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Abstract

Resizing to a lower resolution can alter the appearance of an image. In particular, downsampling an image causes
blurred regions to appear sharper. It is useful at times to create a downsampled version of the image that gives the
same impression as the original, such as for digital camera viewfinders. To understand the effect of blur on image
appearance at different image sizes, we conduct a perceptual study examining how much blur must be present in
a downsampled image to be perceived the same as the original. We find a complex, but mostly image-independent
relationship between matching blur levels in images at different resolutions. The relationship can be explained by
a model of the blur magnitude analyzed as a function of spatial frequency. We incorporate this model in a new
appearance-preserving downsampling algorithm, which alters blur magnitude locally to create a smaller image
that gives the best reproduction of the original image appearance.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

One pervasive trend in imaging hardware is the ever in-
creasing pixel count of image sensors. Today even inexpen-
sive cameras far outperform common display technologies
in terms of image resolution. For example, very few cam-
eras remaining on the market, including mobile devices, cap-
ture an image at low enough resolution to show on a 1080p
HDTV display without resizing. In an extreme case, the pre-
view screen on one Nikon professional digital SLR can only
display 1.5% the pixels captured by the sensor. The cell-
phone camera owner and the 4K cinematographer face the
same problem of getting an accurate depiction of the image
when they can’t see all the pixels.

While high resolution images are needed for a number of
applications such as on-camera previewing, print output or
cropping, the image is often previewed on a display of lower
resolution. As a result, image downsampling has become a
regular operation when viewing images. Conventional im-
age downsampling methods do not accurately represent the
appearance of the original image, and lowering the resolu-
tion of an image alters the perceived appearance. In partic-
ular, downsampling can cause blurred regions to look sharp
and the resulting image often appears higher quality than its

full-size counterpart. While the higher quality images can be
desirable for purposes such as web publishing, the change is
problematic in cases where the downsampled version is to
be used to make decisions about the quality of the full-scale
image, for example in digital view finders.

In this paper, we aim to develop an image downsampling
operator that preserves the appearance of blurriness in the
lower resolution image. This is a potentially complex task
— the human visual system’s ability to differentiate blurs is
dependent on spatial frequency, and edges blurred by differ-
ent amounts may be perceived as different at one scale but
equal at another. Additionally, there is potential for content-
dependent blur perception where the same amount of blur is
perceived differently, depending on the type(s) of object(s)
shown.

We approach this problem by conducting a perceptual
study to understand the relationship between the amount of
blur present in an image, and the perception of blur at dif-
ferent image sizes. Our study determines how much blur
must be present in a downsampled image to have the same
appearance as the original. We find a complex and mostly
image-independent relationship between matching blur lev-
els in images at different resolutions. The relationship can
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be explained by a linear model when the blur magnitude is
analyzed in terms of spatial frequency.

Using the results of this study, we develop a new image
resizing operator that amplifies the blur present in the im-
age while downsampling to ensure it is perceived the same
as the original. While our algorithm is compatible with any
combination of methods for producing a spatially-variant es-
timate of image blur and spatially-variant image filtering, we
base our implementation around a modified version of the
algorithm by Samadani et al. [SLT07]. The result is a fully-
automatic method for downsampling images while preserv-
ing their appearance, the performance of which we verify
with another user study.

2. Related Work

The manner in which the human visual system perceives blur
is a complex subject and the topic of a number of perceptual
studies. Cufflin et al. [CMM07] and Chen et al. [CCT∗09]
attempt to quantify blur discrimination, the ability to per-
ceive whether two blurs are different, while Mather and
Smith [MS02] investigated how blur discrimination affects
depth perception. Held et al. [HCOB10] studied how the pat-
tern of blur in an image influenced users’ perception of the
absolute distance and scale of objects in the scene.

In the context of image resizing, Fattal [Fat07], Kopf et
al. [KCLU07] and Shan et al. [SLJT08] developed tech-
niques for intelligently upsampling images. These methods
use assumptions about the image statistics to invent addi-
tional information based on existing details to provide a
more natural rendition than a reconstruction-filter resam-
pling. Also related are seam carving methods such as the
one by Avidan and Shamir [AS07]. These methods resize
images by inserting or removing pixels in the least impor-
tant regions of the image, preserving the overall structure.
A number of additional methods have been presented, in-
cluding extensions to video [PKVP09, KLHG09]. How-
ever, seam-carving mostly focuses on adjusting aspect ra-
tios and is combined [RSA09] with regular downsampling
operations for extreme changes in resolution. Rubinstein et
al. [RGSS10] provides a comprehensive overview of exist-
ing methods, and conducts both perceptual and objective
analyses of each, comparing their performance.

Estimating the amount of blur present in images is a
well-studied but still not completely solved problem. Blind
deconvolution methods, such as those by Lam and Good-
man [LG00] and Fergus et al. [FSH∗06] iteratively estimate
the shape of the blur while sharpening the image. While
these methods assume that the blur kernel is invariant across
the entire image, other methods recover spatially-variant
blur. Examples include classification of defocus and motion
blur by Liu et al. [LLJ08] and scale-space methods such as
Elder and Zucker [EZ98].

Most pertinent to our method is the work on increasing the

blur in images. Bae and Durand [BD07] produce a spatially-
variant estimate of the amount of blur present at each lo-
cation in the image and increase the blur to simulate wider
apertures. However, the method is computationally very ex-
pensive and thus not suitable for many applications, such as
a digital viewfinder. Samadani et al. [SLT07] developed a
method of amplifying specific artifacts present in full-size
images to be visible in thumbnail images, including estimat-
ing and amplifying blur. In both cases, the amount of blur
is increased by single scale factor, specified by the user. The
perception of blur is more complex than this relationship and
neither method can ensure that the appearance of blur will
remain constant if the image is resized.

3. Experiment Design

The basic premise of our paper is that the blur in an image
is perceived differently when that image is downsampled. In
order to create a downsampled image that preserves the ap-
pearance of the original image, we must quantify that change
in perception. The experiment was intended to measure the
amount of blur that needs to be present in a thumbnail image
in order to match the appearance of blur in a full-size ver-
sion of the same image. This relationship was measured in a
blur-matching experiment.

Observers were presented a full-size image, as well as two
thumbnail images. They were asked to adjust the amount
of blur in both thumbnail images such that the first thumb-
nail was just noticeably blurrier than the full-size image, and
the second thumbnail was just noticeably sharper. Example
stimulus is shown in Figure 1. We found that this ‘bracket-
ing’ procedure resulted in more accurate measurements than
direct matching and was necessary due to the relatively wide
range of blur parameters that result in approximately equal
appearance. Such variation of the method of adjustment was
used before to measure a just noticeable blur in the context
of the depth of focus of the eye [YIC10] and the brightness
of the glare illusion [YIMS08]. The matching blur amount
was computed as the mean of the ‘less-’ and ‘more-blurry’
measurements.

An alternative experiment design that would produce
more accurate results, is the 2-alternative-forced-choice pro-
cedure, in which the observers are asked to select a blur-
rier/sharper image when presented the original and down-
sampled version and the amount of blur is randomly added or
removed from the smaller image. Such procedure, although
more accurate, consumes much more time (is on average 5–
20 longer) and thus is not effective with a larger group of
observers. The objective of our study was to gather data for
an ‘average’ observer, thus it was more important to collect
a larger number of measurements for a larger population,
rather than fewer but more accurate measurements.

Viewing conditions. The images were presented on a 27"
Dell 2707WFPc display with 1920×1200 resolution. The
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experiment was run in a dimmed room with no visible dis-
play glare. The viewing distance was 1 m, resulting in a pixel
Nyquist frequency of 30 cycles per visual degree.

Image selection. A pilot study was run to observe how the
blur estimates differ between images, and in order to iden-
tify a possibly small set of images that would still reflect
image-dependent effects. For the pilot experiment we se-
lected 20 images containing people, faces, animals, man-
made objects, indoor and outdoor scenes. The pilot exper-
iment was run with 10 blur-levels and only 7 observers. The
results were averaged for each test condition (blur level ×
downsampling level) to form a vector value. Then, the Eu-
clidean distance was computed between vectors for each pair
of images, to build a difference matrix. The difference data
was then projected onto a 2D space using multi-dimensional
scaling [KW78] in order to produce the plot in Figure 2. The
plot reflects image-dependent differences in blur perception
for the same blur parameters. To maximize diversity in im-
age content, we selected five images which were located far
apart on the plot and thus were likely to be the most different
in terms of produced results.

Stimuli. For both the pilot study and the full experiment,
differently blurred versions of images were generated by
introducing synthetic blur to full-size images with no no-
ticeable blur in them. Since we could not control where in
the image users were looking to make their judgements,
we introduced uniform blur to completely in-focus images
to avoid any ambiguities in response. For this purpose we
used a Gaussian kernel of a specified standard deviation ς .
Thumbnail images were produced by the same process, ex-
cept that the convolution of a full-size image was followed
by nearest-neighbor resampling. We chose a nearest neigh-
bor filter for this step in order to not distort the experiments
by introducing additional low-pass filtering. However, as a
result, some amount of aliasing was present for small blur
kernels under large downsampling factors (also see Sec-
tion 4). The reported ς -values are given in visual degrees
to make them display-independent (in this paper, we use ς

Figure 1: Screen capture of the stimuli used in the exper-
iment. Subjects adjust the blur in the small images on the
right to match the blur in the large image on the left.
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Figure 2: The result of multi-dimensional scaling on the dif-
ferences between per-image results collected in a pilot study.
The pilot study was intended to identify the representative
images that had the highest potential to reveal any image-
dependencies in the study. The images selected for use in the
main study are shown at the bottom.

to denote standard deviations of blur kernels expressed in vi-
sual degrees, and σ for blur kernels expressed in pixels). The
five selected images were shown at 10 blur levels, ranging
from 0 do 0.26 visual degrees, and at three downsampling
factors: 2, 4, and 8.

Observers. 24 observers (14 male and 10 female) partic-
ipated in the study. They were paid and unaware of the
purpose of the experiment. The observer age varied from
21 to 38 with the average 28. All observers had normal or
corrected-to-normal vision.

Experimental procedure. Given a reference image with
blur ς r, the observers were asked to adjust the matching
blur to be just noticeably stronger in one and just notice-
ably weaker in the other thumbnail image. Each observer re-
peated the measurement for each condition three times, but
each observer was assigned a random subset of 30 out of
150 conditions to reduce workload (150 = 3 downsampling
factors × 10 blur levels × 5 images). In total over 2,100
measurements were collected. The experiment was preceded
with a training session during which no data was recorded,
followed by three main sessions with voluntary breaks be-
tween them. The breaks were scheduled so that each session
lasted less than 30 minutes.

4. Experiment Results

The results of the experiment, averaged over the five selected
images and for each image separately, are shown in Figure 3.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Matthew Trentacoste & Rafał Mantiuk & Wolfgang Heidrich / Blur-Aware Image Downsampling

Figure 3: The results of the blur matching experiments, plotted separately for averaged data ς m (top-left) and for each individ-
ual image. The continuous lines are the expected magnitudes of matching blurs found by computing the average between two
measurements for ‘more blurry’ and ‘less blurry’. The error bars represent a 95% confidence interval. The edges of the shaded
region correspond to the mean measurement for ‘more blurry’ and ‘less blurry’.

The results are very consistent regardless of the image con-
tent, but averaging across all images is necessary to reduce
variability in the data. Because both ς values are reported
with respect to the blur in the full-size image, the y = x line
(dashed black line in the plot) is equivalent to retaining the
blur of the original image. For all data points the matching
blur is larger than the blur in the original images (points
above the dashed black line). This is because images look
sharper after downsampling and they need to be additionally
blurred to match the appearance of full-size images.

The experimental curves also level off at higher downsam-
pling levels and for larger blur amounts. This effect is easy to
explain after inspecting actual images, in which the amount
of blur is so large that it sufficiently conveys the appearance
of the full-size image and no additional blurring is needed.

It is important to note that the reported values also in-
clude the blurring necessary to remove aliasing artifacts. As
mentioned in the previous section, we used a simple nearest-
neighbor filter to resample the blurred high-resolution im-
ages so that the results are not confounded with an anti-
aliasing filter. If the blur was not sufficient to prevent aliasing

in the downsampled image, the result appeared sharper than
the original. We observed that when no blur was present in
the large image, subjects adjusted the amount of blur in the
thumbnail to a value close to the optimal low pass filter for
the given downsampling factor.

5. Model for Matching Blur Appearance

In this section we introduce a model that can predict our
experimental results. The plot curves in Figure 3 suggest a
non-linear relation for matching blur in original and down-
sampled images. However, we show that the averaged mea-
sured data ς m is well explained by the combination of an
anti-aliasing filter ς d and a model S, which is linear in spa-
tial frequencies (measured in cycles per visual degree):

ς̂ m =
√

ς 2
d +S2. (1)

The ς̂ m is the model prediction of the experimental blur-
matching data for an average observer. The term ς d approx-
imates the effect of an ideal anti-aliasing filter. The stan-
dard deviation ς d of the Gaussian filter that provides a least-
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Figure 4: Average matching blur data (Figure 3 first panel),
with the anti-aliasing component ς d removed, replotted as
the roll-off frequency. The matching blur follows straight
lines, except for the small blur amounts (high frequency
roll-off), where aliasing dominates. The two lowest value ς r
points were omitted from the plot as the values were exces-
sively large due to the 1/ς transform.

squares fit of the sinc filter is

ς d = d
√

3log2
π·p , (2)

where d is the downsampling factor, while p is a conversion
factor that maps from image units (pixels) to visual degrees,
which is equal to the number of pixels per visual degree. In
our experiments, we had subjects sit further away from the
screen than usual, to prevent limitations in screen resolution
from affecting the results. As a result, p = 60 for our exper-
imental data.

To motivate our choice of model, we remove the anti-
aliasing component ς d from the experimental data and plot
it in terms of spatial frequency 1/ς in Figure 4. The plot
shows the experimental data expressed as the S component
of Equation 1. All data points are now well aligned and
mostly in linear relation, except several measurements at
high frequencies and for the 2× downsampling factor. We at-
tribute these inaccuracies to the measurement error, which is
magnified in this plot because of the f = 1/ς transform. The
plot demonstrates that the remaining term S can be modeled
as a set of straight lines when expressed in terms of spatial
frequencies. Moreover, the lines cross at approximately the
same point. The model that provides the best least-squares
fit of the experimental data in terms of ς -values is

S(ς r,d) =
1

2−0.893 log2(d)+0.197( 1
ς r
−1.64)+1.89

, (3)

where d is the downsample amount and ς r is the amount of
the reference blur in the original image.

Figure 5 plots the combined blur model ς̂ m as compared
to the results from our experiments. The figure shows that
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Figure 5: Blur model ς̂ m (dashed lines) compared with the
experiment results ς m (continuous lines and error bars).

the fitting error is quite acceptable, even for low-ς (high-
frequency) points, which did not follow the linear relation
in Figure 4. When comparing plots, note that the large fre-
quency values correspond to small ς -values. While a higher-
order function could provide a better fit, our experimental
data does not provide enough evidence to justify such a step.
Moreover, we believe that a linear model in terms of spatial
frequency is more plausible than a higher-order function. In
the supplementary materials we include a number of exam-
ples in which the model is tested on images that were not
used in the experiment.

Note that the combined model of matching blur ς̂ m is the
absolute amount of blur that needs to be present in the full-
size image before downsampling and is expressed in units
of visual degrees. In Section 6.3 we explain how to compute
the amount of blur that needs to be added to a downsampled
image.

6. Resizing Algorithm

The goal of our algorithm is to use the results of our ex-
periment to automatically produce a downsampled image
that preservers the appearance of the original blur. We first
compute a spatially-varying estimate of the amount of blur
present in the full-size image. Given that estimate, we use the
results of our study to determine how much additional blur is
needed for the specified downsample. Finally, we synthesize
a new downsampled image with the amount of blur required
to preserve the appearance of the image.

Our overall approach can work with any method that pro-
vides a spatially variant estimate of image blur. We consid-
ered the method by Elder and Zucker [EZ98], but it only pro-
duces estimates at edge locations and requires the work of
Bae and Durand [BD07] to provide a robust estimate of the
blur at all pixels. While the approach produces high-quality
results, it operates at the resolution of the original image and
is computationally intensive.
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Instead, we chose to base our method on the algorithm
of Samadani et al. [SMBC10] because of its simplicity and
computational efficiency, which is a result of performing
most work at the resolution of the downsampled image. We
do not use the final resulting thumbnail of Samadani et al.,
instead making use of the spatially-variant blur estimate they
compute as an intermediate result. In Section 6.2 we extend
that method so that it provides blur estimates at each pixel
location in terms of the Gaussian kernel σ before synthesiz-
ing the final image using our model of perceived blur.

The Gaussian model differs from the geometric model for
defocus blur. However, it has been argued that Gaussian blur
better accounts for artifacts in actual cameras, and it has been
used widely in computer vision [Pen87, Sub92]. Note that
the following considerations assume σ values expressed in
pixels rather than visual degrees.

6.1. Base Algorithm

To preface our work, we summarize the blur estimation
method of Samadani et al., which produces a spatially-
varying map at the resolution of the thumbnail. The algo-
rithm first generates a standard thumbnail, ts, and produces
a scale-space [Lin94b] of thumbnails blurred by different
amounts. Image features are computed for the high resolu-
tion original as well as for each of the thumbnail images in
the scale-space. The amount of blur is determined by the
level of the scale-space with feature values most similar to
those of the original image features.

These features are computed as the maximum absolute
difference between a pixel and its eight neighbors. In the
case of the original image, the feature values are downsam-
pled using a maximum filter to produce a thumbnail resolu-
tion range map, ro. The levels of the thumbnail scale-space
lσ j are created by convolving the standard thumbnail with
a set of Gaussian kernels of standard deviations σ j, where
lσ0 is the unblurred, original thumbnail. For each of these
images lσ j , a low resolution range map rσ j is generated.

The estimate of the blur present in an image is represented
by the blur map m. Each pixel i of the blur map is determined
as

m(i) = min
j

{
j | rσ j (i)≤ γro(i)

}
, (4)

where γ is a user-specified parameter that controls which rσ j

most closely matches ro and in turn adjusts the amount of
blur added. An example of the blur map is shown in Figure 6.
The final image is synthesized by selecting the pixel from lσ j

that corresponds to m(i).

While Samadani et al. recover a blur map for the image, it
is worth noting that this blur map does not necessarily rep-
resent the defocus or depth of pixels. It can better be under-
stood as a map of relative gradient magnitude per image re-
gion. While rapidly changing derivatives correspond to sharp

Blur estimation

0px blur 15px blur

Figure 6: Input image (left) and the associated blur map
(right). Note that while the curb is the same distance as the
wooden boards, it is estimated as blurrier due to the lack of
detail in that area. The blur map is visible only in color.

regions, there is an ambiguity with slowly changing deriva-
tives. If an image region is a flat color, we cannot determine
whether that is a detailed region that is out of focus or it is
in focus but lacks any detail. Both situations are equivalent
from the viewpoint of this algorithm.

6.2. Blur Estimation

While Samadani et al.’s blur estimation provides a means of
controlling the relative increase in the amount of blur in the
resulting thumbnail, it does not provide an absolute measure
of the blur present in the large image. In order to make use
of the results of the model from Section 5, we need to know
the scale of the blur present in the original image. To do so,
we extend their local image features to a general relationship
between the width of a blurred edge and the corresponding
derivatives at different resolutions, which we can use to re-
cover the scale of the original image blur.

In the case of a 1D Gaussian blurred edge of normalized
contrast, the edge profile is the integral of the Gaussian func-
tion. The derivatives of this profile follow the Gaussian func-
tion, with the peak lying at the center point of the edge. For a
Gaussian profile with standard deviation σ to have a contrast
of 1, the derivative of the edge cross-section will be:

g(σ,x) =
1√

2πσ2
e−

x2

2σ2 . (5)

This scaling factor establishes a relationship between the
width of the Gaussian profile and the scale of its derivatives.
If the width of the edge profile changes by a factor k, the
derivatives must change by a factor of 1/k to retain the same
contrast.

The range map operator in Samadani et al. approximates
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the gradient magnitude. For an edge with blur σo, the corre-
sponding range map will equal a Gaussian distribution at the
edge location with an amplitude of 1/

√
2πσ2

o. After down-
sampling that image to obtain ro, the value at the edge loca-
tion is still equal to 1/

√
2πσ2

o.

Due to downsampling, the effective width of that edge in
the thumbnail lσ0 will differ by the downsample factor d. The
pixel corresponding to the edge location in the thumbnail
range map rσ0 will be

1√
2π
(

σo
d
)2

(6)

due to the relationship between the width and scale of a
Gaussian mentioned above. Additionally, that σo/d will be
further altered by the Gaussian filtering that generates the
scale-space images lσ j . Using the convolution formula for
Gaussian functions:

g(n1,σ1)⊗g(n2,σ2) = g
(

n1 +n2,
√

σ2
1 +σ2

2

)
, (7)

the width of the edge in thumbnail scale-space image lσ j will
thus be √(

σo

d

)2
+σ2

j . (8)

We construct the scale-space from a series of blurs with a
uniform spacing of β, which implies σ j = β j. This way, the
choice of β along with the maximum j determines the range
and quantization of the scale-space. The end result is two
different values for corresponding pixels of the two range
maps:

ro =
1√

2πσ2
o

vs. rσ j =
1√

2π

[(
σo
d
)2 +(β j)2

] . (9)

Figure 7 depicts the relationship between ro and the scale-
space rσ j for an edge of increasing blur.

For the algorithm to select the correct value for the blur
map m(i), the two values of Equation 9 must be equal. In
complex images, adjacent image features alter the deriva-
tive values at this edge location and a direct solution would
misestimate σo. Our approach determines σo based on the
correspondence between the range map and the levels of
the scale-space. Adjacent features alter the gradient magni-
tude in both range maps in the same fashion, and the corre-
spondence between them is preserved. Additionally, image
features smaller than

√
σ are suppressed on the scale-space

level with a Gaussian blur of σ, eliminating some of over-
lapping features [Lin94a].

To determine the value of the blur map m(i), Samadani et
al. employ the user-specified parameter γ to bias the selec-
tion of values for m(i) towards more or less blurred levels of
rσ j . Noting that the relation between the two range maps de-
pends on the downsample amount, we instead determine the

Figure 7: Top: image of a step edge with blur increasing
from 0 . . .10 along the x-axis. Bottom: range map values
along dotted line for the original image ro(red), and the
downsampled scale-space rσ j (blue). Note that the intersec-
tion between ro and rσ j (black dots) happens at x = j.

value of γ that correctly scales the range map of the original
image and the range maps of the downsampled scale-space.
We solve the following equation between ro and rσ j

γ
1√

2πσ2
o

=
1√

2π

[(
σo
d
)2 +(β j)2

] (10)

for the value of γ that ensures the index of the blur map se-
lected with Equation 4 is equal to the width of the blur in
the original large image, m(i) = j if σo = j. Canceling terms
and solving for γ yields:

γ =
1√(

1
d

)2
+β2

. (11)

The result is a value of γ automatically chosen for a
given downsample factor and scale-space resolution. In our
method, we use 25 levels of blur ( j = 1, . . . ,25) and a value
of β = 0.4. The resulting values for downsamples of 2, 4,
and 10 are γd=2 = 1.55, γd=4 = 2.11 and γd=10 = 2.48.

6.3. Perceptually Accurate Blur Synthesis

With an accurate estimate of the blur present at each pixel of
the large image, we use our model from Section 5 to com-
pute the amount of blur desired in the downsampled image.
To produce the appearance-matching image, we reduce its
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Conventional downsample Our method Conventional downsample Our method

Cropped region of original image Cropped region of original image

Figure 8: Comparison of conventional downsample and our method for two images. The bottom row contains cropped portions
of the images at the original resolution (see pink boxes in conventional thumbnails). Note the blur present in the eye of the robot
sculpture and cardboard box is visible in our result, but appears sharp in the conventional thumbnail.

resolution by downsampling it by a factor of d using the
standard technique with an antialiasing filter. Because the
anti-aliasing is now accounted for, we use the aliasing-free
component of the model S(ς r,d) from Equation 3, rather
than the complete model ς̂ m. Given the existing blur in the
full-size image σo, the amount of blur that needs to be added
to a downsampled image is expressed as

σa =

√(
S(σo·p−1,d)·p

d

)2

−σ2
o, (12)

The downsampling factor d reduces the blur amount as we
work on a lower-resolution downsampled image. The con-
version factor p, which is equal to the number of pixels per
one visual degree, converts visual degrees used in the model
to pixels used in the blur estimation. For a computer monitor
seen from a typical distance, p is approximately 30 pix/deg.

To produce the final image, for each level of the scale-
space σ j we blur the downsampled image by the correspond-
ing amount of additional σa, then linearly blend sequential
pairs of those blurred images together to approximate non-
integer values of σa. While more accurate spatially-variant
blur synthesis is possible, such as [PCH10], we haven’t no-
ticed any artifacts requiring such methods.

7. Evaluation

In this section, we provide results of our method and com-
pare our approach to that of Samadani et al. [SMBC10]. We
encourage the reader to look at the electronic versions of the
images, which represent the fine details better than prints.
We also provide more examples in the video and the supple-
mental materials.

Figure 8 compares the results of our algorithm to those of
a conventional downsampling method of low-pass filtering
the image followed by nearest-neighbor sampling. In both
the example of the robot sculpture and the art supplies, ob-
jects that appear in focus (such as the head of the robot or
cardboard box) in the conventionally-downsampled image
are in fact blurry, as can be seen in the zoomed portions. Our
method accurately detects this blur and preserves the appear-
ance in the downsampled image.

Figure 9 demonstrates the effectiveness of our algorithm
at preserving the appearance of blur in images across mul-
tiple downsample factors. In this image, the original images
are downsampled by a factor of 2 and 4, and the smaller ver-
sions retain the same impression of the depth of field.

Figure 10 compares the results of our method to those of
the original method of Samadani et al. [SMBC10]. If the
value of γ is manually chosen for the image, their method
can approximate our own. However, if the value of γ is incor-
rectly chosen, their method will either introduce too much
blur and remove detail from the branches in the upper left
or not introduce enough blur and retain all the details in the
flowers. Even with a correctly chosen value of γ their method
can only linearly scale the amount of blur, and cannot model
the more complex relationship between existing blur and de-
sired blur observed in the user study.

Additionally, we conducted a second user study to ver-
ify the effectiveness of our method. Previously, Samadani
et al. [SMBC10] performed a preference study to determine
whether subjects felt their method was more representative
of the original image than a conventional thumbnail. This
study showed that users did prefer the method of Samadani
et al. over standard thumbnails. We instead chose to con-
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2x normal

2x blur-aware

original

original2x normal4x blur-aware4x normal
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Figure 9: Comparison of appearance of blur at multiple downsample levels. All of our results retain roughly the same amount
of blur as the original while the conventionally downsampled appear to get progressively sharper.

Conventional downsample Our result

Samadani, γ = .5 Samadani, γ = 4

Cropped region of original

Figure 10: Comparison of naive downsampling and our
method (top row) to Samadani et al. with too much blur
(γ = .5) and too little blur (γ = 4) from incorrect choices of
γ. The bottom row contains a cropped region of the original
image (see pink boxes) for comparison.

Figure 11: A screenshot of the verification study contain-
ing a pair of thumbnails with different amounts of defocus
blur. Subjects had to choose which image contained the ob-
ject more in focus.

duct a task-based survey to determine the extent to which
our method improves users’ ability to make accurate com-
parisons of how objects in a scene are blurred.

In this 2-alternative-forced-choice study, we pho-
tographed a series of objects with increasing amounts of de-
focus blur. Thumbnail versions of these images were created
using both our algorithm and the conventional downsample
process to downsample by a factor of 8. Subjects were shown
pairs of images with different amounts of defocus blur and
asked to specify in which of the thumbnails the object ap-
peared sharper. Figure 11 contains an example stimuli. A
total of 5 observers participated in the study, performing a
total of 240 trials for each of the downsampling algorithms.

Overall, subjects correctly identified the sharper object
67% of the time when viewing conventional thumbnails,
while they correctly identified the sharper object 83% of the
time when viewing the results of our method.

Our method outperforms conventional downsampling
when the blur is small enough that the object will appear
sharp in a standard thumbnail and blurred in our result. How-
ever, both methods exhibit similar performance if the blur
is small enough for the object to appear sharp at the orig-
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inal resolution, and thus in both thumbnail versions. Like-
wise, the performance of the two methods will be the same
if the blur is large enough that the object will appear blurred
in both thumbnails. We used a uniform distribution of blur
amounts, so our experiment covers all three of these cases.

8. Conclusion

In this paper, we have presented a perceptually-based model
of how the perception of blur in an image changes as the
size of that image is reduced. This model is based on a linear
relationship between the perceived blur magnitude and the
blur present in the image, when analyzed in terms of spatial
frequency.

We have used that model to create a new image-resizing
operator that preserves the perception of blur in images as
they are downsampled, ensuring that the new image appears
the same as the original. To do so, we modified an existing
blur estimation algorithm by Samadani et al. [SMBC10] to
provide estimates of the original image in absolute units.

Future work includes extending the concept of preserving
the perceived appearance to other image attributes. From an
image-quality perspective, accurately preserving the appear-
ance of noise when downsampling can be as important as
blur. Additionally, we would like to investigate the relation-
ship between the perceived contrast of an image and change
in blur or size and see if there is a similar relationship.

More generally, any form of downsampling involves dis-
carding information present in the image. The convention in
graphics and image processing is to attempt to produce the
highest quality result, which usually involves throwing away
higher frequency detail to avoid any aliasing artifacts. Due
to the disparity between sensor resolution and display reso-
lution, users often view images and make image assessments
based on lower-resolution versions that might not represent
their full-size counterparts. We have proposed an approach
that considers how the image is perceived, and preserves that
appearance rather than producing a higher-quality but less
representative result.
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