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Abstract

Modeling of realistic garments is essential for creating believable virtual environments. Sketch-based modeling of gar-
ments presents an appealing, easy to use alternative to the established modeling approaches which are time consuming
and require significant tailoring expertise. Unfortunately, the results created using existing sketch-based methods lack
realism. Driven by human perception of garment sketches, we propose a context-aware garment sketch interpretation
based on a set of observations about key factors that affect the shape of garments. Based on this analysis we develop
a geometric method for sketch based modeling of garments which obtains more realistic results than previous tech-
niques. We demonstrate the effectiveness of our method on a variety of inputs and validate our approach via a user
study where viewers were asked to compare the believability of our outputs versus previous ones.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation—Line and Curve Generation

Keywords: garment modeling; surface modeling; sketch-based modeling

1. Introduction

Modeling of believable virtual garments is essential
for creating realistic virtual environments and can ben-
efit other application areas such as clothing design [15].
The traditional approach for modeling virtual garments
largely follows the real-life design and tailoring work-
flow [10, 5, 15]. While it enables the creation of real-
istic, sophisticated garments, it requires both significant
time investment and a high degree of tailoring exper-
tise. Scanning of real life garments, e.g. [1] provides an
alternative garment creation approach, but may require
even more user time as well as specialized knowledge.
With the increasing popularity of avatar-based game en-
vironments and on-line design tools it is likely more and
more users, who lack such expertise, would want to de-
sign virtual outfits themselves.

A user-friendly sketch-based garment modeling ap-
proach is proposed by Turquin et al. [24] and built-
upon by [3, 21, 25]. With fashion drawings widely used
to convey garment shapes, sketching provides a partic-
ularly natural modeling interface, well-suited even for
users who are not computer savvy. Unfortunately, some
of the existing sketch-based methods [24, 25] derive the
garment shape from the drawn sketch using a fairly sim-

Figure 1: A believable outfit created from input sketches
using our context-aware modeling system.

plistic shape interpretation which often leads to creation
of unnatural looking garments (Figure 2 (left)) while
others [3, 21] make restrictive assumptions about the
user input. Most notably, they require users to provide
the 3D locations for all the garment seams, a task that
can be problematic for those lacking tailoring expertise.

Our work aims to overcome these drawbacks while
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Figure 2: The dress created using an offset-based interpretation [24] (left) has an unnatural side profile shape, incon-
sistent with the input front-view sketch (middle), while our result (right) plausibly interprets user intent.

maintaining the ease of modeling provided by a sketch-
ing interface. We propose an alternative context-aware
interpretation of garment sketches based on several ob-
servations about the factors that influence the shape
of garments, such as garment cut, gravity, and contact
with the body. Specifically, we speculate that on typi-
cal garments the same context, or combination of fac-
tors that determined the silhouette shape in the sketched
view defines the silhouette shape in other views as well.
By analyzing the factors that influenced the silhouettes
depicted in the input sketches we predict the garment
shape in other views. We use this prediction to guide
a geometric modeling algorithm especially tailored for
garment modeling, introducing a new method for gen-
erating mesh models that approximate generalized sur-
faces of revolution while satisfying interpolation and
smoothness boundary constraints.

To validate our approach we generated a variety of
garment models using the context-aware technique and
performed a user study where viewers were asked to
compare input sketch interpretations provided by our
method to those created using earlier techniques. In the
study, the participants consistently ranked our results as
better reflecting the user intent (Section 5). As demon-
strated by the study and the additional results included
in the paper our method successfully creates garments
that provide a believable interpretation of the user input.

We note that our goal is to create believable virtual
garments, and not to reverse-engineer real garments that
can be manufactured from planar patterns. Reverse-
engineering would require the user to provide exact
seam location, a challenging task for non-experts. More
importantly, users may intentionally draw infeasible yet
plausible garments (e.g. green dress in Figure 8, row
three), which do not satisfy actual physics constraints,
such as gravity, and which thus cannot be truly manu-

factured. Instead our work focuses on creating believ-
able garment shapes from simple user sketches. Given a
3D garment model such as those created by our system
methods such as [29, 27, 8] could potentially be used to
obtain suitable patterns.

2. Related Work

Our work is closely related to previous approaches
for garment modeling and draws on recent advances in
sketch-based modeling, discussed below.

Garment Modeling: The traditional garment mod-
eling pipeline used in commercial softwares, such as
[10, 4, 15], follows a completely manual approach sim-
ilar to real life garment design [5]. Users typically
start by designing planar patterns and lifting those into
3D, a step that requires significant tailoring expertise.
They then use physical simulation to obtain the desired
realistic-looking results. The simulation often requires
a significant amount of trial-and-error-based parameter
tuning to obtain a desired look and, despite recent ad-
vances [6], simulation interfaces remain challenging to
use for non-experts. The entire process is extremely la-
bor intensive and difficult to master.

Consequently, numerous attempts were made to sim-
plify the modeling process. For instance, [28, 2] use
templates of clothing components and define rules on
how those fit together to create complete garments,
while [7] propose a user friendly interface for lifting
patterns into 3D. However, such methods still rely on
the user to do much of the traditional tailoring such as
developing the component templates [28, 2] or provid-
ing the actual patterns [7].

Scanning of dressed humans [1, 26] provides virtual
models of real garments but is not suitable for design
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of new, non-existent ones. Moreover, scanning requires
specialized equipment, time, and know-how.

Turquin et al. [24] introduced a sketch based system
for garment modeling drastically simplifying the mod-
eling process. In this system users directly sketch lines
on top of a 3D virtual mannequin, which are then used
to create 3D garments that conform to the mannequin’s
shape. The lines drawn are labeled as silhouettes or
borders. The garment is then modeled as an offset sur-
face surrounding the mannequin with the distance to the
body along the silhouettes used to determine the surface
offset across the front and back. This approach creates
fairly plausible results on tight garment sketches. How-
ever, on sketches of looser, more complex garments, the
results look less believable and appear inconsistent with
the input sketch (Figure 2, left). Turquin et al. [25] use
the same offset-based sketch interpretation, but augment
the set of lines that can be drawn, introducing special
notations for complex hems and folds.

Recent methods [3, 21] use the observation that gar-
ments are piece-wise developable or nearly-developable
to generate more believable results. Decaudin et al.[3]
also add procedural folds to garments to increase real-
ism. Both methods rely on the user to provide the gar-
ment seam lines which separate the different fabric pan-
els and fail to provide meaningful results whenever the
provided seams do not admit a developable [21] or near-
developable [3] interpolant. The seam placement for
complex garments is often unintuitive, e.g. see the back
of the red dress in Figure 9, last row. In addition, both
developability improvement algorithms ignore possible
collisions with the mannequin, allowing for creation of
garments that intersect it.

As demonstrated by the results (Section 5), our
context-aware method provides a more realistic-looking
interpretation of the input than [24, 25]. In contrast to
[3, 21] it does not require the user to specify seam loca-
tions to generate believable results and provides a plau-
sible resolution of body contacts.

Sketch-Based Modeling: Sketch-based techniques
have become a popular tool for interactively generating
3D geometry. Some of the methods focus on generating
smooth closed surfaces or combinations of those using
fairly general assumptions, e.g. [13, 19]. Others target
modeling of specific classes of objects, e.g. plants [17],
stuffed animals [11], or buildings [12] using domain
specific knowledge. A similar trend of using particular
modeling contexts is noticeable in image-based model-
ing with examples including plants [18], hair [16], and
architectural structures [22]. Our work follows a similar
approach building a context-aware model for interpret-
ing garment sketches.

Figure 3: A typical traditional fashion drawing and an-
notated sketches of similar shirt and skirt drawn on top
of a 3D mannequin (silhouettes colored in red, borders
in green, folds in blue, wrinkles in yellow).

Figure 4: Typical correlation of garment silhouettes in
front and side views: tight silhouettes in one view are
indicative of tight silhouettes in others; Silhouette shape
in loose area is largely similar in all views.

3. Context-Aware Sketch Interpretation

Given a front view garment sketch, e.g. Figure 3,
left, humans appear to easily visualize the overall 3D
shape of the drawn garment. Moreover, the interpreta-
tions seem largely consistent between different viewers.
Thus, sketching provides an intuitive medium for con-
veying garment shape. To use a sketching interface for
modeling the first challenge is to develop a suitable au-
tomatic interpretation of sketches that mimics the hu-
man one. In the past, supervised learning methods had
been successfully applied for similar tasks, however us-
ing one would require a large database of sketches and
corresponding 3D garments, which is currently unavail-
able. Instead, we base our interpretation on an analy-
sis of the major factors affecting typical garment shapes
and their impact on the garment features captured by the
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Figure 5: Algorithm overview (left to right): user input (front and back); annotated front view (silhouettes in red, bor-
ders in green); tightness function defined over the 2D surface (tight regions in blue and loose in red); tight “wrapper”
garment; final output correctly modeling loose regions.

sketch.
The outline of the sketched garment provides the

main cues regarding its shape [24]. It consists of two
distinct types of curves: silhouettes, which represent the
locations where the back and front garment surfaces co-
incide, and borders or garment edges (Figure 3, right
red and green respectively). The silhouettes, especially
when combined with a mannequin on which to fit the
garment, appear to provide the strongest cues to the gar-
ment’s 3D shape. The open question is how do hu-
mans interpret them, as the offset-based interpretation
[24] seems inadequate (Figure 2). We speculate that the
human perception of silhouettes is largely influenced by
the context or factors that may have impacted the sil-
houette shape, and specifically the fact that on typical
garments the same factors that affect the shape of the
side silhouettes seem to largely determine the garment
silhouette shape in other views.

We first observe that garments, or garment parts that
are tightly fitting along the sides, are typically tightly
fitting on the front and back as well. Thus, given tightly
fitting side silhouettes one can expects the garment to
be tight all around, with the shape of the garment across
the back and front determined by the contact with the
body (Figure 4, left).

We then note that without any additional constraints
fabric hanging under gravity has vertical silhouettes.
Thus, intuitively, one would expect the garment sil-
houettes in front or other views, once away from the
wearer’s body to be completely vertical. Non-vertical
silhouettes in loose areas reflect a special tailoring ef-
fect achieved either through strategic seam placement
or other means (Figure 4, top-right). In real garments,
in our experience, these tailoring operations are often
repeated across the front and back to obtain a similar sil-
houette shape in front and side views (Figure 4, right).
Thus, one can view the garment surface in loose areas as

a generalized surface of revolution, where the silhouette
is the profile swept around the body. The sweep trajec-
tory is determined by the tight areas where the garment
comes in contact with the body. The transition between
the tight and loose areas is typically smooth. Lastly, we
observe that the side-view silhouettes are often slightly
straighter than the front-view ones, as seams are more
likely to be located off-center, and in seamless areas
gravity causes the fabric to straighten, leading this gen-
eralized surface of revolution to be slightly ”squashed”.

To use these observations for modeling requires an
algorithm for generating surfaces which tightly fit the
mannequin in some areas and smoothly transition to a
generalized surface of revolution in others (Section 4).

In addition to using silhouettes, viewers appear to
derive some depth information from the shape of the
sketched hemlines, or bottom edges of the garment.
This interpretation is driven by a combination of two
effects. First, garments are assumed to be drawn in a
perspective view where the viewer is standing at a finite
distance from the drawn figure and at the same eye level.
Second, typical 3D garment hemlines are expected to be
straight, i.e. planar and perpendicular to the (x, y) view
plane. Thus viewers tend to perceive small variations
in hemline height (Figures 3 and 5, left) as originat-
ing from the perspective, and thus indicating changes
in depth. This depth inference is very approximate, as
no accurate eye or camera positioning is used. Section
4.4 discusses how to use this subtle depth information to
further augment the realism of the modeled garments.
The hemline of the resulting garments, e.g. Figure 5,
right, has a similar shape to the sketched one when ren-
dered from a typical view point.

In addition to outlines, user-drawn sketches or fash-
ion drawings often contain other lines that provide infor-
mation about the garment shape, with folds and wrin-
kles being the two most common ones. Turquin et al.
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[25] provide an elaborate interface allowing users to add
a rich set of folds and wrinkles to the created garments.
The setup can be used as-is to enrich garments created
by our system in a post-processing step. In addition we
provide a basic fold and wrinkle modeling tool directly
within our system (Section 4.4). At the same time, since
garments usually exhibit numerous wrinkles, expecting
the user to sketch all of those is impractical, as it would
require both time and artistic skill. Instead, procedu-
ral wrinkling [3, 20] can significantly increase garment
believability with little to no user effort. We used this
approach to wrinkle the shirts and pants in Figure 1.

4. Garment Surface Modeling

Our modeling algorithm generates three-dimensional
garment surface meshes using as input the 3D man-
nequin on which we fit the garment and a set of sketched
curves describing it. Following an initialization stage
(Section 4.1) it computes the desired garment shape in
two steps (Figure 5). It first generates a tight-fitting
wrapper garment that provides a feasible geometry for
the regions where the silhouettes are close to the man-
nequin (Section 4.2), and then updates the garment
shape in loose regions while ensuring a smooth tran-
sition between the two (Section 4.3). It incorporates de-
tails such as hemlines, folds and wrinkles into the final
garment shape as described in Section 4.4.

4.1. User Interface and Initialization
User Interface: We use a similar interface to [24]

with the user drawing the garment outlines and other
characteristic curves on top of a mannequin in front or
back views (Figure 5, left). To support different front
and back boundary shapes users can redraw boundaries
in either view, while retaining the previously drawn
silhouettes. The system then annotates the curves as
silhouettes, boundaries, folds, or wrinkles (Figure 5,
middle-left). It classifies outline curves as silhouettes
if they do not cross the mannequin and as boundaries
if they do. Interior curves are classified as folds if they
touch the boundaries and as wrinkles otherwise.

Initialization: Garment hemlines are usually ex-
pected to be planar or nearly so, with the sketched hem
shape reflecting the depth of the hemline vertices rather
than their height in the view plane. Thus, our system
identifies hemlines (as lower garment boundaries ap-
propriately oriented), and straightens them out in the
view plane to obtain their (x, y) coordinates (Figure 5,
middle-left). The degree of straightening can be con-
trolled by the user, the default being a perfectly straight

hemline. The original hemlines are used to improve the
final surface shape (Section 4.4).

Once all the lines are drawn and classified, the
modeling process triangulates the 2D front and back
outlines while conforming to the interior curves.

Assigning Local Coordinate Frames: The garment
surface in loose regions roughly follows a generalized
surface of revolution, with the axis of revolution cor-
responding to the associated body part. For a standard
standing mannequin, the axis direction associated with
much of the garment can be set to vertical, with the
exception of sleeves where the axis corresponds to the
direction of the appropriate upper/lower arm bones.
Garment vertices are associated with the appropriate
axis based on the closest point on the mannequin in 2D.
Each vertex is then assigned a local coordinate frame
that consists of a vector Y ′ aligned with the axis of
revolution and two vectors X′ and Z′ orthogonal to it,
with X′ placed in the image plane. Note that with the
exception of sleeves the local frame coincides with the
global one.

Computing Tightness: Since the modeling differs
significantly in tight and loose regions of the garment,
our initialization computes a tightness function across
the mesh surface which indicates how tight we expect
the garment to be at any given point. The function is
set to zero in loose regions and is close to one in tight
ones (Figure 5), and will come into play when model-
ing loose regions (section 4.3). We first compute the
tightness values along the silhouettes and then use these
values to compute tightness across the front and back.
The tightness at the silhouette vertices is initialized to
a function of the planar distance from the vertex to the
body (normalized with respect to the mannequin bound-
ing box). We use a steep exponential falloff, as we want
tightness to become zero once we move away from the
mannequin even slightly. The user can modify the sil-
houette tightness values to account for sketching inac-
curacies such as tight silhouettes drawn too far from the
body.

To distribute the values across the mesh we solve a
least-squares minimization, which assigns similar tight-
ness values τ to adjacent vertices, while holding the val-
ues along the silhouettes fixed:

min
∑

i j

wi j(τi − τ j)2.

We aim to have smoothly changing tightness val-
ues across the front and back while avoiding over-
smoothing along the silhouette direction. Thus the
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weights wi j assigned to each pair of vertices depend on
the orientation Ni j = (vi − v j)/‖vi − v j‖ of the vector viv j

with respect to the local coordinate frame,

wi j = e−
|Ni j ·Y

′
i |

σ1

2

(1)

Based on experiments we set σ1 = 0.5. To reduce the
solution’s dependency on the triangulation, the sum

∑
i j

includes a two-ring neighborhood of each vertex.
In the example on the right, the

neighbors of the yellow vertex i are
colored black to red based on the
weight wi j (low to high). The axis
direction in this example is verti-
cal. We solve the resulting linear
system using Cholmod [23].

4.2. Tight Garment Computation

We now proceed to compute the actual surface geom-
etry, assigning depth, or z, values for the mesh vertices.
We start by computing a garment which is tight every-
where, creating a plausible solution for the regions clas-
sified as tight. While there are numerous spring-system
approaches for generating such tight garments [5], we
found that the following modified Laplacian formula-
tion provides adequate results in our setup at a reason-
able computational cost.

A basic zero length spring, or Laplacian, system with
standard boundary conditions implicitly minimizes the
mean curvature of the surface. Since garments are

Figure 6: Tight purple dress (Figure 10) generated with
developability term γ = 0 (left) and γ = 0.5 (right)
(side-view of the mannequin used shown in the cen-
ter).The difference is most noticeable in the concave ar-
eas.

nearly developable piece-wise we would like the sur-
faces we obtain to have small Gaussian curvature, pos-
sibly at the expense of higher mean one. We observe
that one way to reduce the Gaussian curvature is to min-
imize the squared normal curvature on the surface in
a consistent direction. For garments, the local axis of
revolution provides a natural choice. Thus to obtain a
plausible wrapper surface we use a weighted Laplacian
formulation which aims to minimize the curvature of
the surface, intuitively searching for a minimal surface
that interpolates the sketch outline and doesn’t intersect
the mannequin. The choice of weights prioritizes nor-
mal curvature minimization (vertex position similarity)
along the local axis Y ′:

min
∑

i

‖vi −
1∑

i j φi j

∑
i j

φi jv j‖
2, (2)

φi j = (1 − γ) + γe−(|Ni j·X′i |/σ2)2

where vi are the mesh vertices and σ2 = 0.1. The impact
of the developability factor γ is shown in Figure 6. The
main difference is in the amount of garment “stickiness”
in concave regions, such as the small of the back, where
using the default value of γ = 0.5 we achieve results
more consistent with less stretchy fabrics.

The resulting energy term is combined with the re-
quirements to preserve the known 2D vertex positions
along outlines and to prevent garment intersection with
the body. Intersection avoidance is incorporated explic-
itly through the use of a Gauss-Seidel type solver. The
process is initiated by moving each interior vertex of the
mesh along the depth axis to avoid intersection with the
mannequin. At each iteration, if the new position com-
puted based on Equation 2 is inside the mannequin, the
vertex is only moved along the vector between the old
and new positions until it lies on the mannequin surface.
After the process converges, to improve the quality of
the resulting mesh we apply a few iterations of standard
tangential smoothing.

4.3. Letting the Garments Loose

For a tight-fitting outfit the computed surface pro-
vides a feasible interpretation, however outfits that have
loose regions require further processing. Specifically,
we want the garment in these areas to form a gener-
alized surface of revolution. Since we also require a
smooth transition between this surface and the one gen-
erated for tight regions standard methods for generating
swept surfaces are not suitable as-is for our task.

6



Instead, the following two key observations lead us to
adopt a normal-based modeling strategy described be-
low. We first note that along any given sweep trajectory
on a generalized surface of revolution the component of
the surface normal aligned with the axis of revolution
remains constant while the two other, orthogonal, com-
ponents defined in our local frame change smoothly. In
contrast, along a profile, the two orthogonal components
of the normal remain constant (up to a normalization
factor), while the axis-aligned one changes.

A typical sketch contains two opposite silhouettes for
each loose region, with the vertex normals well defined
along each one (the depth component of each normal is
zero). Therefore, to extract a surface of revolution from
such silhouettes one can interpolate these normals over
the front and back, separating the axis-aligned normal
component from the two orthogonal ones. Specifically,
the axis-aligned components should remain very similar
along each trajectory while the orthogonal components
should be very similar along a profile. Such interpola-
tion of two opposite silhouettes effectively defines two
half-circle surfaces of revolution (each determined by
a choice of depth direction when interpolating the two
axis-orthogonal components of the normal). Enforcing
normal preservation in tight regions, while preserving
normal continuity as described below changes the sur-
face trajectory to one that better follows the mannequin
body shape. The final surface geometry is then gener-
ated by computing vertex positions that satisfy the nor-
mals.

4.3.1. Solving for Normals
Based on the requirements above we compute the

normals across the loose areas of the garment surface
using a weighted Laplacian-type functional which con-
sists of three terms: preservation of wrapper normals,
smoothness or similarity of adjacent axis-aligned nor-
mal components predominantly enforced along the tra-
jectories, and similarity of orthogonal components pre-
dominantly enforced along the profiles. The 2D nor-
mals of the sketched silhouettes serve as boundary con-
ditions.

min
∑

i

τi

ψ
‖ni − n′i‖

2 (3)

+(1 −
τi

ψ
)
∑

i j

[wi j‖n
y
i − ny

j‖
2 + w′i j‖n

p
i − np

j ‖
2]

ny
i is the Y ′ component of the normal in the local coor-

dinate frame, np
i is the orthogonal component, and n′i is

the initial normal computed on the wrapper surface. The
weights wi j are the same as for the tightness computa-
tion (Equation 1), giving higher weights to axis-aligned

normal components lying on the same trajectory . The
weights w′i j are similarly defined with respect to the X′

axis w′i j = e−(
|Ni j ·X

′
i |

σ1
)2

to obtain more similar orthogonal
components along each profile.

In the figure on the

ni
nj

 nj
y

nj
p

 ni
p

 ni
y

right, Y ′ is the verti-
cal direction and hence
the weight wi j will be
high, forcing ny

i and ny
j

to be very similar. In
contrast, the weight w′i j
will be small, allowing
the orthogonal compo-
nent of the two normals to diverge. As in the tightness
computation, the sum

∑
i j includes a two ring neighbor-

hood of each vertex. The parameter ψ controls the im-
pact of the wrapper normals on the solution. In loose
regions these normals are nearly horizontal, thus adding
them into the framework creates the side-view straight-
ening effect discussed in Section 3. However, we want
this impact to be very small, thus by default we use a
very high value of ψ = 5000.

The function above has to be combined with a nor-
malization constraint forcing normals to be of unit
length. Since in our setup we expect the axis-aligned
component of the normal ny to be interpolated sepa-
rately, the renormalization is applied only to the orthog-
onal components np. The combined formulation is chal-
lenging to solve using direct solvers. At the same time
since the rotations introduced are fairly large, using an
unconstrained linear solver and then renormalizing the
results as done in many linear deformation setups, can
in our experience introduce visible artifacts. However,
we found that the basic Gauss-Seidel scheme converges
sufficiently fast for our needs using the wrapper surface
normals as an initial guess.

4.3.2. Solving for Positions
Given the normals we search for the vertex positions

that satisfy them. In general this is an ill-posed prob-
lem, as numerous solutions exist. Thus we need to in-
troduce per-vertex constraints to stabilize it. Since the
final solution can significantly deviate from the tight
wrapper surface, pulling the solution toward the initial-
positions [14] provides unnatural results. Enforcing
mesh smoothness by introducing a Laplacian term pro-
vides better results, positioning the surfaces more or less
where expected, but tends to over-smooth them.

To obtain the desirable result, we first solve for po-
sitions that satisfy the normals while preserving surface
smoothness and then recompute the positions replacing

7



the smoothness term with one preserving the positions
computed in the first step. Specifically we first mini-
mize P(v) + R1(v), where

P(v) =
∑

i

∑
(i, j,k)∈T

(ni · (v j − vk))2

R1(V) = µ1

∑
i

(vi −
1
|(i, j)|

∑
(i, j)

v j)2

and T is the set of mesh triangles. P(v) is a quadratic
functional expressing normal preservation proposed in
[14]. R1 enforces both smoothness and triangle shape by
aiming to place each vertex at the average of its neigh-
bors, without necessarily collapsing the mesh. To avoid
distorting the solution in tight regions, the sum in R1
iterates only on vertices with tightness values smaller
than 1. We found that a high value of µ1 = 20 is nec-
essary to stabilize the solution. In the second step we
replace R1 with R2 = µ2

∑
i(vi − v′′i )2, where v′′i are the

positions from the first solution step and µ2 = 1.
The boundary conditions for both steps are: preserva-

tion of positions in tight regions with 2τi as the per ver-
tex weight, and preservation of silhouette and boundary
positions with weights of 7 and 1 respectively (slight
boundary displacement allowed by the smaller weight
tends to increase realism). Both steps use Cholmod [23]
to solve the corresponding linear systems. In some rare
cases the obtained surfaces can intersect the mannequin,
as collisions are not prohibited explicitly. In such cases
we first resolve the collisions, pushing the colliding ver-
tices outside and then perform a few Gauss-Seidel iter-
ations to correct the shape in the surrounding area. At
the end of this step we have a believable overall garment
shape consistent with the drawn outline.

4.4. Adding details
Additional shape information provided by hemlines,

folds and wrinkles is incorporated into the system using
the following modifications (Figure 7).

Hemlines: We use the depth information provided
by the hemline shape to improve the shape of the
garment. Given the 2D sketch and the location of the
viewer, and assuming that the hemline is straight, i.e.
embedded in a plane orthogonal to the view plane, it is
possible to compute the three-dimensional positions of
hemline vertices by inverting an estimated perspective
matrix. This process can also determine the (x, z)
component of the surface normals along the hemline.
Conversely, given the 3D position of a vertex, we
can estimate the viewer location. Our method first
computes a least-squares estimate of viewer location,

Figure 7: Adding details to the skirt in Figure 1, back
view (left to right): modeled using only silhouette infor-
mation; with folds but without using hemline informa-
tion; with hemline shape taken into account, no folds;
and with both.

based on vertex positions as determined in the previous
section. We then use this estimate to calculate new
target normals along the hemline. Finally, solving
for optimal normals and positions throughout the
garment, we obtain a new model with similar overall
shape that better conforms to the sketched hemline.
Since not all sketches use perspective (e.g. Figure 10,
top-right), we abort the hemline computation if the new
positions intersect the mannequin or drastically differ
from the original. The hemline incorporation not only
helps to resolve unnatural uneven hems created when
perspective drawing is not corrected, most notable in
Figure 9 rows two and three left, but helps accentuate
folds when combined with the next step.

Folds: After computing the basic normals across the
surface, we incorporate folds into the setting as lines
along which the normal is rotated away from the view
direction, perpendicular to the fold axis. The direction
of the fold is set consistent with the previously solved
normal direction at its bottom point and the default
rotation angle places the normal at this point into the
view plane (consistent with the expectation of folds as
interior silhouettes). Both the direction and the angle
can be adjusted by the user if desired. Starting at the
bottom point of each fold, we rotate the normal as
specified and propagate the rotation upward in a smooth
manner, where the normal at the top of each fold is left
unchanged. We then re-solve for the surface normals,
keeping the fold normals fixed.

Wrinkles: While wrinkles only slightly change the
shape of a garment, due to their ubiquity, garments lack-
ing them look unnatural. To add wrinkles we smoothly
indent the surface along the wrinkle line. The user can
specify the wrinkle direction, with the default being out-
ward, like for most real-life wrinkles. Additional wrin-
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Figure 8: Comparisons with [24] (top three rows) and [25] (bottom). Previous result on the left and ours on the right.
The mannequin used is the same as in Figure 2.

kles can be added using a procedural approach [3, 20].
With the extra details added-in we obtain a believable

garment consistent with the user sketch (Figure 1).

5. Results and Discussion

We have tested our method on over twenty inputs
shown throughout the paper and in the accompanying
video. Those include tight-fitting ( purple dress in
Figure 10, red dress in Figure 8) as well as puffy or
loose garments (skirt in Figure 1, ball-gown in Figure
5); dresses, skirts, shirts, and pants; long and short
sleeves; and different female and male mannequins.
We included both models created from inputs used
by previous methods (Figures 2,8,9) as well as totally

new ones (Figures 1,5,10). Two of the new inputs
(Figures 1,5) were drawn by an artist and the others
were drawn by students with no artistic training. In all
these examples our modeling system was able to create
realistic-looking garments which provide a plausible
interpretation of the input sketches.

Comparison and User Study: To get an unbiased
evaluation of the results we conducted a web user study,
where a random selection of 65 participants were asked
to compare our results to those of previous methods in
terms of believability and fidelity with respect to user
input. Participants were presented with an input sketch,
a mannequin, and two modeled outfits (in front and side
views) side by side, and were asked to answer which

9



Figure 9: Comparisons with [3] (top) and [21] (bottom two rows). The inputs to both methods include extra 3D seams.
Even for basic models such as skirts and tops [3, 21] require the user to specify darts to produce meaningful results.

garment looks like a more believable realization of the
sketch. The users were not provided with any special
technical instructions. The questions were presented in
random order to avoid bias. The survey included twelve
outfits, seven from [24], one from [25], two from [3],
and two from [21] (all provided to us by the original
authors). Overall our results were preferred in 80% of
the comparisons (616/770). When considering only the
methods of [24, 25], where the input is similar to ours,
the number increased to 84%. The only input for which
less than two thirds of the participants preferred our
results was the top and skirt outfit (Figure 9, middle)

where the vote was equally split between our result and
that of [21]. Note however that both [21] and [3] require
users to specify additional seams even for such simple
inputs. Specifically, both require user specified darts on
tops and skirts. Since both methods ignore collisions
the resulting garments can intersect the mannequin,
thus for instance we had to manually scale the bra in
Figure 9, top-left to resolve collisions. Overall, the
study validates our claim that the context-aware method
we propose provides more realistic interpretation of
user sketches, without requiring user-specified seams.
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Figure 10: Diverse garment models generated by our system using different mannequins.
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Parameter Setting: The majority of the coefficients
used in our modeling system are fixed for all examples
and we expect the specified default values to be appli-
cable to all models.

However, there are three parameters which we found
users may want to control: developability γ (Equa-
tion 2), straightening ψ (Equation 3), and silhouette
tightness (Section 4.1). The first is strongly linked
to the fabric and cut of the modeled garment, which
can vary from model to model. For instance, for the
red ”chinoise” dress (Figure 8 top) we turned it off,
as we wanted the dress to be very fitted. Figure 6
shows the impact of the developability factor on the
purple dress (Figure 10). ψ controls how straight the
garment is in a side view compared to the front one.
The sketch provides little to no cues in this regard,
hence the ”correct” output is very subjective. Lastly, the
silhouette tightness falloff can vary based on a user’s
drawing style (e.g. in Figure 2 even the supposedly
tight silhouettes are drawn quite far).

Performance: Our unoptimized garment modeling
code takes 7 to 12 seconds to generate a garment with
ten to fifteen thousand triangles in our testing environ-
ment (utilizing one processor on a 2.13 GHz Intel Core
2 workstation). Given that we are concerned with mod-
eling the overall garment geometry this resolution was
sufficient for all the models shown in the paper. The
time is split between the global linear solves (tightness
computation and global position solve, Section 4.3.2),
which take 5-7 seconds; iterative solves (Section 4.2 and
Section 4.3) 1-3 seconds, and collision queries 1-3 sec-
onds. We believe that the linear solves which dominate
the cost can likely be sped up using a tailored precon-
ditioned iterative solver and the collision queries can be
sped up by using fast GPU collision testing. The run-
time depends on both the mesh resolution and the width
of the loose garment areas, with the iterative solution
steps converging more slowly for looser garments like
the dress in Figure 5. The method does not depend on
the mannequin complexity as the mannequin is only ref-
erenced via collision queries. Our implementation uses
the Closest Point Transform [9] to reduce the cost of
these queries and eliminate the dependency on the reso-
lution of the mannequin.

The overall time for a modeling session can vary from
ten minutes to half an hour depending on the garment
complexity and the user’s sketching abilities. These ses-
sion times are significantly lower than those required by
traditional garment modeling environments.

6. Conclusions

We presented a new system for sketch-based gar-
ment modeling than creates believable garments plau-
sibly reflecting the user intent. The system is based
on a context-aware interpretation of garment sketches
combined with a suitable specialized geometric model-
ing mechanism, which allows for construction of gen-
eralized surfaces of revolution for the loose regions
while maintaining smooth transition with the body-
fitting wrappers surfaces in the tight areas.

Our method has some limitations, which can be ad-
dressed by future work. To create optimal results the
current system relies on a couple of parameters which
frequently require adjustment by the user, such as tight-
ness and developability. One possible approach to mini-
mize manual parameter adjustment is to introduce a ma-
chine learning setup which learns optimal parameters by
analyzing manually-set ones for a variety of inputs. The
quality of our results depends on the mesh triangulation
used, with higher quality achieved on finer meshes, bet-
ter aligned with the local coordinate frames. A built-in
adaptive re-meshing scheme can therefore improve the
quality of the obtained results.

Other possible areas of future research include di-
rect design from existing fashion drawings skipping the
user-interface step, and reverse engineering of garments
where the goal is to find as-plausible-as-possible set of
patterns for a given sketch or 3D garment.
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