
Evaluating Two Window Manipulation Techniques  
on a Large Screen Display 

Russell Mackenzie, Kirstie Hawkey, Presley Perswain, Kellogg S. Booth 

Dept. of Computer Science 

The University of British Columbia 

{rmacken1, khawkey, perswain, ksbooth}@cs.ubc.ca 

 
ABSTRACT 
Large screen displays are a common feature of modern meeting 

rooms, conference halls, and classrooms. The large size and often 

high resolution of these displays make them inherently suitable for 

collaborative work, but these attributes cause traditional 

windowing systems to become difficult to use because the 

interaction handles become smaller in visual space and in motor 

space. This may be exacerbated when a user faces the additional 

cognitive load of active, real-time collaboration. We describe a 

new window manipulation technique for such a collaborative 

meeting environment. Its design was inspired by recent 

collaborative systems in which a user must explicitly take control 

of a window in order to interact with its contents; actions are 

otherwise interpreted as navigational. Our Large Screen 

Optimized (LSO) window manipulation technique utilizes the 

entire window for manipulations instead of only the title-bar and 

borders. In addition, LSO includes „snapping regions‟ that 

automatically move the cursor to the boundary of the window, 

allowing quick, accurate manipulations involving the edges and 

corners of the screen. We experimentally validated that our new 

technique allows users to move and resize windows more quickly 

than with a traditional window manipulation technique.  

Author Keywords 
Large screen display, window manipulation. 

INDEX TERMS: H5.m. Information interfaces and presentation 

(e.g., HCI): Miscellaneous.  

1 INTRODUCTION 
Display technology continues to make rapid advances, providing 
ever larger physical sizes, greater resolutions, and higher contrast 
at ever lower costs. It is now feasible to have multiple high-
definition displays available in even small meeting rooms, and it is 
plausible that wall-size displays will soon become commonplace. 
Such displays can improve performance on navigation, search, and 
comparison tasks in information rich virtual environments [21], 
and are inherently well-suited for collaborative activities. 
However, it is often difficult to switch which user controls the 
display, and there is no broad support for multiple simultaneous 
users. While individually small, these technical hurdles disrupt 
collaborative activities and prevent effective use of available 
displays. 

Research into collocated collaborative meeting systems for 
single display groupware (SDG) and multi-display environments 
is ongoing. Systems such as WinCuts [24], Integrated Tabletop 
[20], IMPROMPTU [3], WeSpace [25], and LACOME [17] allow 
multiple users to share content from their personal computers on 
public displays and to allow others to interact with that content. 
Window manipulation typically occurs only when a user drags the 
margin of the windows (title bar, border) as in traditional window 
management systems. One exception is LACOME [17], which has 
multiple control layers to better support differentiated control 
modes, so that manipulating windows (e.g., resizing, moving, 
iconifying) is distinct from interacting with content within 

published windows. Because a mode switch is required in order to 
interact with the content within a window, such a system is able to 
support alternative window manipulation techniques.  

Traditional windowing interfaces such as those of Microsoft 
(MS) Windows or Mac OS X may not be as usable on a large 
display as they are on personal displays. Swaminathan and Sato 
[23] found that when a display exceeds a certain size, it becomes 
“qualitatively different.” Larger displays enable users to create and 
manage many more windows [10, 2], as well as to engage in more 
complex multitasking behaviors [10]. A recent week-long study 
[2] comparing usage of a large display to single and dual monitor 
configurations for daily work suggests the need for different 
window management techniques for a large wall-size display. 
Users of the wall-size display performed more moving and 
resizing operations than in their normal environments. They also 
had difficulty accurately selecting the corner of an application 
window for resizing, particularly when the window was located in 
the peripheral region of the screen. Collocated meetings may 
provide additional challenges for large screen display use; users 
may face multiple cognitive demands simultaneously and are 
rarely in the ideal position to view a shared display. Moreover, 
when multiple users with multiple cursors interact on shared 
displays, larger target sizes may ease selection [18].  

We are interested in exploring alternative window manipulation 
techniques, specifically for use on large displays during collocated 
collaboration when users‟ desktops are published to a very large 
display. We exploit the fact that, in such situations, window 
manipulations such as moving and resizing are more common than 
direct interaction with a window‟s content. We assume that the 
collaborative system either explicitly provides multiple control 
layers (as in [17]) or that mode switches could be accomplished by 
a hot key or some similar approach. In this paper we present a 
novel window manipulation technique, LSO, which is Large 
Screen Optimized. LSO provides manipulation handles that 
overlap content, providing a larger target area for moving and 
resizing windows. We experimentally validate our technique in a 
within-subjects laboratory study in which participants used both 
LSO and a traditionally based technique to move and resize 
windows on a wall-sized display. Our results show that 
participants were faster when using LSO and that they found it 
easier to use. While our technique was designed specifically for 
collaborative use of large displays, it may also be suitable for 
general use on personal computers. In particular, those users with 
larger monitors or secondary displays may more frequently 
arrange multiple visible windows on the screen [14].  

2 BACKGROUND AND RELATED WORK 
We briefly present related work on collaborative meeting software 
and background on standard window manipulation techniques in 
modern operating systems before describing research investigating 
users‟ windows management practices. We then summarize 
research investigating new window manipulation techniques. 



2.1 Collaborative Meeting software 
There have been many research projects developing systems to 
support collocated meetings and the sharing of multiple private 
desktops and windows on shared public displays. We highlight 
some of the more recent ones.  

WinCuts [24] is an extension to the VNC protocol enabling a 
VNC server to replicate an arbitrary region of a desktop or 
window instead of an entire desktop. WinCuts has the potential to 
optimize use of limited screen space. IMPROMPTU [3] enables 
users to share windows both on a public group display and on their 
own personal displays. IMPROMPTU is tied to MS Windows. It 
encompasses a number of user interface elements that enable easy 
sharing of application windows, and visibility of who is sharing 
what via the system. Similarly WeSpace [25] enables the sharing 
of application windows on both a large shared wall display and a 
multi-touch table display, using VNC as the basis of its sharing 
mechanism. WeSpace implements a number of new features, such 
as a custom API for developing applications to extend the 
collaborative ability of the system. LACOME [17] also uses VNC 
and supports cross-platform publishing of content and 
manipulation of and interaction with that content. LACOME is 
unique in that it supports multiple platforms, does not require the 
use of any specific VNC client or server, and provides multiple 
access control modes such as navigation, control, and annotation. 

With the exception of LACOME [17], all of these systems use 
traditional window manipulation techniques as supported by 
standard operating systems. For example, WinCuts [24] exposes 
only the immediately relevant sections of a window rather than the 
whole window, but does not address moving and resizing 
windows once they have been created or „cut.‟ 

2.2 Window Manipulation in Operating Systems 
MS Windows and Apple‟s Mac OS X both build window 
manipulation functions directly into the operating system. On 
Unix and Linux, window manipulation is handled by a „window 
manager,‟ a special X11 program that varies depending on the 
distribution. We will focus on Metacity and Compiz, the default 
window managers for the most common Linux distributions (i.e., 
Ubuntu, Debian, Fedora).  

Standard approaches for window manipulation in commercial 
operating systems quickly emerged (see [5] for a description of the 
history of window management techniques). Dragging the titlebar 
to move a window is standard in all three systems [1, 7, 27, 28]. 
MacOS X also allows moving by clicking on optional toolbars and 
bottom bars that together with the titlebar are collectively referred 
to as the „window frame‟ [27]. Linux has the unique capacity to 
move a window by holding down the „ALT‟ key on the keyboard 
and dragging from anywhere in the window [7, 28]. 

MS Windows and Linux both enable resizing a window by 
dragging the small (~5 pixel) border around the window [1, 28, 8]; 
however, Windows 7 has increased the border to 8 pixels. MacOS 
X uses a different method for resizing that involves dragging the 
„resize control‟ located in the lower right hand corner of the 
window. MacOS X windows cannot be resized anywhere else 
[27]. MS Windows and Linux both offer similar resize controls in 
the lower right hand corner; however, those controls are 
considered obsolete in the most recent version of MS Windows 
[26] and are only sporadically implemented in Linux applications 
[9]. Additionally, Compiz on Linux offers the ability to resize a 
window by holding down the „ALT‟ key and drag (with the 
middle mouse button) anywhere in a window [8]. 

2.3 Window Management in Practice 
Researchers have investigated how users manipulate their 
windows in practice ever since windowed systems became 
popular. In 1986, Bury and Darnell [4] reported that people 
performed more accurately in windowed systems than non-

windowed systems, but they also performed more slowly. The 
reason for the slower performance is that people spent more of 
their time engaged in screen-management activity. 

More recently, Hutchings and Stasko [14] examined how users 
managed their windows on regular single and dual display desktop 
computers. They classified users into 3 categories: maximizers, 
near maximizers, and careful coordinators. Users of larger screens 
preferred careful coordination; they simultaneously arrange 
multiple visible windows on the screen, which in turn requires 
more fine-grained window manipulation. 

Bi and Balakrishnan [2] conducted a week-long user study to 
compare usage of a large display to single and dual monitor 
configurations for daily work. Users of the wall-size display 
performed higher percentages of moving and resizing operations 
than in their normal environment. Furthermore, users had 
difficulty accurately selecting the corner of an application window 
for resizing, particularly when the window was located in the 
peripheral region of the screen. Bi and Balakrishnan also found 
that many people had difficulty resizing windows due to small 
resize targets and long resize distances. They recommended that 
new methods of window manipulation be developed for large 
screen displays, focusing on improving the frequent (on a large 
display) interactions of resizing and moving windows, and 
deemphasizing less frequently used operations such as minimizing 
and maximizing.  

Moraveji, et. al. [18] found that for large groups (>16), group 
performance of multiple cursors on a single display degraded with 
smaller target sizes. Because most windowing systems use 
relatively small interaction points for window manipulations such 
as move and resize, this could become a relevant point as the size 
of groups interacting on shared displays grows. 

2.4 Windows Management Research 
There have been various research projects addressing the 

problems of window management. Most of these systems are 
designed specifically for single user systems and may not be as 
appropriate for a multiuser shared display. Elastic Windows [16] 
reduces the number of move and resize operations that need to be 
carried out manually by grouping windows together and moving 
and resizing them as a group. However in multi-user systems 
resizing a second window due to manipulations of the first could 
disrupt another individual‟s work. QuickSpace [13] involves 
moving and resizing other windows in response to operations 
conducted on the active window. Unlike Elastic Windows [16], 
QuickSpace does not require window groupings, making it more 
general. However, similar to Elastic Windows, QuickSpace‟s 
automatic move and resize operations could disrupt others in a 
multi-user environment. E-conic [19] uses knowledge of the user‟s 
perspective to draw a consistent representation of objects in multi-
display environments. This can reduce the problem of distant 
objects being hard to see and manipulate on large displays. 
However, because the system is based on a single user‟s 
perspective, objects appear skewed to all other participants, 
making the system impractical in co-located group interactions on 
shared displays. Metisse [5] is a window system that allows 
researchers to easily design, implement, and evaluate new window 
management techniques, such as ZoomOutAndMaximizeHeight 
and position-dependent window transformations that are indirectly 
applied when a user moves a window (e.g., shrinking the window 
as it is moved to the periphery).  

Some systems require semantic information about window 
content. It is an open question as to whether such automated 
systems will work well with multiple users. For example, AdWiL 
[11] utilizes a genetic algorithm to place windows for people. 
Shrinking Window Operations [15] reduces the size of windows 
based on their relevant semantic content, similar to WinCuts [24]. 



However this requires access to the semantic content of the 
window and the ability to determine what is relevant. 

Other approaches do not address the problem of moving and 
resizing windows. For example, Chapuis and Roussel [6] propose 
a system to automatically expose windows during copy and paste. 
In order to minimize the number of moves and resizes required to 
finish a task. Hoffmann et. al. [12] propose a series of methods for 
visually cueing window notifications and switching in large screen 
environments, an approach which may add confusion when 
multiple users are working in different regions of the screen. 
Sugawara and Maruta propose to replace many window 
management activities with a push-pin metaphor [22]. However, 
their system is designed for use on small screen devices and may 
not be suitable for shared large displays. Also, the total 
replacement of the window metaphor may confuse people more 
accustomed to traditional windowing systems. 

3 LARGE SCREEN OPTIMIZED (LSO) TECHNIQUE 
Our technique takes advantage of the fact that to interact with the 
content of a window in a system such as LACOME [17], the user 
must explicitly take control of that window. This allows the entire 
window to be used for manipulations instead of only the title-bar 
and borders. The LSO technique introduces several novel features. 
It allows window manipulations to take place anywhere in the 
window, including in the content pane. It includes „snapping 
regions,‟ that automatically move the cursor to the boundary of the 
window. Finally, it supports a „zooming‟ resize method. 

A video figure illustrating the LSO technique is available at: 
http://www.cs.ubc.ca/labs/imager/video/2010/LargeScreenDisplay
WindowManipulations/LSOTechnique.avi, and is recommended 
for readers interested in the details of the technique. 

In the LSO technique, windows are divided into 9 regions: 4 
edge regions, 4 corner regions, and the remaining centre region. 
For our setup, the edge regions were 50 pixels wide and the 
corners were 50 pixels square; 50 pixels corresponds to 
approximately 10cm of physical length.  

To move a window, a user can click anywhere in the window, 
not merely the title-bar. If we consider initiating a move operation 
as a Fitt‟s Law task, the ability to click anywhere in the window 
greatly increases the target width compared to the Traditional 
technique. While the left mouse button is depressed, the cursor is 
replaced by an arrow-cross. A click in the central region, which is 
in neither a corner-snapping nor an edge-snapping region, causes 
the point under the cursor to remain under the cursor as the cursor 
moves around. If the click is in the snap region near a corner, the 
cursor is automatically moved to the exact corner. Similarly, if the 
click is in the snap-region of an edge, the cursor is automatically 
moved to the nearest point on that edge. Because the cursor can 
never leave the screen, this gives users a fast and precise method 
to position a window against an edge or in the corner of the screen 

(Fig. 1). In Fitt‟s Law terminology, the edge or corner of the 
screen is a target of infinite width; the user need merely move the 
cursor as rapidly as possible towards the edge and it will stop 
when it reaches the edge. Since snapping positioned the cursor at 
the exact edge or corner of the window at the beginning of the 
move action, it will be properly positioned against the edge or 
corner of the screen after moving. The snap regions are indicated 
to the user by a semi-transparent white overlay that appears when 
the cursor rolls over the snap region, and linearly fades after 1 
second to full transparency. It should be noted that the snap 
regions do not change size; they are simply highlighted to indicate 
to the user that the cursor is within that snap region. 

To resize a window in the LSO technique the user clicks with 
the right-mouse button, anywhere in the window. While the right 
mouse button is depressed, the cursor changes to an arrow 
pointing in the direction it will move when dragged. If she clicks 
near a corner (Fig. 2, left), the cursor is moved to the exact corner 
(Fig. 2, centre). As in the traditional technique, the opposite corner 
remains fixed and the selected corner remains under the cursor as 
it moves (Fig. 2, right). If the user clicked near an edge, the cursor 
is moved to the nearest point on that edge and that point remains 
under the cursor as it moves.  

If the user right-clicks in the central portion of the window (Fig. 
3, left), the cursor remains stationary and the point under it 
remains fixed. The rest of the window scales about that point as 
the mouse is moved up and down (Fig. 3, right), analogous to 
„zooming‟ in and out of that point. While the right mouse button is 
depressed, the cursor becomes an arrow pointing to the top-right. 

 
Figure 3: LSO zooming resize technique. Left: The mouse is not 

placed on a snapping region. Centre: The right mouse button is 

pressed, and the resize operation begins. Right: The window is 

resized about the cursor, which remains stationary. 

 

4 EXPERIMENT 
We conducted an experiment to examine whether the LSO 
technique was more effective for moving and resizing windows on 
a large screen display than a traditional manipulation approach. 
While one of the motivating scenarios for our technique is 
collaboration, we limited our evaluation to single users to allow us 
to focus on the effectiveness of the technique for window 
manipulations typical during large screen display use.  
  

 
Figure 2: LSO resize technique. Left: A user positions the mouse 

over the corner snapping region. Centre: When the right mouse 

button is clicked, the cursor snaps to the exact corner. Right: As the 

user drags the top-right corner, the bottom-left remains fixed. 

Figure 1: LSO move technique. Left: A user positions the 

cursor over an edge-snapping region. The snapping regions 

are temporarily highlighted when rolled-over; for clarity, all 

snapping regions are drawn in this figure. Center: The left 

mouse button is pressed; the cursor changes to an arrow-

cross and is moved to the exact edge. Right: Moving the 

mouse positions the window against the top of the screen. 

http://www.cs.ubc.ca/labs/imager/video/2010/LargeScreenDisplayWindowManipulations/LSOTechnique.avi
http://www.cs.ubc.ca/labs/imager/video/2010/LargeScreenDisplayWindowManipulations/LSOTechnique.avi


4.1 Experimental Design 
A within-participant, crossed factorial design was used. As 
summarized in Fig. 4, we varied the window manipulation 
technique („Traditional‟, LSO), start button position (25% from 
bottom, 25% from top; always centered horizontally), initial 
window size (355x236, 1033x614), target size (355x236, 
1033x614), and target locations (12: each screen corner, center of 
each screen edge, 30% towards center from each corner). Only a 
single start position (center of screen) for the window was used. 
Between subjects, we counterbalance the ordering of window 
manipulation technique („Traditional-then-LSO‟, LSO-then-
Traditional), and content pane image (green or red-tinted pebbles).  

4.2 Window Manipulation Techniques 
The two window manipulation techniques are the LSO technique 
(described in Section 3) and a „Traditional‟ technique that was 
designed to be as familiar as possible, with many similarities to 
the windowing mechanism of MS Windows. To move a window 
in the traditional technique, the user left-clicks the title-bar and 
drags the mouse. To resize a window the user left-clicks the 
window border, either on a corner or on an edge, and drags the 
mouse. If a corner was chosen, the position of the opposite corner 
remains fixed and the selected corner stays under the cursor as the 
cursor moves. If an edge was chosen, the position of the point 
directly across from the selection point remains fixed, and again 
the selected point stays under the cursor. When the cursor is 
placed over the title-bar it changes to an arrow-cross (“cross 
barby”) to indicate that clicking will initiate a move; when over 
the window border, the cursor changes to an arrow pointing in the 
direction to which the cursor will be constrained while resizing. 

For the purposes of the study, both techniques share the 
property that they preserve the aspect ratio of the content pane. 
This is motivated by the fact that the hypothetical use case of these 
windows is publishing computer desktops on a shared display; 
reshaping a window would thus entail either distorting or cropping 
the content of the window. While the window is being resized, the 
cursor is constrained to move only along a path that will preserve 
the aspect ratio. That is, the cursor will only move diagonally if a 
corner was selected, horizontally if the left or right edge was 
selected, and vertically if the top or bottom edge was selected. In 
the experiment an aspect ratio of 2.375:1 was used for the content 
pane (see Fig. 5). 

4.3 Task 
Participants were required to perform window manipulations 
involving moving and/or resizing. On each trial a „Start‟ button is 
centered horizontally, and positioned either 25% from the bottom 
or 25% from the top of the screen. Two positions were utilized in 
order to investigate the effect of distance to the target. For the 
Traditional technique, the top position is closer than the bottom 
position, while for the LSO technique the distance is the same. 
The start button is 135x50 pixels in size. When clicked, the start 
button disappears and the trial starts. Immediately, a window 
centered on the screen appears. Each window, as illustrated in Fig.  
4, shows an image of pebbles in its content pane for the 
experiment. Above the content pane is a solid-color title-bar, with 

a height of 32px (Fig. 5). The title-bar has no buttons or other 
decorations on it. Surrounding both the content pane and the title 
bar is an 8px solid-color border. 

The task is to fit the window over the target area, which appears 
in one of 12 locations when the start button is clicked, at the same 
time as the window. For some trials the window is initially the 
same size as the target, so it is only necessary to move the 
window. On other trials, the window also needs to be resized (as 
shown in Fig. 4). It is not required that the match be pixel-perfect; 
we consider a trial completed when all 4 corners of the window 
are within 10px of the corners of the target. Upon achieving a 
successful fit both the window and the target area disappear, and 
the Start button reappears for the next trial.  

To allow the target behind the window to be visible at all times, 
the window is made semi-transparent (Fig. 4). While being 
manipulated it has an alpha value of 0.5 (equal blending); 
otherwise it has an alpha value of 0.8 (mostly opaque).  

4.4 Study Protocol 
Each participant was guided through three initial trials to teach 
them the basic mechanics of the task. They were given 30 training 
trials with continued verbal instruction about the technique, read 
from a script. Questions were encouraged during these training 
trials. Participants next completed a block of 48 trials, after which 
they were asked to move to a different table and complete a maze, 
which was intended to reduce fatigue or boredom effects from 
performing a large number of repetitive tasks. This was followed 
by a second block of 48 trials and a short questionnaire regarding 
the technique they had just used. This process (training, block 1, 
maze, block 2, questionnaire) was repeated for the second window 
manipulation technique. Finally, participants completed a 
questionnaire comparing the two conditions. 

Each half of the experiment consisted of 96 unique trials, split 
into two blocks. The blocks were balanced, fully crossed on initial 
window size, target size, and start button position. Six of the target 
locations were used in each block (2 corners, 2 edges, 2 floating). 
See Fig. 4 for their placement. The 24 participants completed 96 
blocks in total. The 48 trials within each block were intended to be 
randomly ordered. Unfortunately, due a programming error only 
four random orderings were actually used. Each of the first 12 
participants saw the same ordering for Block 1 of each technique, 
and a second ordering for Block 2 of each technique. Similarly, 
each of the second 12 participants saw a third ordering for the 
Block 1, and a fourth ordering for Block 2. 

 
Figure 4: Screen shot of a trial in progress, with overlays of the 12 

possible target window positions (blue stars) and 2 Start Button 

positions (red triangles). The white target window shows the large 

size, and the pebbled window shows the small size. 

 
Figure 5. Design of windows used in the experiment. 



4.5 Apparatus 
We used a large screen wall display measuring 5.31m in width and 
2.97m in height (17.4‟x9.8‟). The display is comprised of an array 
of 12 projectors in a 4x3 tiling shining onto a single frosted-glass 
vertical surface. The bottom of the screen is at floor level, and it is 
centered in an approximately 10m x 6m room. A dual-link DVI 
output feeds into a small network of XPO3 video processors from 
Cyviz LLC, which „chop‟ the output into 12 portions and blend 
the edges together. The projectors each have a native resolution of 
800x600px, and were given a 160px (~30 cm) blended overlap 
with their neighbours in both the horizontal and vertical directions, 
for a total resolution of 2720x1480px. The final blending 
functions were not implemented at the time of the experiment so 
some variation in brightness and color was still present. 
Additionally, there were a small number of projector alignment 
errors that led to blurriness or tearing of the composite image. 
These alignment errors are most visible where there are high-
contrast edges and/or fine details, such as black text on a white 
background. To minimize the effect of these alignment errors and 
blending variations we used solid colors of medium lightness for 
the screen background, window title-bars, and window borders, 
and an image of mottled pebbles for the window content.  

Participants were seated at a table that is 1.5m long, 0.75m 
wide, and 0.7m high. The edge nearest the participant was 
centered and positioned 2.7m from the screen. This distance was 
chosen for a number of reasons. Earlier work by Bi and 
Balakrishnan [2] suggests that a distance of 2.0-2.5 meters is 
preferred for a screen of this width. However, at 6‟ tall their screen 
was shorter than ours, and pilot participants noted that a greater 
distance was required to allow natural viewing of the corners of 
the screen. Additionally, our screen is seated at ground level so 
shorter pilot participants could not see the bottom of the screen 
because of occlusion by the far edge of the table. This also 
required us to use a table of somewhat narrow width. 

Participants used a “MS Wireless Optical Mouse 2000” to move 
the on-screen cursor. As the resolution was quite high, pilot 
participants found it difficult to move the cursor to the corners in 
one motion and still have the fine control necessary to complete 
the task, unless cursor acceleration was left on. We enabled cursor 
acceleration and set the cursor speed to 6 out of 11. The 
experimental software ran full-screen so users were unaware of 
any details of the underlying computing environment.  

4.6 Participants 
We recruited 24 participants (15 male, 9 female) from the 
university community. Participants were required to have normal 
or corrected to normal vision and a lack of colour blindness. All 
but one participant was right-handed. Only 10 participants 
indicated that they regularly use (more than once per week) a 
single type of input device; almost all (23/24) were regular users 
of mice, but touch pads (15), touch screens (3), track point (1) and 
stylus (1) were also in use. Roughly half (13/24) regularly use 
multiple operating systems: MS Windows (21), Linux (12), and 
Mac (5). No participants indicated that they regularly use a large 
screen display, but 11 indicated that they had performed window 
manipulations on wall/table top displays (5) and projected wall 
displays (6) in the past.  

5 RESULTS 
We first present manipulation time results and then subjective 
results from the questionnaires. We qualitatively support our 
findings with participants‟ comments about the ease of use and 
relative advantages of the two techniques. 

5.1 Performance Data 
Preliminary analysis revealed that, as expected, content pane 
image (green-tinted pebbles, red-tinted pebbles) had no impact on 

the findings, so we dropped that variable from our analysis. The 
combination of initial window size and target size results in two 
types of Action: Move (small to small, large to large) and 
Move+Resize (small to large, large to small). The dependent 
variable was manipulation time, which began when the start 
button was clicked and ended when the window was correctly 
positioned over the target.  

Changes in scores on the dependent variable were analyzed in a 
2 (technique order: LSO-1st, LSO-2nd) x 2 (technique: 
Traditional, LSO) x 2 (Action: Move, Move+Resize) x 3 (Final 
Position Type: corner, edge, floating) x 2 (Block: first, second) x 2 
(Start Button Position: top, bottom) mixed analysis of variance 
(ANOVA) with a between subjects measure on the first variable. 
Adjustments were made to the ANOVA results, using the Huynh-
Feldt correction for the Action x Final Position Type interaction to 
account for the violation of the sphericity assumption revealed by 
Mauchly‟s Test of Sphericity. Table 1 provides a summary of the 
main effects and shows the six interactions that reached 
significance. Significant main effects were found for all the 
within-subjects variables, but not for the between-subjects 
variable. We will examine the interesting findings in turn.  

5.1.1 Main Effects 
There was a statistically significant main effect of Technique, 
validating the usefulness of LSO technique for window 
manipulation on a large screen display. The mean performance 
advantage is 0.68 seconds per manipulation. As discussed below, 
there were interactions of Technique with both Technique Order 
(section 5.1.2) and Action (section 5.1.3). 

As expected, there was a statistically significant main effect of 
Starting Button Position on manipulation time. Because a window 
in the Traditional condition must be dragged by the title-bar, 
participants must move the cursor further to begin movement 
when the start button is in the lower position. We had expected to 
see an interaction between Start Button Position and Technique, 

Table 1. Main effects and significant interactions of independent 

variables on the mean manipulation time. 

†Huynh-Feldt 

correction applied 

Manipulation 

Time Test Statistics 

*p<.05 IV µ SD. F p η2 

Main Effects (Between Subjects) 

Tech. 

Order 

LSO-1 5.41 3.48 
0.508 .484  

LSO-2 5.04 3.03 

Main Effects (Within Subjects) 

Tech. 
Trad. 5.57 3.25 

21.660 .000* .496 
LSO 4.89 3.36 

Action 

Move 3.09 1.46 

223.506 .000* .910 Move+ 

Resize 
7.36 3.29 

Final 

pos. 

type 

Corner 5.38 3.64 

11.046 .000* .334 Edge 5.29 3.33 

Float 5.01 2.95 

Block 
First 5.37 3.59 

7.652 .011* .258 
Second 5.09 3.02 

Start 

button 

pos. 

Bottom 5.30 3.39 
12.602 .002* .364 

Top 5.15 3.25 

Significant Interactions 

Technique x Technique Order 11.136 .003* .336 

Start Button x Technique Order 5.224 .032* .192 

Technique x Action 8.411 .008* .277 

Action x Final Position Type 3.961 .032† .153 

Action x Block 4.635 .043* .174 

Final Position Type x Block 10.101 .000* .315 



because clicking anywhere in the window begins a move action in 
the LSO technique so there should be little no difference between 
the two start positions. While the mean difference in times for the 
LSO technique (Δ=0.074 s) was smaller than that of the 
Traditional technique (Δ=0.216 s), the difference was not 
statistically significant (p = 0.291). 

There were also significant main effects of Action and Final 
Position Type. This is surely to be expected, as the Move+Resize 
condition requires strictly more interaction than the Move 
condition, and the corners, edges, and floating targets are all at 
different distances from the window‟s starting position. 

There was also a significant main effect of Block, with 
manipulation time decreasing in the second block for each 
condition. If we plot manipulation time over all four blocks 
performed by each participant, there is a continued downward 
trend; we suspect that performance had not yet plateaued at the 
end of the experimental trials. 

5.1.2 Technique Order Interactions 
There was no main effect of technique order; however, there was 
an interaction between both Technique Order and Technique and 
between Technique Order and Start Button Position. In the 
interaction of Technique Order and Start Button Position, those 
participants who began with the LSO technique were slower when 
starting from the lower position. Presumably, this is because they 
were unused to the precision required for this movement when 
they began to use the Traditional technique in the second half; see 
section 6.1 for a more complete discussion. We argue similarly to 
our explanation for the Technique Order by Technique interaction: 
participants who began with LSO were unused to the precision 
required in the Traditional technique and their performance 
suffered. 

5.1.3 Technique x Action 
There were main effects for both technique and for action. There 
was also an interaction between the two. While LSO was 
somewhat faster for moving windows (Δ=−0.31s), it was much 
faster for resizing (Δ=−1.06s). This is well supported by the 
qualitative feedback from our questionnaires; users reported much 
difficulty resizing windows using the Traditional technique. 

5.1.4 Action x Final Position 
There was a statistically significant interaction effect between 
Action and FinalPosition, which was not hypothesized in advance. 
The Move+Resize action is slower in corners (µ=7.59s) and at 
edges (µ=7.47s) than for floating targets (µ=7.02s) because 
participants would overshoot the target, and the window‟s resize 
handles would become inaccessible. When this happened, a 
recovery action was needed, such as moving the window so it was 
completely visible once again. This did not occur when only 
moving, because the resize handles were not needed, nor did it 
occur when the target was at a floating final position, as no portion 
of the window was likely to go off-screen. As all higher-order 
interactions were non-significant, the Action x Final Position Type 
interaction generalizes across all other variables. 

The effect of this phenomenon was reflected in the 
questionnaire data; several participants explicitly mentioned the 
snapping regions when commenting on their preference for the 
LSO technique when moving and resizing window in the corners 
and edges of the screen (section 5.2.2). We examined the use of 
these snapping regions in the LSO technique and the impact that 
the use had on manipulation time. For those targets located on the 
edge of the screen and in the corners, the snapping technique 
would be most useful. We classified a trial as having an optimal 
snapping action (for a corner target, in the matching corner region; 
for an edge target, in the matching edge region or the adjacent 
corner regions) or not (snapping to another region, or not snapping 

at all). As seen in Table 2, participants more frequently took 
appropriate snapping actions for corner targets (48% of corner 
trials using LSO technique) than for side targets (27%). This is 
likely due to the fact that for edge targets there was still a need to 
position the target along the edge, while for corner targets the 
window gets effectively locked in place by the corner. Snapping 
appropriately resulted in improved performance times for 
Move+Resize (Δ=−0.17s) actions to an edge target and both Move 
(Δ=−0.21s) and Move+Resize (Δ=−1.11s) in corner targets; 
however, there was no performance gain for a Move to the edge. 

Table 2. Comparison of mean manipulation times in the LSO 

technique when snapping was used optimally or not. 

Target 

Position Action Optimal? Freq. µ (s) S.D. (s) 

Move 
Edge 

Yes 108 2.97 0.91 
No 276 2.96 1.56 

Corner 
Yes 169 2.86 2.37 
No 215 3.07 1.72 

Move+ 
Resize 

Edge 
Yes 98 6.91 2.94 

No 286 7.08 3.85 

Corner 
Yes 199 6.52 3.33 

No 185 7.63 4.78 

5.1.5 Final Position Type x Block, Action x Block 
The Final Position Type x Block interaction, graphed in Fig. 6, 

shows a distinct improvement in fitting windows to the corners, 

far greater than the improvement attributable solely to block. In 

the Action x Block interaction, participants showed a larger 

improvement for Move+Resize trials (Δ=−0.47s) than for Move 

trials (Δ=−0.08s). 

5.2 Questionnaire Data 
Participants filled out questionnaires with ratings and rankings. 

5.2.1 Post-technique Results 
After each technique, participants rated the technique according to 
its ease of use overall and for each Action/Final Position Type 
combination (Table 3. LSO was rated easier to use than the 
Traditional technique for both Move and Move+Resize). Non-
parametric Wilcoxon matched-pairs signed-ranks tests (Z score 
reported), with a Bonferroni adjustment of the significance level to 
.007 to compensate for multiple comparisons, revealed this 
difference was significant except for free-floating target locations 
(marginally significant for Move+Resize to floating targets).  
 
 
 

Figure 6: Graph of Final Position Type x Block interaction. There is 

a strong improvement for corner trials. (Mean time in seconds.) 



Table 3. Participant ratings of the window manipulation techniques 

according to their ease of use. (5 point scale: 1=hard, 5=easy) 

p< .007* Traditional LSO Test stats 

Action Target µ S.D. µ S.D. Z p 

Move 

Float 4.33 .963 4.67 .637 1.604 .109 

Edge 3.46 1.062 4.54 .509 3.696 .000* 

Corner 3.42 1.176 4.46 .833 3.452 .001* 

Move+ 

Resize 

Float 3.42 .830 4.17 1.007 2.452 .014 

Edge 3.17 1.049 3.92 .929 3.366 .001* 

Corner 3.13 1.191 4.00 1.103 3.827 .000* 

Overall 3.21 .884 4.29 .690 4.245 .000* 

5.2.2 Post-session Preferences 
After the participants had completed both techniques, they 
completed a questionnaire that asked them to rank the techniques 
according to their overall preference, as well as to indicate their 
preferred technique for the various moving/resizing target 
locations (floating, edge, corner). The vast majority (23/24) of 
participants preferred the LSO technique over the Traditional 
window management technique; and in each specific condition at 
least 19/24 (79.2%) participants preferred the LSO technique (see 
Fig. 7). Chi-square analyses, with a Bonferroni adjustment of the 
significance level to .007 to compensate for multiple comparisons, 
revealed that this preference was significant in all cases (p<.002). 

An examination of individual rankings for each combination of 
action and target location revealed that 15 participants consistently 
indicated a preference for LSO and 1 consistently indicated a 
preference for the traditional technique. Interestingly, the single 
participant who preferred the traditional technique was the only 
participant who was not a regular mouse user. This participant was 
also an outlier in terms of mean window manipulation time. 

We examined participant comments for the reasons behind their 
preferences. For the Move and Move+Resize to the floating and 
corner target positions, about one third of participants explicitly 
mentioned the snap-to feature of the LSO technique. The ability to 
click anywhere in the LSO technique was mentioned for all targets 
(i.e., 16/19 for Move-floating, 7/22 for Move-corner), with some 
noting that the technique was “less rigid” than the traditional 
technique and that LSO “allows traditional manipulation if 
wanted.” While most participants did not explicitly comment on 
the use of two buttons in LSO, the few that did were mixed in 
their opinions. For example, one said (for Move+Resize-floating) 
“using right click is much more convenient”; however, another 
consistently made the comment “using both R&L buttons is 
confusing.” It was interesting that three of the participants 
specifically noted that the overloaded left mouse button in the 
traditional techniques was problematic, as one noted “there were 
also several occasions when I‟d want to move the window via the 
top bar and would accidentally resize it instead (or vice versa).” 

One aspect of the LSO technique that appears to have been 
problematic was the zooming-resize technique (Fig. 3). After 
using LSO, three participants made negative comments about this 
technique, with one commenting that it should resize more slowly. 
Two others commented that it was more difficult to shrink a 
window than to expand it. 

5.2.3 Tradeoff: 2 buttons, larger selection space 
We asked participants to choose between using (a) both the left 

and right mouse buttons with large selection regions (i.e., 

handles), or (b) only one button with smaller selection regions; 

22/24 participants indicated a preference for two buttons and a 

larger selection space. Having larger handles was the primary 

concern for 6 participants. While one commented, “I don‟t like 

using two buttons, but I like a larger target more,” 5 others felt that 

using two buttons was not much more complex, although some 

training might be needed. A few participants considered the 

ramifications of using the right mouse button for resizing during 

normal use, with one commenting that their choice depended upon 

the importance of window manipulation to the task and another 

saying, “I think we can right click for resizing and design another 

key to replace right click‟s tasks [context menu].”  

6 DISCUSSION 
The LSO technique outperformed the Traditional window 

management technique for both moving and resizing, regardless of 

the start button position or the final target location. The ability to 

click anywhere in the window when moving reduced the distance 

participants had to travel and increased the target size. The 

performance advantage was greater for resizing than for moving, 

in part due to the snapping regions in LSO that constrain users 

from moving a window past the screen edge when appropriately 

snapped. Furthermore, the use of the right mouse button helped 

prevent participants from inadvertently selecting the wrong handle 

and moving rather than resizing or vice versa. Participants 

subjectively rated LSO as being easier to use than the Traditional 

technique and they preferred it for use on a large screen display. 

6.1 LSO Beyond Large Collaborative Displays 
While our LSO technique was designed specifically for 
collaborative use of large displays, it may also be suitable for 
general use on personal computers, particularly for those users 
with larger monitors or secondary displays who may more 
frequently arrange multiple visible windows on the screen [14] 

We developed the LSO technique to improve window 
manipulation on large displays. We have since learned that some 
of the windows managers in distributions of Linux provide a 
similar technique of clicking anywhere within a window for 
moving (ALT+drag with left mouse button) [7, 28] and resizing 
(ALT+ drag with middle mouse button) windows [8]. We could 
find no evaluation of this technique in the literature, however the 
success of our similar technique during our study provides 
validation for this approach. 

In order to utilize the LSO technique in other systems, we 
would have to provide some mechanism for a mode switch; the 
successful integration of modifier keys for this purpose in the 
Linux window managers shows that this approach to mode 
switching works. As our questionnaire data revealed, our 
participants were quite willing to complicate the manipulation 
process by using two different mouse buttons to initiate the correct 
action in return for the larger selection areas. Of course, they were 

 

Figure 7. Preferences for the window manipulation techniques. 



not required to perform mode switches during the experiment, so 
further study is required to determine if this switch would prove to 
be a hindrance in a real-world system. 

6.2 Learning and Transfer Effects 
We found a significant effect of Block, and significant interactions 
involving Technique Order, which indicate learning and transfer 
effects. Despite the apparent simplicity of the task, it appears that 
participants continued to improve overall across all four blocks; as 
a methodological issue, one should expect a longer acclimation 
period when users must adapt to using a large screen, even when 
using a fairly familiar technique such as our Traditional technique.  

In this study, we used technique orderings of A-B and B-A 
(A=Trad., B=LSO). To establish a better baseline of learning 
curves, we could also use A-A and B-B orderings; that is, have 
participants use one technique for four consecutive blocks. This 
would help us separate transfer effects from learning effects. 

As shown in Fig. 8, participants who began with the 
Traditional technique did extremely well when they switched to 
the LSO technique; those who started with LSO showed only 
minor improvements in the Traditional technique compared to 
those who started with Traditional. Because the questionnaire data 
showed that participants found the Traditional technique harder, 
we believe that those who started with Traditional were practicing 
much harder. After using the narrow edges and minute corners of 
the Traditional technique, these participants found the large 
regions of the LSO technique very easy to use. Those who began 
with the easier LSO technique did not receive this practice benefit, 
and so showed only minor improvement. 

This unexpected asymmetric transfer effect calls into question 
the validity of using a within-subjects experiment design. 
However, examining only the first two blocks in Figure 8, before 
any transfer effects can happen, participants using LSO already 
see statistically significant gains. Additionally, using a within-
subjects allowed us to collect data such as preference information, 
which would have been impossible in a between-subjects 
experiment.  

Figure 8: Each line has two Traditional blocks and two LSO blocks; 

the four higher points are Traditional and the four lower are LSO. 

Learning effects are apparent in each pair of blocks. Those who 

start with Traditional do much better in LSO, as shown by the blue 

line from top-left to bottom-right. (Mean time in seconds.) 

6.3 Limitations 
Our study was an initial look at evaluating the LSO window 
management technique. It was intended to show that practical and 
significant gains could be made over a traditional windowing 

system. However, windowing systems are used in many ways and 
in many contexts, and no one study can demonstrate the efficacy 
of the LSO technique across all of them. We next discuss a 
number of limitations to our evaluation that must be resolved 
through further study. 

Users also found that they were unable to achieve the accuracy 
required using the „zooming‟ resize method, and the feature was 
consequently little used. We believe that this technique remains 
promising for real-world situations and should be validated with 
different tasks, or different methodologies. 

Our study was conducted with single users who were squarely 
facing the display. While we believe that our results should hold 
for multiple users and alternate seating positions, further 
validation is required for collaborative meeting environments. 

The level of accuracy required in this experiment may have 
been higher than users typically require in practice. While users 
strongly preferred the LSO technique for the task given, it remains 
to be seen if this result holds during long term real-world usage 
when the moving and resizing actions are interspersed with other 
tasks.  

All windows in this study were non-semantic; the improvements 
offered by the LSO technique should translate directly to systems 
where windows are primarily viewed, moved, and resized. If the 
LSO technique is to be used in more general systems where users 
frequently interact with the semantic contents of a window, an 
effective mode toggle must be found and the performance cost of 
performing this mode switch must be measured. Our future work 
will include a comparative study that will better evaluate the 
impact of mode switching. 

7 CONCLUSIONS 
LSO is a novel window manipulation technique, optimized for use 
on large-screen displays. Because LSO uses the full window area 
for manipulations, rather than only the borders and title-bar, it 
provides larger manipulation handles which are easier and faster to 
use than those on traditional windowing systems. By using LSO‟s 
“snapping regions,” which move the cursor to the precise edge or 
corner of the window when clicked, users are able to place 
windows against the edge or corner of the screen more easily. 
These advantages may also be transferable to other form factors 
such as desktop monitors or mobile devices. By providing a mode 
switch, such as with a modifier key, a user could switch between 
interacting with the contents of a window and manipulating it. 

We conducted a laboratory study with 24 users to investigate 
whether the LSO technique would enhance performance in 
window manipulation tasks. We found that users performed 10% 
better on Move tasks and 13% on Move+Resize tasks with the 
LSO technique. Users also strongly preferred the LSO technique; 
96% of users preferred it overall and 62% preferred it for each and 
every combination of action and final position type. 

REFERENCES 
1. About Windows. Windows User Experience Interaction 

Guidelines. http://msdn.microsoft.com/en-us/library/ms632597 

(VS.85).aspx 

2. Bi, X. and Balakrishnan, R. Comparing usage of a large high-

resolution display to single or dual desktop displays for daily 

work. In Proc. CHI ’09, ACM Press (2009), 1005-1014. 

3. Biehl, J., Baker, W., Bailey, B.P., Tan, D.S., Inkpen, K., 

Czerwinski, M. Impromptu: A New Interaction Framework for 

Supporting Collaboration in Multiple Display Environments 

and it‟s Field Evaluation for Co-located Software 

Development. In Proc. CHI ‘08, ACM Press (2008), 939-948. 

4. Bury, K. and Darnell, M. Window Management in Interactive 

Computer Systems. SIGCHI Bul. 18:2 (1986), 65-66. 



5. Chapuis, O. and Roussel, N. Metisse is not a 3D desktop! In 

Proc. UIST ‘05, ACM Press (2005), 13-22.  

6. Chapuis, O. and Roussel, N. Copy-and-paste between 

overlapping windows. In Proc. CHI ‘07 (2007), 201-210. 

7. Compiz. http://wiki.compiz.org/Plugins/Move 

8. Compiz. http://wiki.compiz.org/Plugins/Resize 

9. Controls and Status Bars. Gnome User Guide. 

http://library.gnome.org/devel/hig-book/stable/controls-status-

bars.html.en 

10. Czerwinski, M., Robertson, G., Meyers, B., Smith, G., 

Robbins, D., Tan, D.S.. Large Display Research Overview. In 

Ext. Abstracts of CHI ‘06, ACM Press (2006), 69-74.  

11. Haraty, M., Nobarany, S., DiPaola, S., and Fisher, B. AdWiL: 

adaptive windows layout manager. In Ext. Abstracts CHI „09, 

ACM Press (2009), 4177-4182. 

12. Hoffmann, R., Baudisch, P., and Weld, D. S. Evaluating visual 

cues for window switching on large screens. In Proc. CHI „08, 

ACM Press (2008), 929-938.  

13.  Hutchings, D.R. and Stasko, J. QuickSpace: New Operations 

for the Desktop Metaphor. In Ext. Abstracts CHI „02, ACM 

Press (2002), 802-803/ 

14. Hutchings, D. R. and Stasko, J. Revisiting display space 

management: understanding current practice to inform next-

generation design. In Proc. of GI (2004), 127-134. 

15. Hutchings, D. R. and Stasko, J. Shrinking window operations 

for expanding display space. In Proc. AVI ‘04. ACM Press 

(2004), 350-353.  

16. Kandogan, E. and Shneiderman, B. Elastic windows: 

improved spatial layout and rapid multiple window operations. 

In Proc. AVI ‘96, ACM Press (1996), 29-38.  

17. Liu, Z. Lacome: A Cross-platform Multi-user Collaboration 

System for a Shared Large Display. Master‟s Thesis. Dept. of 

Computer Science, University of British Columbia, 2007. 

18. Moraveji, N., Inkpen, K., Cutrell, E., and Balakrishnan, R.. A 

mischief of mice: examining children‟s performance in single 

display groupware systems with 1 to 32 mice. In Proc. 

CHI’09, ACM Press (2009), 2157-2166. 

19. Nacenta, M., Sakurai, S., Yamaguchi, T., Miki, Y., Itoh, Y., 

Kitamura, Y., Subramanian, S., and Gutwin, C. E-conic: a 

perspective-aware interface for multi-display environments. In 

Proc. UIST ‘07, ACM Press (2007), 279-288. 

20. Nakashima, K., Machida, T., Kiyokawa, K., Takemura, H. A 

2D-3D Integrated Environment for Cooperative Work. In 

Proc. of VRST ‘05, ACM Press (2005), 16-22. 

21. Ni, T., Bowman, D.A., and Chen, J.. Increased Display Size 

and Resolution Improve Task Performance in Information-rich 

Virtual Environments. In Proc. of GI (2006), 139-146.  

22. Sugawara, K. and Maruta, R. A novel intuitive GUI method 

for user-friendly operation, Knowledge-Based Systems, Vol. 22 

(2009), 235-246. 

23. Swaminathan, K. and Sato, S. Interaction Design for Large 

Displays. Interactions, 4(1) (1997).  

24. Tan, D. S., Meyers, B., and Czerwinski, M. WinCuts: 

Manipulating Arbitrary Window Regions for more Effective 

Use of Screen Space. In Ext. Abstracts of CHI ‘04, ACM Press 

(2004), 1525-1528. 

25. Wigdor, D., Jiang, H., Forlines, C., Borkin, M., and Shen, C. 

WeSpace: The Design Development and Deployment of a 

Walk-up and Share Multi-surface Visual Collaboration 

System, in Proc. CHI „09, ACM Press (2009), 1237-1246. 

26. Window Management. Windows User Experience Interaction 

Guidelines. msdn.microsoft.com/en-us/library/aa511262.aspx. 

27.  Windows. Apple Human Interface Guidelines http://developer 

.Apple.com/mac/library/documentation/UserExperience/Conce

ptual/AppleHIGuidelines/XHIGWindows/XHIGWindows.htm  

28. Windows Manipulating. Gnome User Guide 

http://library.gnome.org/users/user-guide/stable/windows-

manipulating.html.en 

 

http://wiki.compiz.org/Plugins/Resize
http://library.gnome.org/devel/hig-book/stable/controls-status-bars.html.en
http://library.gnome.org/devel/hig-book/stable/controls-status-bars.html.en
http://library.gnome.org/users/user-guide/stable/windows-manipulating.html.en
http://library.gnome.org/users/user-guide/stable/windows-manipulating.html.en

