, since we only need to

estimate the resulting color distortions. Removing them is

important for glare removal, but is not essential for estimat-

ing the saturated pixel.

ρ has the same star-shape as the shift-invariant part, al-

though the exact energy distribution within the star is de-

pendent on image location, i.e.:

ρ(x,y) =






p/2

∑
i=1

ρ̂i(x,y) when vi · (y−x) = 0,

0 otherwise,

(4)
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where, ui and vi form an orthogonal coordinate system

aligned along the ith glare direction. Now we can apply the

same separability argument again, and assume that the rays

are independent. For each individual glare ray, we show that

ρ̂i gradients are distributed as a Laplace distribution (Fig-

ure 1). By definition of r,

∂

∂ui

rS(x) = ∑
y

vi·(y−x)=0

fS(y)
∂

∂ui

ρ̂i(x,y) (5)

∼ Laplace
(

0,∑ fS(y)
)
, (6)

and

∂

∂vi

rS(x) = ∑
y

vi·(y−x)=0

(
fS(y)

∂

∂vi

ρ̂i(x,y)+ ρ̂i(x,y)
∂

∂vi

fS(y)

)

(7)

∼ Laplace
(

0,∑
(

fS(y)+ ρ̂i(x,y)
))

, (8)

since ρ̂i is directly related to pixel color and hence verti-

cal gradients follow a Laplace(0,b) distribution similar to

image gradients. Our experiments have confirmed this as-

sumption.

Although the standard deviations in the above expres-

sions contain unknown quantities, since our algorithm runs

row-by-row, they can be considered constant and hence can

be ignored while solving the linear system.

2.3. Modeling constraints on residual glare

We can combine the statistical properties of derivatives

of residual glare r to build the constraint term R:

R =
p/2

∑
i=1

(
λ1 ‖ri‖2 +λ2

∥∥∥∥
∂

∂vi

ri

∥∥∥∥
1

+λ3

∥∥∥∥
∂

∂ui

ri

∥∥∥∥
1

)
. (9)

The λ1 term ensures that r has a zero-mean normal distri-

bution. The λ2 term ensures that the function is consistent

along v axis. The rationale behind this consistency is that

the light in the saturated region has a consistent spectral

composition and thus produce similar diffraction patterns.

This was also confirmed in our experiments. The λ3 term

ensures that the r function is also smooth along glare rays.

We found that the color variations due to diffraction are

much smoother than the image content and thus is also a

strong prior that let us separate glare from the latent image.

2.4. Arguments against deconvolution

Although our derivation so far as Equation 9 in the paper

demonstrates that image restoration fundamentally involves

a deconvolution problem, we found during extensive exper-

iments that standard deconvolution methods are impractical

for a number of reasons.

First, the support of the exponential glare PSF K typi-

cally exceeds the width of the image, making robust decon-

volution methods prohibitively expensive. This property of

our glare also makes every pixel in the image a “boundary”

case, which most standard deconvolution methods do not

handle gracefully.

Secondly, standard deconvolution methods do not ex-

ploit the characteristic of the cross-screen filter. The star

shape of light transport function lets us ignore a large num-

ber of inter-dependencies that are unimportant for the solu-

tion but increases the complexity of the problem.

Third, the non-Dirac components act as a low-pass fil-

ter along the glare direction, which implies that estimated

glare only gives 1D “projections” of the highlights, which

obviates the use of a tomography approach. It also results

in suppressed frequencies, in which case conventional de-

convolution algorithms enhance the noise in measurement

and estimation, and produce noisy and inaccurate highlight

estimates.

Finally, the problem is heavily under-determined, and

can be solved only with natural image priors, well-selected

regularization and robust solvers. Using these methods in

the context of the full 2D deconvolution problem is very

problematic, computationally expensive, and, according to

our experiments, impractical.

3. Synthetic results

Figure 2 shows a number of results using input images

with synthetic glare. In the left column, we show the LDR

input image, which has been generated by convolving an

HDR image with the filter PSF, and adding noise and quan-

tization. The center two columns show different exposures

of our result, while the right column shows a short exposure

rendition of the original HDR image. Row (a) shows an

image with number of small specular highlights, which are

reconstructed faithfully by our approach. The second row

tests a difficult case for our glare estimation approach, since

the glare rays are aligned with a strong image edge (the hori-

zon). Sparse gradient prior for gradient estimation is not

valid in this case, resulting in a misestimation of the hor-

izontal glare (circled region in the center-left image), and

hence a lower-quality reconstruction of the saturated region

(zoomed-in in the center-right image). These artifacts are

best seen in the electronic version of the paper. The exam-

ple in row (c) shows that these artifacts can be solved by

rotating the cross-screen filter such that glare rays do not

align with strong image edges.

4. Analysis

In this section we analyze the trade-offs between glare

detection and increased camera noise.
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(a)
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Figure 2: Reconstruction results for simulated glare from an 8-point cross-screen filter. The first column shows the synthetically blurred

input image with saturated pixels marked green. (b) and (c) show the same image but in case of (c) the filter was rotated by 22.5 degrees

to avoid aligning glare patterns with the sky gradient and thus better glare estimation was obtained. The third column gives the dynamic

range increase at the top-left corner of each image. See text for a full discussion.

4.1. Glare detection
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Figure 3: Glare-to-noise ratio that characterizes the detectability

of a glare signal. The numbers next to lines indicate how much

brighter (in f-stops) the glare source is relative to the sensor clip-

ping level.

The cross-screen filter can effectively encode informa-

tion about most, but not all clipped pixels. This is because,

in order to be detected, a glare pattern must be at least a few

times stronger than the camera noise level without saturat-

ing glare pixels. Figure 3 shows the glare-to-noise ratio in

dB for a source of glare that has a width of 0.5 visual de-

grees, is perfectly flat, and is from 22 to 216 times brighter

then the sensor clipping level (numbers on the lines). The

glare-to-noise values are given for the pixels that are located

x visual degrees from the source of glare (x-axis, 100mm

lens). The image region receiving the glare signal is uni-

form, and its pixel value is 2 f-stops below the sensor clip-

ping level. The exponential model of the 8-point PSF was

used to create the plot. We used a simple camera noise

model that consists of normally distributed static noise with

the standard deviation σs = 0.0002 (for a maximum sen-

sor value equal to 1) and signal-dependent noise with the

standard deviation σd = 0.013. The glare-to-noise ratio was

computed as

GNR = 10 log10



 g− f√
σ2

d g+σ2
s



 , (10)

where f is the original pixel value without glare, and g

is the pixel value with glare. We used the noise parame-

ters to approximate the characteristics of our Canon D40

(200 ISO, 5.6f, standard post-processing settings), although

these can vary with aperture, ISO settings, sensor tempera-

ture and other factors. The parameters we found by least-

square fitting of the model to the noise found in a gray card

photographed with varying illumination levels.

Figure 3 shows the trade-off between clipping glare pix-

els and capturing glare that is too weak to be detected. A

0.5 visual-degree segment of clipped pixels must be at least

5–6 f-stops (32–64 times) brighter that the clipping level to

produce glare that is detectable. A brighter or larger source

of glare produces a higher glare-to-noise ratio, but if it is

much brighter, pixels can get saturated, and thus lose en-

coded information. This is shown on the plot as clipping
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Figure 4: (a) Noise increase due to glare removal. The curves are generated for the same conditions as in Figure 3. The higher noise is

caused by higher shot noise for the pixels captured with glare than for the same pixels captured without glare. (b) Modulation transfer

functions (MTFs) of the cross-sections filters. The filters and projections are the same as in Figure 2(c) in the paper. The exponential

models of the PSFs were used to compute the MTFs in order to remove the MTF of the lens system.

of the lines above 20 dB. To avoid saturation, the exposure

time needs to be shortened, but this increases noise in an

image [1]. Saturation of glare pixels can be also avoided if

a cross-screen filter that produces weaker glare (i.e., smaller

β ) is used. Such a filter, however, results in a smaller glare-

to-noise ratio, making the glare difficult to detect and esti-

mate. The best results are achieved if the cross-screen fil-

ter is selected to produce just detectable glare with possibly

large exposure time, while avoiding saturation of glare pix-

els. The specific values on the plot apply to the specific

setting outlined above, but the qualitative analysis applies

equally to other cameras and glare sources.

4.2. Noise analysis

Encoding additional information in unsaturated pixels

has one drawback: it increases the noise level. Fortunately

the cross-screen filter has a relatively small impact on noise.

Since shot noise is proportional to the square root of the sig-

nal, pixels affected by glare due saturated pixels (S → U)

have higher shot noise than if the same pixels were captured

without glare. In Figure 4(a) this effect is simulated for the

same parameters as used in the glare analysis (Figure 3).

Since the cross-screen filter spreads light in discreet direc-

tions, this noise increase is much smaller than for typical

veiling glare in lenses [1], and affects only a small percent-

age of pixels. The noise is also increased due to the decon-

volution that we perform when removing glare due to un-

saturated pixels. This noise increase is also moderate, about

0.31 dB for all our filters except the 8-point one, which can

boost noise up to 1.17 dB. The numbers are explained by

the modulation transfer functions (MTFs) of cross-screen

filters, which have very high values for all frequencies, as

shown in Figure 4(b). If the deconvolution is performed

in the Fourier domain, the frequency components are mul-

tiplied by the inverse of the MTF. Since this multiplication

boosts the contrast of both image details and noise, the noise

increase can be approximated by the inverse of the MTF

values.
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