
Supplemental Material
Displacement Interpolation Using Lagrangian Mass Transport

This document provides an overview of several notions useful in the
understanding of optimal mass transport and displacement interpo-
lation. To improve clarity, it exercises some liberty with definitions
and makes some minor simplifying assumptions. For a deeper,
more rigorous introduction, we refer the reader to the following
books [Bourbaki 2003; Villani 2008; Villani 2003; Gallier 2000].
We will first describe the notion of measure, then recall the Monge-
Kantorovich mass transportation problem and finally describe the
displacement interpolation for continuous functions.

1 Elements of measure theory

The general formulation of the mass transportation domain involves
the use of measures, and some familiarity with this theory can be
useful to understand the optimal transportation problem.

A positive measure µ can be seen as a function which assigns a
volume µ[B] (a real positive number) to a set B. It thus has to
satisfy a number of properties:

• the measure should give a positive or null value,

• the measure of the union of two disjoint sets is the sum of the
measures of each set, and

• the measure of an empty set is 0

The concept of measure is useful in integration theory. Indeed, one
can define the integral of a function s(x),

∫
Ω
s(x)dµ(x), as a sum

over disjoint subsets, of the measure of each subset times the value
of the function s to be integrated over each subset.

Often, one will encounter the Lebesgue measure, noted ”dx”, as-
signing the usual length, area or volume to an interval or product of
intervals. Another commonly used measure is the Dirac measure,
noted ”δx” assigning a volume of 1 to a set, if and only if the set
contains the point x.

One can further build measures by multiplying the Lebesgue mea-
sure by a continuous function f such that dµ(x) = f(x)dx. This
new measure is said to be absolutely continuous.

A useful class of measures is the class of probability measures. A
measure is a probability measure if and only if the measure of the
whole space is 1. One can see that the Dirac measure is a proba-
bility measure. An absolutely continuous measure is a probability
measure if and only if the integral of f with respect to the Lebesgue
measure is 1. In that case, f(x) is called the density, or probability
density function (PDF).

Finally, a measure ν is said to be the push-forward measure of an-
other measure µ by a function T (x) if and only if for any mea-
surable set B, ν[B] = µ[T−1(B)]. If the measures are absolutely
continuous, this can be seen as a warping of the first function toward
the second. Equivalently, this can be written as: for all non-negative
functions ψ, the following relationship holds:∫

X

(ψ ◦ T )dµ =

∫
Y

ψdν

This property is denoted as ν = T]µ.

2 The Monge-Kantorovich problem

The initial goal of Monge in the 18th century was to find a func-
tion T (x) - a warp - which reshapes a pile of sand so that it fills
several holes in a way which minimizes the cost c(x, y) of moving
each particle of sand from the location x to y. This is equivalent to
minimizing:

min

∫
X

c(x, T (x))dµ(x) (1)

such that:
ν = T]µ, (2)

where the minimum is taken over all possible warps T (x) mov-
ing each particle from location x to T (x). This considers that the
measures are probability measures. This is known as the Monge
problem. When the measures µ and ν are absolutely continu-
ous: dµ(x) = f(x)dx and dν(y) = g(y)dy, the constraint in
Eq.2 is equivalent to the change of variable formula: f(x) =
g(T (x)) · | det∇T (x)|.

The Monge problem is non-linear and difficult to solve. In addition,
it may not have a solution at all: consider for example µ = δ0 and
ν = 0.5δ−1 + 0.5δ1. In this example, it is not possible to ”warp”
a single Dirac into two half-Diracs: the mass cannot be split into
two. However, when the measures are absolutely continuous, and
the cost a strictly convex continuous function of the difference x−y,
it can be shown that the solution exists and is unique.

Later, in the 20th century, Kantorovich proposed a relaxed version
of the above problem. The new formulation is linear, and coincides
with Monge’s problem wherever Monge’s problem has a solution.
The goal is instead to minimize:

min

∫
X×Y

c(x, y)dπ(x, y)

over all measures π defined on the product space of the source and
target spaces, such that:

π[A× Y ] = µ[A]

and
π[X ×B] = ν[B]

for all subsetsA ofX andB of Y . This means that π has marginals
µ and ν. If the measures are absolutely continuous, with densities
f(x) and g(y), and if π also had a density P (x, y), the constraints
would be equivalent to

∫
Y
P (x, y)dy = f(x) and

∫
X
P (x, y)dx =

g(y). In contrast, under a weak continuity assumption on the cost,
this problem always admits at least one solution.

The topology of the spaces in which the subsets are defined (X and
Y ) does not need much regularity. Polish spaces are often used:
a complete separable metric space, without further regularity (not
necessarily a differentiable manifold).

When µ and ν are described as a sum of weighted Dirac masses
placed at several locations, then this continuous problem collapses
to the Hitchcock-Koopmans formulation described in the paper
(Equations (1a-c)).



3 Displacement interpolation

In this section, we describe the motivation behind the notion of dis-
placement interpolation. Here, we have more strict requirements
on the regularity of the spaces. We will use smooth Riemmanian
manifolds, although the curvature of the manifold can be arbitrary.
For more information on these notions, we refer the reader to the
book by Gallier [2000].

We now consider the particles of sand to have some dynamics. In
particular, they follow the least action principle: the cost of moving
a particle from location x to y is the minimum over all the possible
paths γ starting at x (at t=0) and leading to y (at t=1) of a function
A(γ) which depends on the path taken: c(x, y) = infγ A(γ) for all
curves γ such that γ0 = x and γ1 = y. A is the action functional,
and each particle follows the path which minimizes this cost.

This makes sense if one chooses an action A(γ) defined as the in-
tegral of a Lagrangian over the path γ: A(γ) =

∫
γ
L(x, ẋ, t)dt. In

addition, from differential geometry, we know that if L(x, ẋ, t) =
|ẋ|p for any p ≥ 1 then the cost of moving a particle from x to
y – the infimum of the action functional A(γ) over all paths – is
equal to the geodesic distance raised to the power p, and the path
followed by the particle will be a geodesic path on the manifold. In
the Euclidean space Rn, theses paths are just straight lines and the
geodesic distance is the standard L2 distance. For p = 1 the param-
eterization of the curve is arbitrary, but for p > 1, the particles have
constant speed along the path. In our paper, we restricted ourselves
to these costs and these particular Lagrangians.

Equipped with these properties, one can define the displacement
interpolation as the interpolation obtained by moving each particle
along their curve, with constant speed if p > 1, after solving the
Monge-Kantorovich mass transportation problem.
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