
Matching Fluid Simulation Elements to Surface Geometry and Topology

Tyson Brochu∗

University of British Columbia

Christopher Batty∗

University of British Columbia

Robert Bridson∗

University of British Columbia

Figure 1: Sphere Splash. Coupling an explicit surface tracker to a Voronoi simulation mesh built from pressure points sampled in a
geometry-aware fashion lets us capture very fine details in this sphere splash animation that uses only 314K tetrahedra.

Abstract

We introduce an Eulerian liquid simulation framework based on the
Voronoi diagram of a potentially unorganized collection of pressure
samples. Constructing the simulation mesh in this way allows us
to place samples anywhere in the computational domain; we ex-
ploit this by choosing samples that accurately capture the geome-
try and topology of the liquid surface. When combined with high-
resolution explicit surface tracking this allows us to simulate nearly
arbitrarily thin features, while eliminating noise and other artifacts
that arise when there is a resolution mismatch between the simu-
lation and the surface—and allowing a precise inclusion of surface
tension based directly on and at the same resolution as the surface
mesh. In addition, we present a simplified Voronoi/Delaunay mesh
velocity interpolation scheme, and a direct extension of embedded
free surfaces and solid boundaries to Voronoi meshes.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation
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1 Introduction

One of the most visually compelling aspects of liquids is the vari-
ety of complex thin sheets and droplets that arise during splashing.
However, these remain among the most difficult features to simulate
plausibly and accurately with existing techniques. Such detailed be-
haviour is extremely computationally expensive to resolve because
of the tremendous grid resolution required for both the fluid solver
and the surface tracking mechanism.
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Recent advances in explicit surface tracking with triangle meshes
[Wojtan et al. 2009; Brochu and Bridson 2009; Müller 2009] have
made feasible the geometric representation and manipulation of
small features, without the loss of detail exhibited by implicit sur-
face methods. However, when the surface is coupled to a standard
Eulerian simulator, the liquid volume must first be resampled onto
the simulation mesh or grid to provide geometric information for
boundary conditions. As this resampling process typically destroys
small details, they are invisible to the fluid solver and cannot be
advanced appropriately. This can lead to a variety of visible arti-
facts including lingering surface noise, liquid behaving as if it were
connected when it is not (and vice versa), and thin features simply
halting in mid-air because the simulator fails to see them [Bargteil
et al. 2006; Kim et al. 2009]. When combined with surface tension
forces, noisy sub-mesh details can also severely hamper stability if
they are not artificially smoothed out.

We will address these problems by constructing a simulator that
“sees” every detail in the explicit liquid surface. We carefully gen-
erate pressure sample points near the liquid surface, build a Voronoi
simulation mesh from these points and a background lattice, and
apply a ghost fluid/finite volume pressure discretization which cap-
tures the precise position of the liquid interface. We couple this
with a semi-Lagrangian advection scheme and a new approach to
surface tension, arriving at a complete liquid simulator.

In summary, our key contribution is coupling an explicit surface
tracker to a Voronoi-based liquid simulator with:

• a pressure sample placement strategy that captures the complete
liquid surface geometry,

• an accurate surface tension model combining mesh-based curva-
ture estimates and ghost fluid boundary conditions,

• embedded free surface and solid boundary conditions adapted to
Voronoi cells, avoiding the need for more onerous conforming
tetrahedral mesh generation,

• and a new velocity interpolant over unstructured meshes.

The practical benefits of such a system include:

• improved animation of detailed liquid features, including very
thin sheets, tendrils and droplets,

• elimination of noise in explicit surface tracking without non-
physical smoothing,

• more detailed and less damped surface tension effects,

• and faster semi-Lagrangian advection on unstructured meshes
without increased dissipation.



2 Related Work

2.1 Unstructured Mesh Fluids

Unstructured and semi-structured meshes have a long history in
computational fluid dynamics, and have gained traction in computer
animation as well. An important reason for their popularity is that
careful control of mesh geometry can simplify the discretization or
improve accuracy. For example, conforming the simulation mesh to
solid walls makes the no-flow boundary condition trivial, and adap-
tivity can be easily introduced by grading mesh elements as desired.
Past work in graphics has extensively explored finite volume meth-
ods for tetrahedral meshes [Feldman et al. 2005a; Feldman et al.
2005b; Klingner et al. 2006; Chentanez et al. 2006; Elcott et al.
2007; Wendt et al. 2007; Chentanez et al. 2007], and now many of
the features of standard grid-based solvers are supported on tetrahe-
dra, including free surfaces and implicit coupling to dynamic solids.
Batty et al. [2010] augmented this approach with embedded bound-
aries [Enright et al. 2003; Batty et al. 2007], improving free surface
accuracy and reducing remeshing complexity. Our method extends
these advantages to Voronoi meshes.

In a related approach, Sin et al. [2009] developed a particle method
which solves a finite volume pressure projection on the Voronoi
diagram of the liquid particles. An advantage of this approach is
that the pressure degrees of freedom are directly tied to the number
of particles, so there can never be a resolution mismatch between
surface geometry and simulator. This idea motivates our work.

Franklin & Lee [2010] subdivide polyhedra into tetrahedra for in-
terpolation similar to our method, but our method is simpler due to
use of the Voronoi diagram.

2.2 Surface tracking

Implicit surfaces have long been used to capture liquid geometry
in animation; this family of schemes includes level set (LS) meth-
ods [Enright et al. 2002a], volume-of-fluid (VOF) [Mihalef et al.
2006; Mullen et al. 2007], and semi-Lagrangian contouring (SLC)
[Bargteil et al. 2006]. Implicit approaches naturally yield smooth
surfaces and seamlessly handle topological change. However, the
resolution of the underlying grid imposes a severe limit on the
smallest representable feature, beyond which geometry either van-
ishes (LS, SLC) or artificially coalesces into grid-scale “flotsam and
jetsam” (VOF). Ensuring temporal coherence and avoiding visual
artifacts due to the use of regular grids can also be problematic.

The shortcomings of implicit schemes have spurred interest in ex-
plicit methods, i.e. “front tracking” [Glimm et al. 1998]. Here the
surface is represented explicitly as a triangle mesh, whose vertices
are moved with the fluid velocity field. The greatest challenge is
handling topological change, due to mesh tangling that may occur
during merging and splitting. One solution is to determine problem-
atic regions, switch to an implicit surface to repair the tangles there,
then stitch back in a new consistent mesh patch [Du et al. 2006; Wo-
jtan et al. 2009]. Müller [2009] takes a similar grid-based approach
to untangling, rebuilding a consistent mesh using marching-cubes-
like stencils. Unfortunately these methods still are subject, in com-
plex regions, to a resolution limited by the voxel grid.

Another approach is to work strictly on the triangle mesh itself,
using “mesh surgery” for repairs. While this is difficult in general,
Brochu & Bridson [2009] recently showed that the problem can be
simplified using ideas from cloth animation, enforcing the invariant
that the surface remain intersection-free. Topological operations are
only allowed when safe, while robust collision processing is used as
a last resort to avoid tangles, i.e. the surface is minimally perturbed
to avoid problems. We use this method in the presented examples,

Figure 2: Explicit Surface Tracking. Our method exploits the El
Topo explicit mesh tracking software to capture thin features.

though note that other front tracking methods could easily be used
instead—for example, recent work by Campen & Kobbelt [2010]
suggests that the need for collision processing could be obviated
with exact Boolean operations.

2.3 Surface Resolution vs. Simulation Resolution

A prime focus of our work is matching the surface mesh resolu-
tion to that of the liquid solver. Most level set-based solvers use
one level set sample per pressure grid cell, conservatively avoiding
resolution inconsistencies (e.g. [Foster and Fedkiw 2001; Enright
et al. 2002b]). Goktekin et al. [2004] experimented with a double-
resolution level set, trading better volume conservation for other
artifacts. Bargteil et al. [2006] similarly coupled an octree contour-
ing method to a uniform grid fluid solver and explicitly discussed
potential artifacts due to resolution mismatch, such as erroneously
preserving surface noise and the solver interpreting disconnected
fluid regions as connected. Kim et al. [2009] coupled a high res-
olution particle level set to a low resolution ghost fluid-based liq-
uid solver, but ensured that pressure projection captured all liquid
geometry by resampling an inflated level set at the pressure grid
resolution—however, this can exacerbate other artifacts, since liq-
uid components behave as if half a cell-width larger than they ap-
pear. Kim et al. also introduced extra surface smoothing to prevent
retention of small-scale noise.

Mismatched resolutions have been found useful for deformable
solids, particularly as surface details are expected to generally per-
sist, unlike in liquids. For example, Wojtan & Turk [2008] used a
surface mesh coupled to a lower resolution finite element solver;
forcing the simulation mesh to have the same topology, if not reso-
lution, as the embedded surface mesh may improve realism [Teran
et al. 2005; Nesme et al. 2009].

2.4 Surface Tension Models

Approaches to surface tension generally fall into two categories:
those which apply surface tension as a body force in a region around
the interface via smeared delta functions [Brackbill et al. 1992;
Hong and Kim 2003; Zheng et al. 2006; Wojtan et al. 2009], and
those which apply surface tension discontinuously at the interface,
typically as a boundary condition in the pressure projection step.
The latter is exemplified by the ghost fluid method and related ap-
proaches [Enright et al. 2003; Hong and Kim 2005; Hong et al.
2007], and has been shown to provide more realistic results.

Surface tension models can also be compared in terms of how the
force itself is approximated. In level set schemes, finite differences



are often used to estimate mean curvature, though this can be quite
inaccurate without careful modification (e.g. [Shin 2007]) and can-
not capture small details. If a surface mesh is available, a more
accurate approach is either to use mesh-based curvature operators
(e.g. [Meyer et al. 2002b]), or as proposed recently, to model a
physical tension directly in the surface mesh geometry [Perot and
Nallapati 2003; Brochu 2006; Wojtan and Turk 2008].

We take the best of each, computing an accurate force from the
surface mesh and incorporating it precisely at the surface with
the ghost fluid method. We also remedy a shortcoming of exist-
ing mesh-based approaches: that surface details below the simula-
tion resolution add energy but cannot be correctly evolved by the
solver; without correct feedback from the physics this noise tends
to worsen and destroy stability. Wojtan & Turk [2008] handle this
with Laplacian smoothing to eliminate small features: note, how-
ever, this non-physical operation is dissipative rather than conser-
vative. By instead combining our surface tension model with a
geometry-aware sampling, we ensure all relevant details are prop-
erly resolved. This yields accurate and comparatively stable surface
tension effects without artificial smoothing.

3 Algorithm Outline

We simulate inviscid liquids with semi-Lagrangian advection and
an embedded-boundary finite volume pressure projection. We gen-
erally follow the tetrahedral scheme of Batty et al. [2010] with mod-
ifications to use specially designed Voronoi meshes instead. Like
Sin et al. [2009], we place pressure samples on the vertices of a
Delaunay tetrahedral mesh, corresponding to the sites of the dual
Voronoi diagram (figures 3(a) and 3(b)). Normal components of
velocity lie on the faces of the Voronoi cells, so that the velocity
sample is parallel to the line segment connecting the pressure sam-
ples in the Delaunay mesh. This configuration requires a slightly
different velocity reconstruction compared to previous methods, but
semi-Lagrangian advection is otherwise straightforward.

For front tracking, we used Brochu & Bridson’s El Topo code
[2009], in particular using its triangle mesh surface to determine
the location of pressure samples for our Voronoi simulation mesh.

Purely explicit front tracking algorithms generally use mesh refine-
ment and coarsening to maintain a high quality discretization as the
surface deforms. El Topo uses a sequence of edge subdivision, col-
lapse and flipping operations, combined with null-space Laplacian
smoothing. While these operations change mesh connectivity, they
are designed to be geometry-preserving. For example, the smooth-
ing moves vertices only in the null space of the local quadric metric
tensor [Garland and Heckbert 1997], as suggested by Jiao [2007].
If the vertex lies on a locally smooth patch it is moved in the plane
tangent to the surface, but if on a ridge or corner it is moved only
along this line. Therefore, sharp features are preserved, allowing
the present paper’s algorithm to handle them physically.

The solver runs through the following stages each time step:

1. Advect the explicit surface with El Topo.

2. Generate a new simulation mesh as the Voronoi diagram of a
lattice with extra samples near the liquid surface (section 5).

3. Advect velocities onto the new mesh with semi-Lagrangian
advection (section 6).

4. Add external forces—typically just gravity.

5. Solve for the embedded-boundary pressure projection on the
Voronoi mesh, including surface tension forces (section 4).

(a) (b)

(c) (d)

Figure 3: Embedded boundaries on Voronoi/Delaunay meshes.
Pressure samples are shown as green circles. (a) Delaunay trian-
gulation. (b) Voronoi diagram dual to the Delaunay triangulation
(velocity components for the central cell are shown as red arrows).
(c) Computation of ghost fluid weights on the edges of the trian-
gulation. (d) Computation of non-solid weights on the faces of the
Voronoi diagram. In 2D, Voronoi faces are simply line segments, so
solid weights are just fractions of segment lengths. In 3D, Voronoi
faces are convex polygons, so determining non-solid weights in-
volves computing polygon areas.

4 Embedded Boundaries on Voronoi Meshes

We use finite volumes on a Voronoi mesh for the pressure projec-
tion step, similar to Sin et al. [2009]. However, rather than apply-
ing boundary conditions as they describe, we adapt the embedded
boundary methods of Batty et al. [2010] to Voronoi meshes. Con-
veniently, the duality/orthogonality relationship between Voronoi
and Delaunay meshes lets the accuracy benefits of the method carry
over. Figure 3 illustrates our mesh configuration, and the computa-
tion of the required weights, as discussed below. We solve the re-
sulting symmetric positive definite linear system using incomplete
Cholesky-preconditioned conjugate gradients.

To enforce embedded solid boundary conditions, we need to es-
timate the partial unobstructed area of each element face (figure
3(d)). Batty et al. [2010] used marching triangles cases for com-
puting tetrahedra face fractions from signed distance values on the
vertices. However, in the Voronoi setting, the faces are arbitrary
convex planar polygons rather than triangles. To handle this, we
temporarily place an extra vertex at the face centroid, and use it to
triangulate the face. We then use signed distance estimates at the
vertices to compute each sub-triangle’s partial area, and sum them
to determine the partial area for the complete face.

The embedded (ghost fluid) free surface condition uses signed dis-
tance estimates at pressure samples to estimate the surface position;
these are now located at Voronoi sites rather than tetrahedra cir-
cumcenters, but the method is otherwise unchanged (figure 3(c)).
A slight improvement can be achieved by casting rays to find the
exact position of the surface mesh between pressure samples. In
some cases this is much more accurate than the estimate derived
from signed distances, but in practice we found it made minimal
visual difference. To actually compute the liquid signed distance
field on the tetrahedral mesh, we compute exact geometric distance
for a narrow band of tetrahedra near the surface, then use a graph-



Figure 4: Surface Tension. Our accurate surface tension model
captures capillary waves even on relatively low resolution meshes.
From left to right: A cube in zero gravity begins to collapse due to
surface tension, inverts to become an octahedron, and continues to
oscillate rapidly before settling down to a sphere.

based propagation of closest triangle indices to roughly fill in the
rest of the mesh. This family of redistancing schemes is described
by Bridson [2008], and is easily adapted to tetrahedra.

4.1 Surface Tension

To incorporate surface tension, we follow Enright et al. [2003] in
setting the free surface pressure pfs = pair +γκfs, where pair is the
constant air pressure, γ is the surface tension coefficient and κfs is
the mean curvature of the surface.

Rather than using level set finite differences, we compute curvature
directly from the surface mesh to accurately capture high-frequency
features. We chose the operator of Meyer et al. [2002b] because it
provides high quality estimates using just the one-ring of triangles
surrounding each vertex, but others could work too.

Curvature is evaluated at the intersection point between the the tri-
angle mesh surface and the line joining an interior pressure sample
to an exterior one. Often this intersection point will coincide with a
surface mesh vertex due to our choice of sampling scheme; where
it does not, we use simple linear interpolation between the vertices
of the surface triangle mesh. This method appears highly accurate,
and leads to much less damping than that of Wojtan et al. [2009].

5 Mesh Generation

An advantage of a Voronoi-based discretization is the freedom to
explicitly choose pressure sample locations, which is critical for
accurate ghost fluid free surface conditions as the signed distance
at these samples communicate the surface geometry to the solver.
We can visualize the solver’s “knowledge” by contouring this level
set: figures 5 and 6 illustrate how uniform sampling may fail.

Careful pressure sample placement with respect to the surface helps
in three important ways. First, we can inform the solver of all lo-
cal geometric extrema, allowing the physics to act upon them cor-
rectly. This eliminates the accumulation of erroneous surface noise
without requiring non-physical smoothing; this is especially vital
for surface tension where spurious noise affects the curvature esti-
mates and induces disastrously large yet futile compensating veloc-
ities that destabilize the simulation. Second, we can ensure that the
solver sees the correct surface topology so that the physics responds
to merging or splitting only when the surface mesh itself merges or
splits. Lastly, grid-scale features often disappear and reappear in
regular grid sampling, from the perspective of the solver, as the
surface translates through the grid. By specifically placing points
inside such small features, we ensure they cannot be missed.

Comparison to Adaptive Lattices: The brute-force approach to
these issues is to locally refine using octree grids or graded BCC
lattice tetrahedra to capture smaller features. However, this scales
poorly since many of the extra samples yield little benefit, while

Figure 5: Left: Even with the ghost fluid method, regular sampling
may miss surface details which do not align with the simulation
mesh, such as this wave crest. Right: Adaptive samples (shown
in red) placed on either side of each mesh vertex ensure that all
geometric detail is resolved by the simulation.

incurring memory and computational overhead. Furthermore, there
remains no guarantee that features below the smallest grid cell size
will be captured. By choosing sample points to precisely capture
the geometry rather than naı̈vely increasing sample density, we can
guarantee sampling of features which would require potentially or-
ders of magnitude more samples with pure adaptive lattices.

Comparison to Conforming Tetrahedra: While the tetrahedral
method of Chentanez et al. [2007] also builds a volumetric mesh
that attempts to respect the liquid surface, it matches boundary
faces rather than positioning pressure samples. This is considerably
more difficult than non-conforming Delaunay tetrahedralization,
and generally requires more Steiner points, worse-shaped tetrahe-
dra, and/or the loss of the Delaunay property. Since our method
uses embedded boundary conditions, we do not require conforming
elements. (Note that this advantage is shared by the method of Batty
et al. [2010].) Moreover, the position of pressure samples plays a
more important role in free surface conditions than the position of
element faces. As accuracy requires that tetrahedral schemes store
pressures at circumcenters [Klingner et al. 2006; Batty et al. 2010],
and since circumcenters often lie outside their associated tetrahe-
dra, even filling a thin feature with conforming tetrahedra provides
no guarantee that its interior will be sampled at all.

5.1 Pressure sample placement strategy

We begin by choosing a characteristic length scale for the simula-
tion, ∆x, and configure El Topo to try to maintain triangle edge
lengths in the range [ 1

2
∆x, 3

2
∆x]. To resolve all surface details

with our volumetric mesh, we need to place pressure samples so
that they capture the surface’s local geometric extrema, i.e. around
surface mesh vertices. In particular, we try to ensure that one edge
of the Delaunay triangulation passes through each surface vertex,
with one sample inside and one outside. Therefore we take the in-
ward and outward normal at each surface vertex (averaged from the
incident surface triangles), and attempt to place a pressure sample
a short distance along each. We placed outward samples at 1

2
∆x

and inner samples at 1

4
∆x, though other ratios would work as well.

As a result, surface mesh normal directions will often align exactly
with a velocity sample in the simulation mesh; this lends additional
accuracy to the vertex’s normal motion, and to the incorporation of
the normal force due to surface tension calculated at the vertex.

This placement may miss very thin sheets or other fine structures: to
robustly sample such features, we check line segments of length ∆x
from each surface vertex in both offset directions for intersection
with the rest of the surface mesh. If we find any triangle closer than
∆x, we store the distance d to the closest intersection, and use d in
place of ∆x in the offset distance calculations above (see figure 7).



Figure 6: Left: The input surface geometry. Centre: The resulting surface after resampling onto a regular lattice simulation mesh. Note the
spurious topology change, rounding of sharp features, aliasing of high frequency details, and the complete disappearance of one small fluid
component due to poor placement relative to the mesh samples. Right: The resampled surface after adding geometry-aware sample points to
the simulation mesh; the result is much more consistent with the input. (Mesh sample locations are indicated by points, coloured blue when
inside, red when outside.)

Figure 7: Sampling Thin Features. A pressure sample is seeded
along the outward normal direction from a surface vertex (black
square). The initial proposed pressure location (empty black circle)
would land in the wrong component and potentially fail to resolve
the intervening air gap. We instead place the final pressure sample
(filled black circle) midway between the starting vertex and the first
intersection point (red X).

We further reject new pressure samples which are too close to an
existing sample by some epsilon, which would cause a very short
edge in the final mesh.

If the distance between the surface vertex and the first intersection
is below some threshold (e.g. 1

20
∆x) at which we consider the two

surfaces to have effectively collided, and the proposed sample is an
air sample, we also discard it. This is necessary because the diver-
gence constraint is not enforced on air cells, so they can act as liquid
sinks [Losasso et al. 2006] and destroy liquid volume until the ge-
ometry finally merges. Unfortunately, merging in this scenario can
often take several time steps to resolve because the interpolated ve-
locity in the air gap still averages to zero, thereby preventing surface
geometry from actually intersecting and flagging a collision. By
not placing a sample point in these very small gaps, our simulator
treats the two liquid bodies as merged and prevents volume loss; the
geometric merge is usually then processed within a few timesteps.
(With regular sampling, merging will depend on where grid points
happen to fall with respect to the surface; hence the physics can re-
spond as if merged when the surfaces are still as much as ∆x apart,
as in figure 9. This generates non-physical air bubbles which linger
for many timesteps before they self-collide and are eliminated.)

After placing the surface-adapted pressure samples, we complete
the sampling of the domain by adding regularly-spaced points from
a BCC lattice with cell size 2∆x, again rejecting samples which
fall too near existing samples—of course, a graded octree or any
other strategy could also be used to fill the domain. All samples
are then run through a Delaunay mesh generator such as TetGen [Si
2006]. Figure 8 illustrates in 2D how this sampling approach is able
to capture thin features such as splashes. Further experimentation
with relative mesh spacing parameters could yield improved results.

Figure 8: Simulating Thin Features. A 2D example of a thin fea-
ture simulated with our method. The zoom on the right illustrates
the sample placement with respect to surface vertices, and the re-
sulting Voronoi mesh. Notice that even the very sharp tip contains
a pressure sample, as indicated by the surrounding Voronoi cell.

Figure 9: Merging. Left: Regular sampling erroneously identi-
fies a topology change, causing a premature reaction in both liquid
bodies. Right: Geometry-aware sampling responds correctly.



6 Interpolation and Advection

Velocity interpolation methods for unstructured meshes typically
proceed in two steps [Klingner et al. 2006; Elcott et al. 2007; Batty
et al. 2010]. First, a full velocity vector is reconstructed at selected
mesh locations using a least-squares fit to the nearby velocity com-
ponents. Then barycentric or generalized barycentric interpolation
between those locations interpolates velocity over the full domain.
Given such an interpolant, advection of velocities and geometry is
straightforward. We follow this general framework, with two mod-
ifications.

In previous work, face normal components on tetrahedra were used
to reconstruct velocities at circumcenters (Voronoi vertices). In our
configuration, velocity components instead lie along the tetrahedra
edges (Voronoi faces) so we perform the least squares fit on this
data instead. We could then apply the usual generalized barycen-
tric interpolant over Voronoi cells, but this is expensive [Chentanez
et al. 2007] and requires special case handling to avoid degenera-
cies [Meyer et al. 2002a]. A simple and fast alternative discussed
by Klingner et al. and Chentanez et al. is to first interpolate veloc-
ities to Voronoi sites (tetrahedra vertices) and apply standard (and
fast) barycentric interpolation over each tetrahedron. However, the
interpolation onto tetrahedra vertices discards any local extrema at
the Voronoi vertices, thereby severely over-smoothing the velocity
field in practice, damping out interesting flow behavior.

Rather than discard extrema at Voronoi vertices, we use a slightly
refined tetrahedral mesh that includes them. We conceptually tetra-
hedralize the Voronoi cells themselves by placing additional ver-
tices at Voronoi face centroids and Voronoi sites (see figure 10).
Velocities for each of these new points need to be computed; while
previous work used the generalized barycentric interpolant for this
transfer step, we found that simply averaging the velocities of the
surrounding ring or cell of Voronoi vertices is quicker and equally
effective. For maximum fidelity at the face centroids, we also re-
place the normal component of the averaged full velocity with the
exact normal component already stored at the face. Simple and effi-
cient barycentric interpolations can then be applied on the resulting
smaller tetrahedra. Because the sharper, more accurate velocities at
the Voronoi vertices are retained and merely augmented with addi-
tional data, this is far less dissipative, yielding results that closely
match generalized barycentric interpolation (see figure 11).

Lastly, note that reconstructions should only use face velocities
which were assigned valid data by the pressure projection, and
thus we can only reconstruct reasonable velocities inside the fluid.
We therefore extrapolate velocities outwards from the fluid using
a breadth-first graph propagation: each unknown point in a layer
is set by averaging all adjacent known points from previous layers,
repeating until we have a sufficiently large band of velocities sur-
rounding the surface. This simple method, suggested in the context
of cloth-fluid coupling by [Guendelman et al. 2005], sufficed for all
our animations.

In summary, the steps of our interpolation scheme are:

1. Reconstruct full velocity vectors at Voronoi vertices using
least squares.

2. Assign full velocity vectors to Voronoi sites and faces using
simple averaging from neighboring vertices.

3. Subdivide the Voronoi cells into sub-tetrahedra using the sites
and face centroids (see figure 10).

4. Apply a simple graph-based extrapolation of velocities to fill
in velocities near the liquid.

Figure 10: Rather than interpolating velocity over Voronoi regions
directly, we tetrahedralize them and use simple barycentric interpo-
lation. Left: A 2D Voronoi cell with standard dual Delaunay mesh
overlaid. Centre: The same cell subdivided into smaller triangles
that include the Voronoi vertices. Right: In 3D, each Voronoi face
is triangulated using its centroid, and joined to its Voronoi site to
build a tetrahedralization.

(a) (b)

(c) (d)

Figure 11: a) Initial conditions for the collapse of a liquid block
due to surface tension in zero gravity. (b) Naı̈ve barycentric in-
terpolation on tetrahedra generates very little detail. (c) General-
ized barycentric interpolation over Voronoi cells retains interesting
small scale structure. (d) Applying barycentric interpolation over
our refined tetrahedra produces qualitatively consistent results.

5. To interpolate at a point, locate the sub-tetrahedron containing
the point and apply basic barycentric interpolation from its
four associated data points (i.e. one site, one face centroid,
and two Voronoi vertices).

One potential issue, not unique to our method, is that despite en-
forcing a lower bound on the distance between pressure samples,
our unstructured sampling can cause sliver tetrahedra in the un-
modified Delaunay tetrahedralization. While we found this posed
little problem for the pressure projection, it can cause the least
squares velocity reconstructions to be ill-conditioned due to nearly
co-planar face normals. This can be readily resolved by request-
ing that the mesh generator add Steiner points to enforce fairly lax
quality bounds; because our embedded pressure projection does not
require the mesh generator to match boundaries, this is relatively in-
expensive and effective. If mesh quality cannot be improved suffi-
ciently, using additional nearby velocity samples in the reconstruc-
tion can ameliorate this at the cost of a smoother result.



(a) (b)

(c) (d)

Figure 12: Surface noise. (a) A perturbation is introduced into a
smooth surface. (b) On a regular tetrahedral mesh, the sub-mesh-
resolution noise causes instability. (c, d) With adaptively-placed
samples, the surface noise is accurately captured by the fluid solver
and initially causes ripples before steadily settling.

7 Results

7.1 Sampling

The issues that arise from regular, non-geometry-aware pressure
sampling are common and consistent across Cartesian grids, oc-
trees, Voronoi meshes, and tetrahedral meshes. We will therefore
use Voronoi meshes throughout, and simply compare our geometry-
aware sampling against naı̈ve regular sampling.

Surface Noise: As discussed above, regularly-spaced pressure
samples can miss fine surface details, resulting in surface noise
which is never physically smoothed out. Figure 12 illustrates
that our sampling approach successfully resolves and corrects such
small surface details. In contrast, regular samples cannot fully
capture the initial surface perturbation, so it cannot be rectified.
Though the ghost fluid method on regular samples does detect some
differences in surface height, this actually exacerbates the problem
because noisy sub-mesh details will appear to the simulator as rapid
discontinuous changes in surface position over time, inducing noisy
responses in the fluid velocity.

Topology Mismatch: Another visible artifact of using mismatched
surface and simulation resolutions is topological inconsistencies.
For example, a surface with two disjoint volumes of liquid may ap-
pear to the solver as one volume, resulting in a premature response.
Figure 9 shows a liquid drop impacting a still surface. With reg-
ular sampling, the droplet begins to influence the static liquid be-
fore the surfaces are actually joined. Because our adaptively-placed
samples match the topology of the surface tracker, they easily cor-
rect this spurious motion. Figure 1 also features such a topological
merge, along with many splitting and tearing operations, with tim-
ings listed in table 1.

Thin Features: To illustrate our method’s ability to animate thin
features, figure 13 shows a scene in which we drop a small sphere
of liquid onto the ground. Thin sheets rapidly develop as the fluid
spreads out across the floor. With regular pressure samples, sheets
of this kind often end up between samples, effectively disappearing
from the solver. Our sampling ensures that almost arbitrarily thin
sheets of liquid remain visible to the solver, and as such, interesting
rippling and splashing motion still occurs.

Our method also resolves thin sheets and small surface details gen-
erated by large splashes, as shown in figure 1. To counteract grad-
ual volume drift, we do add a corrective motion-in-the-normal-
direction [Brochu 2006; Müller 2009], which further aids in pre-

Figure 13: Thin Sheet. Seeding pressure samples directly inside
the fluid volume allows us to capture almost arbitrarily thin sheets.

serving thin sheets. Our video also includes an example of a col-
umn of liquid being released into a still pool. Although we are us-
ing only first-order semi-Lagrangian advection, the liquid motion
remains lively and active throughout. We suspect that because our
method retains sharp wave peaks and splashes rather than contin-
ually eroding them, their extra kinetic and gravitational potential
energy is retained in the simulation, accounting for this reduced
dissipation.

Table 1 gives timings for our 3D examples. All figures are averages
per frame and all timings are in seconds. These simulations used no
more than 320K tetrahedra each, whereas recent tetrahedra-based
free surface methods used up to 4 times more tetrahedra to achieve
a similar level of detail.

7.2 Surface Tension

Figure 4 illustrates the action of our surface tension model on a
low resolution cube in zero gravity. Rather than quickly collapsing
into a sphere, a cascade of detailed capillary waves propagate along
the surface, causing it to oscillate rapidly. It initially inverts almost
completely into an octahedron (the geometric dual of a cube), and
continues to oscillate for many subsequent frames. To illustrate the
benefits of our sampling approach in the context of surface tension,
we launch an identical simulation using the same time steps on a
regular mesh. Because this mesh cannot respond and correct high
frequency sub-mesh details present in the curvature estimates, the
simulation becomes unstable almost immediately. Applying an ex-
cessively strict timestep restriction only brings the simulation to a
halt as the surface noise introduces increasingly sharp features.

Inspired by an example from the work of Wojtan & Turk [2008],
we run another zero gravity simulation on a rectangular block (see
figure 11). Because our simulation does not use diffusive Lapla-
cian mesh smoothing and applies accurate mesh-based surface ten-
sion forces discontinuously at the interface, we retain substantially
greater detail in the resulting capillary wave motion.

7.3 Interpolation

We revisit our surface tension block example to compare different
interpolation schemes. As seen in figure 11, our barycentric method
is substantially less damped than the naı̈ve barycentric interpolation
approach, and matches the more complex generalized barycentric
interpolant.



Statistic Thin sheet Liquid column Sphere Splash

# tetrahedra 141,701 197,911 313,587
Velocity reconstruction (s) 3 8 18

Surface tracking (s) 7 37 26
Remeshing (s) 15 39 69

Velocity advection (s) 7 18 15
Redistancing (s) 5 22 42

Pressure solve (s) 0.29 1.8 0.45

Total simulation time (s) 37 127 171

Table 1: Simulation statistics for 3D examples (all statistics are per-frame values, averaged over all frames).

8 Discussion and Limitations

Our implementation is not heavily optimized, and we defer vari-
ous potential performance gains to future work. Obvious optimiza-
tions include: reducing the number of tetrahedra through smarter
sampling, improving the broad phase algorithm for point-location
queries, and streamlining the construction of mesh data structures.
More fundamentally, our Voronoi simulator is in many ways dual
to a tetrahedral scheme, and for a given mesh the number of veloc-
ity samples is identical; we believe that approximately comparable
costs are therefore reasonable to expect.

The main contribution of this paper is the coupling of simulation
elements to an existing explicit surface tracking method, and not
the explicit surface tracking itself. Therefore, not all artifacts due
to surface tracking are addressed. For example, El Topo delays
handling some very difficult collisions for a few timesteps until
the topological operations can be safely processed, which occa-
sionally yields visible lingering surface noise. (Reducing the time
step size can help by introducing fewer and simpler collisions, and
more aggressive simplification can also be enabled by tuning the
volume change tolerance that El Topo uses to decide whether to
accept a given simplification.) Likewise, despite the use of feature-
preserving mesh improvement, some popping artifacts due to on-
the-fly remeshing are still visible in our animations. We chose El
Topo because its resolution is not constrained to a regular grid and
it is therefore able to showcase very thin features; nevertheless our
method could adapt to any of the front tracking methods mentioned
in section 2.2.

Surface tension was only used for examples in subsections 7.2
and 7.3. Our goal in many of the other examples was to high-
light the ability to track thin sheets, whereas surface tension would
break these sheets into droplets. Moreover, explicit surface tension
schemes, such as the ghost-fluid-based method used in this paper,

suffer from a stringent O(∆x
3

2 ) time step restriction for stability,
which is particularly costly when small scale capillary waves are
not erroneously damped out. Pursuing a more efficient, fully im-
plicit surface tension model is a promising future direction.

9 Conclusions and Future Work

We have shown that with careful placement of pressure samples,
our Voronoi mesh-based fluid solver makes it possible for ex-
plicit surface tracking to achieve its full potential in capturing
small scale liquid features. In addition, we adapted embedded
boundary pressure projection techniques to Voronoi meshes, intro-
duced a simple improvement to barycentric velocity interpolation
for Voronoi/Delaunay meshes, and extended the ghost fluid surface
tension model with mesh-based curvature in order to capture com-
plex capillary waves with minimal damping.

Several directions for future work remain. For example, it may be

possible to enhance our sampling scheme in various ways, perhaps
by exploiting curvature adaptivity, topological information, or mea-
sures of vorticity and velocity variation. Likewise, improvements
to front tracking would be welcome, such as curvature-driven adap-
tivity, or greater robustness and efficiency. Lastly, many common
extensions to basic inviscid liquid simulation rely on regular grids,
and would need to be adapted to accomodate our approach.
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