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Visualization

A major application area of computer graphics isvisualization, where computer-
generated images are used to help people understand both spatial and non-spatial
data. Visualization is used when the goal is to augment human capabilities in
situations where the problem is not sufficiently well defined for a computer to
handle algorithmically. If a totally automatic solution can completely replace hu-
man judgement, then visualization is not typically required. Visualization can be
used to generate new hypotheses when exploring a completely unfamiliar dataset,
to confirm existing hypotheses in a partially understood dataset, or to present in-
formation about a known dataset to another audience.

Visualization allows people to offload cognition to the perceptual system, us-
ing carefully designed images as a form ofexternal memory. The human visual
system is a very high-bandwidth channel to the brain, with a significant amount
of processing occurring in parallel and at the pre-conscious level. We can thus
use external images as a substitute for keeping track of things inside our own
heads. For an example, let us consider the task of understanding the relationships
between a subset of the topics in the splendid bookGödel, Escher, Bach: The

Eternal Golden Braid (Hofstadter, 1979); see Figure 27.1.
When we see the dataset as a text list, at the low level we must read words

and compare them to memories of previously read words. It is hard to keep track
of just these dozen topics using cognition and memory alone, let alone the hun-
dreds of topics in the full book. The higher-level problem of identifying neigh-
borhoods, for instancefinding all the topics two hops away from the target topic
Paradoxes, is very difficult.
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Figure 27.1. Keeping track of relationships between topics is difficult using a text list.

Figure 27.2 shows an external visual representation of the same dataset as a
node-link graph, where each topic is anode and the linkage between two topics
is shown directly with a line. Following the lines by moving our eyes around the
image is a fast low-level operation with minimal cognitive load, so higher-level
neighborhoodfinding becomes possible. The placement of the nodes and the
routing of the links between them was created automatically by thedot graph
drawing program (Gansner et al., 1993).

We call the mapping of dataset attributes to a visual representation avisual

encoding. One of the central problems in visualization is choosing appropriate
encodings from the enormous space of possibile visual representations, taking
into account the characteristics of the human perceptual system, the dataset in
question, and the task at hand.
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Figure 27.2. Substituting perception for cognition and memory allows us to understand
relationships between book topics quickly.
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27.1 Background

27.1.1 History

People have a long history of conveying meaning through static images, dating
back to the oldest known cave paintings from over thirty thousand years ago. We
continue to visually communicate today in ways ranging from rough sketches on
the back of a napkin to the slick graphic design of advertisements. For thousands
of years, cartographers have studied the problem of making maps that represent
some aspect of the world around us. Thefirst visual representations of abstract,
nonspatial datasets were created in the 18th century by William Playfair (Friendly,
2008).

Although we have had the power to create moving images for over one hun-
dred andfifty years, creating dynamic images interactively is a more recent de-
velopment only made possible by the widespread availability of fast computer
graphics hardware and algorithms in the past few decades. Static visualizations
of tiny datasets can be created by hand, but computer graphics enables interactive
visualization of large datasets.

27.1.2 Resource Limitations

When designing a visualization system, we must consider three different kinds
of limitations: computational capacity, human perceptual and cognitive capacity,
and display capacity.

As with any application of computer graphics, computer time and memory are
limited resources and we often have hard constraints. If the visualization system
needs to deliver interactive response, then it must use algorithms that can run in a
fraction of a second rather than minutes or hours.

On the human side, memory and attention must be considered asfinite re-
sources. Human memory is notoriouslylimited, both for long-term recall and
for shorter-term working memory. Later in this chapter, we discuss some of the
power and limitations of the low-level visual attention mechanisms that carry out
massively parallel processing of the visualfield. We store surprisingly little in-
formation internally in visual working memory, leaving us vulnerable tochange

blindness, the phenomenon where even very large changes are not noticed if we
are attending to something else in our view (Simons, 2000). Moreover, vigi-
lance is also a highly limited resource; our ability to perform visual search tasks
degrades quickly, with far worse results after several hours than in thefirst few
minutes (Ware, 2000).
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Display capacity is a third kind of limitation to consider. Visualization de-
signers often “run out of pixels,” where the resolution of the screen is not large
enough to show all desired information simultaneously. Theinformation density

of a particular frame is a measure of the amount of information encoded versus
the amount of unused space. There is a tradeoff between the benefits of showing
as much as possible at once, to minimize the need for navigation and exploration,
and the costs of showing too much at once, where the user is overwhelmed by
visual clutter.

27.2 Data Types

Many aspects of a visualization design are driven by the type of the data that we
need to look at. For example, is it a table of numbers, or a set of relations between
items, or inherently spatial data such as a location on the Earth’s surface or a
collection of documents?

We start by considering a table of data. We call the rowsitems of data and the
columns aredimensions, also known asattributes. For example, the rows might
represent people, and the columns might be names, age, height, shirt size, and
favorite fruit.

We distinguish between three types of dimensions: quantitative, ordered, and
categorical.Quantitative data, such as age or height, is numerical and we can
do arithmetic on it. For example, the quantity of 68 inches minus 42 inches is
26 inches. Withordered data, such as shirt size, we cannot do full-fledged arith-
metic, but there is a well-defined ordering. For example, Large minus Medium
is not a meaningful concept, but we know that Medium falls between Small and
Large.Categorical data, such as favorite fruit or names, does not have an implicit
ordering. We can only distinguish whether two things are the same (apples) or
different (apples vs. bananas).

Relational data, orgraphs, are another data type wherenodes are connected by
links. One specific kind of graph is atree, which is typically used for hierarchical
data. Both nodes and edges can have associated attributes. The wordgraph is
unfortunately overloaded in visualization. The node-link graphs we discuss here,
following the terminology of graph drawing and graph theory, could also be called
networks. In thefield of statistical graphics, graph is often used forchart, as in
the line charts for time-series data shown in Figure 27.10.

Some data is inherently spatial, such as geographic location or afield of mea-
surements at positions in three-dimensional space as in the MRI or CT scans used
by doctors to see the internal structure of a person’s body. The information as-
sociated with each point in space may be an unordered set of scalar quantities,
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or indexed vectors, or tensors. In contrast, non-spatial data can be visually en-
coded using spatial position, but that encoding is chosen by the designer rather
than given implicitly in the semantics of the dataset itself. This choice is the one
of the most central and difficult problems of visualization design.

27.2.1 Dimension and Item Count

The number of data dimensions that need to be visually encoded is one of the most
fundamental aspects of the visualization design problem. Techniques that work
for a low-dimensional dataset with a few columns will often fail for very high-
dimensional datasets with dozens or hundreds of columns. A data dimension may
have hierarchical structure, for examplewith a time series dataset where there are
interesting patterns at multiple temporal scales.

The number of data items is also important: a visualization that performs well
for a few hundred items often does not scale to millions of items. In some cases
the difficulty is purely algorithmic, where a computation would take too long; in
others it is an even deeper perceptualproblem that even an instantaneous algo-
rithm could not solve, where visual clutter makes the representation unusable by
a person. The range of possible values within a dimension may also be relevant.

27.2.2 Data Transformation and Derived Dimensions

Data is often transformed from one type to another as part of a visualization
pipeline for solving the domain problem. For example, an original data dimen-
sion might be made up of quantitative data:floating point numbers that represent
temperature. For some tasks, likefinding anomalies in local weather patterns, the
raw data might be used directly. For another task, like deciding whether water is
an appropriate temperature for a shower, the data might be transformed into an
ordered dimension: hot, warm, or cold. In this transformation, most of the detail
is aggregated away. In a third example, when making toast, an even more lossy
transformation into a categorical dimension might suffice: burned or not burned.

The principle of transforming data intoderived dimensions, rather than simply
visually encoding the data in its original form, is a powerful idea. In Figure 27.10,
the original data was an ordered collection of time-series curves. The transforma-
tion was to cluster the data, reducing the amount of information to visually encode
to a few highly meaningful curves.
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Figure 27.3. Four nested layers of validation for visualization.

27.3 Human-Centered Design Process

The visualization design process can be split into a cascading set of layers, as
shown in Figure 27.3. These layers alldepend on each other; the output of the
level above is input into the level below.

27.3.1 Task Characterization

A given dataset has many possible visual encodings. Choosing which visual en-
coding to use can be guided by the specific needs of some intended user. Different
questions, ortasks, require very different visual encodings. For example, consider
the domain of software engineering. The task of understanding the coverage of a
test suite is well supported by the Tarantula interface shown in Figure 27.11. How-
ever, the task of understanding the modular decomposition of the software while
refactoring the code might be better served by showing its hierarchical structure
more directly as a node-link graph.

Understanding the requirements of some target audience is a tricky problem.
In a human-centered design approach, the visualization designer works with a
group of target users over time (C. Lewis & Rieman, 1993). In most cases, users
know they need to somehow view their data but cannot directly articulate their
needs as clear-cut tasks in terms of operations on data types. The iterative design
process includes gathering information from the target users about their problems
through interviews and observation of them at work, creating prototypes, and
observing how users interact with those prototypes to see how well the proposed
solution actually works. The software engineering methodology of requirements
analysis can also be useful (Kovitz, 1999).

27.3.2 Abstraction

After the specific domain problem has been identified in thefirst layer, the next
layer requires abstracting it into a more generic representation as operations on
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the data types discussed in the previous section. Problems from very different
domains can map to the same visualization abstraction. These generic operations
include sorting,filtering, characterizing trends and distributions,finding anoma-
lies and outliers, andfinding correlation (Amar et al., 2005). They also include
operations that are specific to a particular data type, for example following a path
for relational data in the form of graphs or trees.

This abstraction step often involves data transformations from the original raw
data into derived dimensions. These derived dimensions are often of a different
type than the original data: a graph may be converted into a tree, tabular data may
be converted into a graph by using a threshold to decide whether a link should
exist based on thefield values, and so on.

27.3.3 Technique and Algorithm Design

Once an abstraction has been chosen, the next layer is to design appropriate visual
encoding and interaction techniques. Section 27.4 covers the principles of visual
encoding, and we discuss interaction principles in Sections 27.5. We present
techniques that take these principles into account in Sections 27.6 and 27.7.

A detailed discussion of visualization algorithms is unfortunately beyond the
scope of this chapter.

27.3.4 Validation

Each of the four layers has different validation requirements.
Thefirst layer is designed to determine whether the problem is correctly char-

acterized: is there really a target audience performing particular tasks that would
benefit from the proposed tool? An immediate way to test assumptions and con-
jectures is to observe or interview members of the target audience, to ensure that
the visualization designer fully understands their tasks. A measurement that can-
not be done until a tool has been built and deployed is to monitor its adoption
rate within that community, although of course many other factors in addition to
utility affect adoption.

The next layer is used to determine whether the abstraction from the domain
problem into operations on specific data types actually solves the desired problem.
After a prototype orfinished tool has been deployed, afield study can be carried
out to observe whether and how it is used by its intended audience. Also, images
produced by the system can be analyzed both qualitatively and quantitatively.

The purpose of the third layer is to verify that the visual encoding and in-
teraction techniques chosen by the designer effectively communicate the chosen
abstraction to the users. An immediate test is to justify that individual design
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choices do not violate known perceptual and cognitive principles. Such a justi-
fication is necessary but not sufficient, since visualization design involves many
tradeoffs between interacting choices. After a system is built, it can be tested
through formal laboratory studies where many people are asked to do assigned
tasks so that measurements of the time required for them to complete the tasks
and their error rates can be statistically analyzed.

A fourth layer is employed to verify that the algorithm designed to carry out
the encoding and interaction choices is faster or takes less memory than previous
algorithms. An immediate test is to analyze the computational complexity of
the proposed algorithm. After implementation, the actual time performance and
memory usage of the system can be directly measured.

27.4 Visual Encoding Principles

We can describe visual encodingsas graphical elements, calledmarks, that con-
vey information through visual channels. A zero-dimensional mark is a point, a
one-dimensional mark is a line, a two-dimensional mark is an area, and a three-
dimensional mark is a volume. Manyvisual channels can encode information,
including spatial position, color, size, shape, orientation, and direction of mo-
tion. Multiple visual channels can be used to simultaneously encode different

Figure 27.4. The four visual channels of horizontal and vertical spatial position, color,
and size are used to encode information in this scatterplot chart Image courtesy George
Robertson (Robertson et al., 2008), c© IEEE 2008.
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data dimensions; for example, Figure 27.4 shows the use of horizontal and ver-
tical spatial position, color, and size to display four data dimensions. More than
one channel can be used to redundantly code the same dimension, for a design
that displays less information but shows it more clearly.

27.4.1 Visual Channel Characteristics

Important characteristics of visual channels are distinguishability, separability,
and popout.

Channels are not all equally distinguishable. Many psychophysical experi-
ments have been carried out to measure the ability of people to make precise
distinctions about information encoded by the different visual channels. Our
abilities depend on whether the data type is quantitative, ordered, or categorical.
Figure 27.5 shows the rankings of visual channels for the three data types. Fig-
ure 27.6 shows some of the default mappings for visual channels in the
Tableau/Polaris system, which take into account the data type.

Spatial position is the most accurate visual channel for all three types of data,
and it dominates our perception of a visual encoding. Thus, the two most impor-
tant data dimensions are often mapped to horizontal and vertical spatial positions.

However, the other channels differ strongly between types. The channels of
length and angle are highly discriminable for quantitative data but poor for or-
dered and categorical, while in contrasthue is very accurate for categorical data
but mediocre for quantitative data.

We must always consider whether there is a good match between the dynamic
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adapted from (Mackinlay, 1986).
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Figure 27.6. The Tableau/Polaris system default mappings for four visual channels accord-
ing to data type. Image courtesy Chris Stolte (Stolte et al., 2008), c© 2008 IEEE. (See also
Plate XLII.)

range necessary to show the data dimension and the dynamic range available in the
channel. For example, encoding with line width uses a one-dimensional mark and
the size channel. There are a limited number of width steps that we can reliably
use to visually encode information: a minimum thinness of one pixel is enforced
by the screen resolution (ignoring antialiasing to simplify this discussion), and
there is a maximum thickness beyond which the object will be perceived as a
polygon rather than a line. Line width can work very well to show three or four
different values in a data dimension, but it would be a poor choice for dozens or
hundreds of values.

Figure 27.7. Color and lo-
cation are separable chan-
nels well suited to encode
different data dimensions,
but the horizontal size and
and vertical size channels
are automatically fused into
an integrated perception of
area. Redrawn after (Ware,
2000).

Some visual channels areintegral, fused together at a pre-conscious level, so
they are not good choices for visually encoding different data dimensions. Others
areseparable, without interactions between them during visual processing, and
are safe to use for encoding multiple dimensions. Figure 27.7 shows two channel
pairs. Color and position are highly separable. We can see that horizontal size and
vertical size are not so easy to separate, because our visual system automatically
integrates these together into a unified perception of area.Size interacts with
many channels: as the size of an object grows smaller, it becomes more difficult
to distinguish its shape or color.

We can selectively attend to a channel so that items of a particular type “pop
out” visually, as discussed in Section 22.4.3. An example of visual popout is
when we immediately spot the red item amidst a sea of blue ones, or distinguish
the circle from the squares. Visual popout is powerful and scalable because it
occurs in parallel, without the need for conscious processing of the items one
by one. Many visual channels have this popout property, including not only the
list above but also curvature,flicker, stereoscopic depth, and even the direction
of lighting. However, in general we can only take advantage of popout for one
channel at a time. For example, a white circle does not pop out from a group of
circles and squares that can be white or black, as shown in Figure 22.43. When we
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need to search across more than one channel simultaneously, the length of time
it takes tofind the target object depends linearly on the number of objects in the
scene.

27.4.2 Color

Color can be a very powerful channel, but many people do not understand its
properties and use it improperly. As discussed in Section 22.2.2, we can consider
color in terms of three separate visual channels: hue, saturation, and lightness.
Region size strongly affects our ability tosense color. Color in small regions is
relatively difficult to perceive, and designers should use bright, highly saturated
colors to ensure that the color coding is distinguishable. The inverse situation
is true when colored regions are large, as in backgrounds, where low saturation
pastel colors should be used to avoid blinding the viewer.

Hue is a very strong cue for encoding categorical data. However, the available
dynamic range is very limited. People can reliably distinguish only around a
dozen hues when the colored regions are small and scattered around the display.
A good guideline for color coding is to keep the number of categories less than 8,
keeping in mind that the background and the neutral object color also count in the
total.

For ordered data, lightness and saturation are effective because they have an
implicit perceptual ordering. People can reliably order by lightness, always plac-
ing gray in between black and white. With saturation, people reliably place the
less saturated pink between fully saturated red and zero-saturation white. How-
ever, hue is not as as good a channel for ordered data because it does not have
an implicit perceptual ordering. When asked to create an ordering of red, blue,
green, and yellow, people do not all give the same answer. People can and do learn
conventions, such as green-yellow-red for traffic lights, or the order of colors in
the rainbow, but these constructions are at a higher level than pure perception.
Ordered data is typically shown with a discrete set of color values.

Quantitative data is shown with acolormap, a range of color values that can
be continuous or discrete. A very unfortunate default in many software packages
is the rainbow colormap, as shown in Figure 27.8. The standard rainbow scale
suffers from three problems. First, hue is used to indicate order. A better choice
would be to use lightness because it has an implicit perceptual ordering. Even
more importantly, the human eye responds most strongly to luminance. Second,
the scale is not perceptually linear: equal steps in the continuous range are not
perceived as equal steps by our eyes. Figure 27.8 shows an example, where the
rainbow colormap obfuscates the data. While the range from−2000 to−1000
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Figure 27.8. The standard rainbow colormap has two defects: it uses hue to denote
ordering, and it is not perceptually isolinear. Image courtesy Bernice Rogowitz. (See also
Plate XLIV.

has three distinct colors, cyan, green, and yellow, a range of the same size from
−1000 to 0 simply looks yellow throughout. The graphs on the right show that the
perceived value is strongly tied to the luminance, which is not even monotonically
increasing in this scale.

In contrast, Figure 27.9 shows the same data with a more appropriate col-
ormap, where the lightness increases monotonically. Hue is used to create a
semantically meaningful categorization: the viewer can discuss structure in the
dataset, such as the dark blue sea, the cyan continental shelf, the green lowlands,
and the white mountains.

Figure 27.9. The structure of the same dataset is far more clear with a colormap where
monotonically increasing lightness is used to show ordering and hue is used instead for
segmenting into categorical regions. Image courtesy Bernice Rogowitz. (See also Plate
XLIV.)
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In both the discrete and continuous cases, colormaps should take into account
whether the data is sequential or diverging. The ColorBrewer application (www.
colorbrewer.org) is an excellent resource for colormap construction (Brewer, 1999).

Another important issue when encoding with color is that a significant fraction
of the population, roughly 10% of men, is red-green color deficient. If a coding
using red and green is chosen because ofconventions in the target domain, re-
dundantly coding lightness or saturation in addition to hue is wise. Tools such as
the web site http://www.vischeck.com should be used to check whether a color
scheme is distinguishable to people with color deficient vision.

27.4.3 2D vs. 3D Spatial Layouts

The question of whether to use two or three channels for spatial position has been
extensively studied. When computer-based visualization began in the late 1980s,
and interactive 3D graphics was a new capability, there was a lot of enthusiasm
for 3D representations. As thefield matured, researchers began to understand the
costs of 3D approaches when used for abstract datasets (Ware, 2001).

Occlusion, where some parts of the dataset are hidden behind others, is a
major problem with 3D. Although hidden surface removal algorithms such as Z-
buffers and BSP trees allow fast computation of a correct 2D image, people must
still synthesize many of these images into an internal mental map. When peo-
ple look at realistic scenes made from familiar objects, usually they can quickly
understand what they see. However, when they see an unfamiliar dataset, where
a chosen visual encoding maps abstract dimensions into spatial positions, under-
standing the details of its 3D structure can be challenging even when they can use
interactive navigation controls to change their 3D viewpoint. The reason is once
again the limited capacity of human working memory (Plumlee & Ware, 2006).

Another problem with 3D isperspective distortion. Although real-world ob-
jects do indeed appear smaller when they are further from our eyes, foreshorten-
ing makes direct comparison of object heights difficult (Tory et al., 2006). Once
again, although we can often judge the heights of familiar objects in the real world
based on past experience, we cannot necessarily do so with completely abstract
data that has a visual encoding where the height conveys meaning. For exam-
ple, it is more difficult to judge bar heights in a 3D bar chart than in multiple
horizontally aligned 2D bar charts.

Another problem with unconstrained 3D representations is that text at arbi-
trary orientations in 3D space is far more difficult to read than text aligned in the
2D image plane (Grossman et al., 2007).

Figure 27.10 illustrates how carefully chosen 2D views of an abstract dataset
can avoid the problems with occlusion and perspective distortion inherent in 3D
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Figure 27.10. Left: A 3D representation of this time series dataset introduces the prob-
lems of occlusion and perspective distortion. Right: The linked 2D views of derived aggre-
gate curves and the calendar allow direct comparison and show more fine-grained patterns.
Image courtesy Jarke van Wijk (van Wijk & van Selow, 1999), c© 1999 IEEE. (See also
Plate XLV.)

views. The top view shows a 3D representation created directly from the origi-
nal time-series data, where each cross-section is a 2D time-series curve showing
power consumption for one day, with one curve for each day of the year along the
extruded third axis. Although this representation is straightforward to create, we
can only see large-scale patterns such as the higher consumption during working
hours and the seasonal variation between winter and summer. To create the 2D
linked views at the bottom, the curves were hierarchically clustered, and only ag-
gregate curves representing the top clusters are drawn superimposed in the same
2D frame. Direct comparison between the curve heights at all times of the day
is easy because there is no perspective distortion or occlusion. The same color
coding is used in the calendar view, which is very effective for understanding
temporal patterns.

In contrast, if a dataset consists of inherently 3D spatial data, such as showing
fluid flow over an airplane wing or a medicalimaging dataset from an MRI scan,
then the costs of a 3D view are outweighed by its benefits in helping the user
construct a useful mental model of the dataset structure.

27.4.4 Text Labels

Text in the form of labels and legends is a very important factor in creating visu-
alizations that are useful rather than simply pretty. Axes and tick marks should be
labelled. Legends should indicate the meaning of colors, whether used as discrete
patches or in continuous color ramps. Individual items in a dataset typically have
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meaningful text labels associated with them. In many cases showing all labels
at all times would result in too much visual clutter, so labels can be shown for
a subset of the items using label positioning algorithms that show labels at a de-
sired density while avoiding overlap (Luboschik et al., 2008). A straightforward
way to choose the best label to represent a group of items is to use a greedy algo-
rithm based on some measure of label importance, but synthesizing a new label
based on the characteristics of the group remains a difficult problem. A more
interaction-centric approach is to only show labels for individual items based on
an interactive indication from the user.

27.5 Interaction Principles

Several principles of interaction are important when designing a visualization.
Low-latency visual feedback allows users to explore morefluidly, for example
by showing more detail when the cursor simply hovers over an object rather than
requiring the user to explicitly click. Selecting items is a fundamental operation
when interacting with large datasets, as is visually indicating the selected set with
highlighting. Color coding is a common form of highlighting, but other channels
can also be used.

Many forms of interaction can be considered in terms of what aspect of the
display they change. Navigation can be considered a change of viewport. Sorting
is a change to the spatial ordering; that is, changing how data is mapped to the
spatial position visual channel. The entire visual encoding can also be changed.

27.5.1 Overview First, Zoom and Filter, Details on Demand

The influential mantra “Overviewfirst, zoom andfilter, details on demand” (Shnei-
derman, 1996) elucidates the role of interaction and navigation in visualization
design. Overviews help the user notice regions where further investigation might
be productive, whether through spatial navigation or throughfiltering. As we dis-
cuss below, details can be presented in many ways: with popups from clicking or
cursor hovering, in a separate window, and by changing the layout on thefly to
make room to show additional information.

27.5.2 Interactivity Costs

Interactivity has both power and cost. The benefit of interaction is that people can
explore a larger information space than can be understood in a single static image.
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However, a cost to interaction is that it requires human time and attention. If the
user must exhaustively check every possibility, use of the visualization system
may degenerate into human-powered search. Automatically detecting features
of interest to explicitly bring to the user’s attention via the visual encoding is a
useful goal for the visualization designer. However, if the task at hand could be
completely solved by automatic means, there would be no need for a visualization
in the first place. Thus, there is always a tradeoff betweenfinding automatable
aspects and relying on the human in the loop to detect patterns.

27.5.3 Animation

Animation shows change using time. Wedistinguish animation, where succes-
sive frames can only be played, paused, or stopped, from true interactive control.
There is considerable evidence that animated transitions can be more effective
than jump cuts, by helping people track changes in object positions or camera
viewpoints (Heer & Robertson, 2007). Although animation can be very effec-
tive for narrative and storytelling, it is often used ineffectively in a visualization
context (Tversky et al., 2002). It might seem obvious to show data that changes
over time by using animation, a visual modality that changes over time. How-
ever, people have difficulty in making specific comparisons between individual
frames that are not contiguous when they see an animation consisting of many
frames. The very limited capacity of human visual memory means that we are
much worse at comparing memories of things that we have seen in the past than
at comparing things that are in our currentfield of view. For tasks requiring com-
parison between up to several dozen frames, side-by-side comparison is often
more effective than animation. Moreover, if the number of objects that change
between frames is large, people will have a hard time tracking everything that
occurs (Robertson et al., 2008). Narrative animations are carefully designed to
avoid having too many actions occurring simultaneously, whereas a dataset being
visualized has no such constraint. For the special case of just two frames with a
limited amount of change, the very simple animation offlipping back and forth
between the two can be a useful way to identify the differences between them.

27.6 Composite and Adjacent Views

A very fundamental visual encoding choice is whether to have a single composite
view showing everything in the same frame or window, or to have multiple views
adjacent to each other.
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27.6.1 Single Drawing

When there are only one or two data dimensions to encode, then horizontal and
vertical spatial position are the obvious visual channel to use, because we perceive
them most accurately andposition has the strongest influence on our internal men-
tal model of the dataset. The traditional statistical graphics displays of line charts,
bar charts, and scatterplots all use spatial ordering of marks to encode informa-
tion. These displays can be augmented with additional visual channels, such as
color and size and shape, as in the scatterplot shown in Figure 27.4.

The simplest possible mark is a single pixel. Inpixel-oriented displays, the
goal is to provide an overview of as many items as possible. These approaches use
the spatial position and color channels at a high information density, but preclude
the use of the size and shape channels. Figure 27.11 shows the Tarantula software
visualization tool (Jones et al., 2002), where most of the screen is devoted to an
overview of source code using one-pixel high lines (Eick et al., 1992). The color
and brightness of each line shows whether it passed, failed, or had mixed results
when executing a suite of test cases.

Figure 27.11. Tarantula shows an overview of source code using one-pixel lines color
coded by execution status of a software test suite. Image courtesy John Stasko (Jones et
al., 2002). (See also Plate XLVI.)
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Figure 27.12. Visual layering with size, saturation, and brightness in the Constellation
system (Munzner, 2000). (See also Plate XLVII.)

27.6.2 Superimposing and Layering

Multiple items can be superimposed in the same frame when their spatial position
is compatible. Several lines can be shown in the same line chart, and many dots in
the same scatterplot, when the axes are shared across all items. One benefit of a
single shared view is that comparing the position of different items is very easy. If
the number of items in the dataset is limited, then a single view will often suffice.
Visual layering can extend the usefulness of a single view when there are enough
items that visual clutter becomes a concern. Figure 27.12 shows how a redundant
combination of the size, saturation, and brightness channels serves to distinguish
a foreground layer from a background layer when the user moves the cursor over
a block of words.

27.6.3 Glyphs

We have been discussing the idea of visual encoding using simple marks, where
a single mark can only have one value for each visual channel used. With more
complex marks, which we will callglyphs, there is internal structure where sub-
regions have different visual channel encodings.
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Figure 27.13. Complex marks, which we call glyphs, have subsections that visually encode
different data dimensions. Image courtesy Matt Ward (M. O. Ward, 2002).

Designing appropriate glyphs has the same challenges as designing visual en-
codings. Figure 27.13 shows a variety of glyphs, including the notorious faces
originally proposed by Chernoff. The danger of using faces to show abstract data
dimensions is that our perceptual and emotional response to different facial fea-

Figure 27.14. Complex glyphs require significant display area so that the encoded informa-
tion can be read. Image courtesy Matt Ward, created with the SpiralGlyphics software (M. O.
Ward, 2002). (See also Plate XLIII.)
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Figure 27.15. A dense array of simple glyphs. Image courtesy Georges Grinstein (S. Smith
et al., 1991), c© 1991 IEEE.

tures is highly nonlinear in a way that is not fully understood, but the variability
is greater than between the visual channels that we have discussed so far. We
are probably far more attuned to features that indicate emotional state such as
eyebrow orientation than other features such as nose size or face shape.

Complex glyphs require significant display area for each glyph, as shown in
Figure 27.14 where miniature bar charts show the value of four different dimen-
sions at many points along a spiral path. Simpler glyphs can be used to create
a global visual texture, the glyph size is so small that individual values cannot
be read out without zooming but region boundaries can be discerned from the
overview level. Figure 27.15 shows an example using stickfigures of the kind in
the upper right in Figure 27.13. Glyphs may be placed at regular intervals, or in
data-driven spatial positions using an original or derived data dimension.

27.6.4 Multiple Views

We now turn from approaches with only a single frame to those which use mul-
tiple views that are linked together. The most common form of linkage is linked
highlighting, where items selected in one view are highlighted in all others. In
linked navigation, movement in one view triggers movement in the others.

There are many kinds of multiple-view approaches. In what is usually called
simply themultiple-view approach, the same data is shown in several views, each
of which has a different visual encoding that shows certain aspects of the dataset
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most clearly. The power of linked highlighting across multiple visual encodings
is that items that fall in a contiguous region in one view are often distributed very
differently in the other views. In thesmall-multiples approach, each view has
the same visual encoding for different datasets, usually with shared axes between
frames so that comparison of spatial position between them is meaningful. Side-
by-side comparison with small multiples is an alternative to the visual clutter of
superimposing all the data in the same view, and to the human memory limitations
of remembering previously seen frames in an animation that changes over time.

Theoverview-and-detail approach is to have the same data and the same visual
encoding in two views, where the only difference between them is the level of
zooming. In most cases, the overview uses much less display space than the
detail view. The combination of overview and detail views is common outside
of visualization in many tools rangingfrom mapping software to photo editing.
With a detail-on-demand approach, another view shows more information about
some selected item, either as a popup window near the cursor or in a permanent
window in another part of the display.

Figure 27.16. The Improvise toolkit was used to create this multiple-view visualization.
Image courtesy Chris Weaver. (See also Plate XLVIII.)
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Determining the most appropriate spatial position of the views themselves
with respect to each other can be as significant a problem as determining the
spatial position of marks within a single view. In some systems, the location of the
views is arbitrary and left up to the window system or the user. Aligning the views
allows precise comparison between them, either vertically, horizontally, or with
an array for both directions. Just as items can be sorted within a view, views can
be sorted within a display, typically with respect to a derived variable measuring
some aspect of the entire view as opposed to an individual item within it.

Figure 27.16 shows a visualization of census data that uses many views. In
addition to geographic information, the demographic information for each county
includes population, density, gender,median age, percent change since 1990,
and proportions of major ethnic groups. The visual encodings used include ge-
ographic, scatterplot, parallel coordinate, tabular, and matrix views. The same
color encoding is used across all the views, with a legend in the bottom mid-
dle. The scatterplot matrix shows linked highlighting across all views, where
the blue items are close together in some views and scattered in others. The
map in the upper-left corner is an overview for the large detail map in the cen-
ter. The tabular views allow direct sorting by and selection within a dimension
of interest.

27.7 Data Reduction

The visual encoding techniques that we have discussed so far show all of the items
in a dataset. However, many datasets areso large that showing everything simul-
taneously would result in so much visual clutter that the visual representation
would be difficult or impossible for a viewer to understand. The main strategies
to reduce the amount of data shown are overviews and aggregation,filtering and
navigation, the focus+context techniques, and dimensionality reduction.

27.7.1 Overviews and Aggregation

With tiny datasets, a visual encoding can easily show all data dimensions for all
items. For datasets of medium size, an overview that shows information about
all items can be constructed by showing less detail for each item. Many datasets
have internal or derivable structure at multiple scales. In these cases, a multiscale
visual representation can provide many levels of overview, rather than just a single
level. Overviews are typically used as a starting point to give users clues about
where to drill down to inspect in more detail.
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For larger datasets, creating an overview requires some kind of visual sum-
marization. One approach to data reduction is to use anaggregate representation
where a single visual mark in the overview explicitly represents many items.

The challenge of aggregation is to avoid eliminating the interesting signals
in the dataset in the process of summarization. In the cartographic literature, the
problem of creating maps at different scales while retaining the important dis-
tinguishing characteristics has been extensively studied under the name ofcarto-

graphic generalization (Slocum et al., 2008).

27.7.2 Filtering and Navigation

Another approach to data reduction is tofilter the data, showing only a subset of
the items. Filtering is often carried out by directly selecting ranges of interest in
one or more of the data dimensions.

Navigation is a specific kind of filtering based on spatial position, where
changing the viewpoint changes the visible set of items. Both geometric and non-
geometric zooming are used in visualization. With geometric zooming, the cam-
era position in 2D or 3D space can be changed with standard computer graphics
controls. In a realistic scene, items should be drawn at a size that depends on their
distance from the camera, and only their apparent size changes based on that dis-
tance. However, in a visual encoding of an abstract space, nongeometric zooming
can be useful. Insemantic zooming, the visual appearance of an object changes
dramatically based on the number of pixels available to draw it. For instance, an
abstract visual representation of a textfile could change from a tiny color-coded
box with no label to a medium-sized box containing only thefilename as a text
label to a large rectangle containing a multi-line summary of the file contents. In
realistic scenes, objects that are sufficiently far away from the camera are not vis-
ible in the images, for example, after they subtend less than one pixel of screen
area. Withguaranteed visibility, one of the original or derived data dimensions is
used as a measure of importance, and objects of sufficient importance must have
some kind of representation visible in the image plane at all times.

27.7.3 Focus+Context

Focus+context techniques are another approach to data reduction. A subset of the
dataset items are interactively chosen by the user to be the focus and are drawn
in detail. The visual encoding also includes information about some or all of the
rest of the dataset shown for context, integrated into the same view that shows the
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focus items. Many of these techniques use carefully chosen distortion to combine
magnified focus regions and minified context regions into a unified view.

One common interaction metaphor is a moveablefisheye lens. Hyperbolic
geometry provides an elegant mathematical framework for a single radial lens
that affects all objects in the view. Another interaction metaphor is to use mul-
tiple lenses of different shapes and magnification levels that affect only local re-
gions. Stretch and squish navigation uses the interaction metaphor of a rubber
sheet where stretching one region squishes the rest, as shown in Figure 27.17.
The borders of the sheet stayfixed so that all items are within the viewport, al-
though many items may be compressed to subpixel size. Thefisheye metaphor
is not limited to a geometric lens used after spatial layout; it can be used directly
on structured data, such as a hierarchical document where some sections are col-
lapsed while others are left expanded.

These distortion-based approachesare another example of non-literal navi-
gation in the same spirit as nongeometric zooming. When navigating within a
large and unfamiliar dataset with realistic camera motion, users can become dis-
oriented at high zoom levels when they can see only a small local region. These
approaches are designed to provide more contextual information than a single

Figure 27.17. The TreeJuxtaposer system features stretch and squish navigation and guar-
anteed visibility of regions marked with colors (Munzner et al., 2003). (See also Plate XLIX).
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Figure 27.18. The SpaceTree system shows the path between the root and the interactively
chosen focus node to provide context (Grosjean et al., 2002).

undistorted view, in hopes that people can stay oriented if landmarks remain rec-
ognizeable. However, these kinds of distortion can still be confusing or difficult
to follow for users. The costs and benefits of distortion, as opposed to multiple
views or a single realistic view, are not yet fully understood. Standard 3D per-
spective is a particularly familiar kind of distortion and was explicitly used as a
form of focus+context in early visualization work. However, as the costs of 3D
spatial layout discussed in Section 27.4 became more understood, this approach
became less popular.

Other approaches to providing context around focus items do not require dis-
tortion. For instance, the SpaceTree system shown in Figure 27.18 elides most
nodes in the tree, showing the path between the interactively chosen focus node
and the root of the tree for context.

27.7.4 Dimensionality Reduction

The data reduction approaches covered so far reduce the number of items to
draw. When there are many data dimensions,dimensionality reduction can also be
effective.
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With slicing, a single value is chosen from the dimension to eliminate, and
only the items matching that value for the dimension are extracted to include in
the lower-dimensional slice. Slicing is particularly useful with 3D spatial data, for
example when inspecting slices through a CT scan of a human head at different
heights along the skull. Slicing can be used to eliminate multiple dimensions at
once.

With projection, no information about the eliminated dimensions is retained;
the values for those dimensions are simply dropped, and all items are still shown.
A familiar form of projection is the standard graphics perspective transformation
which projects from 3D to 2D, losing information about depth along the way. In
mathematical visualization, the structure of higher-dimensional geometric objects
can be shown by projecting from 4D to 3D before the standard projection to the
image plane and using color to encode information from the projected-away di-
mension. This technique is sometimes calleddimensional filtering when it is used
for nonspatial data.

In some datasets, there may be interesting hidden structure in a much lower-
dimensional space than the number of original data dimensions. For instance,
sometimes directly measuring the independent variables of interest is difficult or
impossible, but a large set of dependent or indirect variables is available. The goal
is tofind a small set of dimensions that faithfully represent most of the structure or
variance in the dataset. These dimensions may be the original ones, or synthesized
new ones that are linear or nonlinear combinations of the originals. Principal com-
ponent analysis is a fast, widely used linear method. Many nonlinear approaches
have been proposed, including multidimensional scaling (MDS). These methods
are usually used to determine whether there are large-scale clusters in the dataset;

Figure 27.19. Dimensionality reduction with the Glimmer multidimensional scaling approach
shows clusters in a document dataset (Ingram et al., 2009), c© 2009 IEEE. (See also Plate L.)
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the fine-grained structure in the lower-dimensional plots is usually not reliable
because information is lost in the reduction. Figure 27.19 shows document col-
lection in a single scatterplot. When the true dimensionality of the dataset is far
higher than two, a matrix of scatterplots showing pairs of synthetic dimensions
may be necessary.

27.8 Examples

We conclude this chapter with several examples of visualizing specific types of
data using the techniques discussed above.

27.8.1 Tables

Tabular data is extremely common, as all spreadsheet users know. The goal
in visualization is to encode this information through easily perceivable visual
channels rather than forcing people to read through it as numbers and text. Fig-
ure 27.20 shows the Table Lens, a focus+context approach where quantitative

Figure 27.20. The Table Lens provides focus+context interaction with tabular data, immedi-
ately reorderable by the values in each dimension column. Image courtesy Stuart Card (Rao
& Card, 1994), c© 1994 ACM, Inc. Included here by permission.
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Figure 27.21. Hierarchical parallel coordinates show high-dimensional data at multiple
levels of detail. Image courtesy Matt Ward (Fua et al., 1999), c© 1999 IEEE. (See also
Plate LI).

values are encoded as the length of one-pixel high lines in the context regions,
and shown as numbers in the focus regions. Each dimension of the dataset is
shown as a column, and the rows of itemscan be resorted according to the values
in that column with a single click in its header.

The traditional Cartesian approach of a scatterplot, where items are plotted
as dots with respect to perpendicular axes, is only usable for two and three di-
mensions of data. Many tables contain far more than three dimensions of data,
and the number of additional dimensions that can be encoded using other visual
channels is limited. Parallel coordinates are an approach for visualizing more di-
mensions at once using spatial position, where the axes are parallel rather than
perpendicular and ann-dimensional item is shown as a polyline that crosses each
of then axes once (Inselberg & Dimsdale, 1990; Wegman, 1990). Figure 27.21
shows an 8-dimensional dataset of 230,000 items at multiple levels of detail (Fua
et al., 1999), from a high-level view at the top tofiner detail at the bottom. With
hierarchical parallel coordinates, the items are clustered and an entire cluster of
items is represented by a band of varying width and opacity, where the mean is in
the middle and width at each axis dependson the values of the items in the cluster
in that dimension. The coloring of eachband is based on the proximity between
clusters according to a similarity metric.

27.8.2 Graphs

The field of graph drawing is concerned withfinding a spatial position for the
nodes in a graph in 2D or 3D space and routing the edges between these nodes
(Di Battista et al., 1999). In many casesthe edge-routing problem is simpli-
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fied by using only straight edges, or by only allowing right-angle bends for the
class oforthogonal layouts, but some approaches handle true curves. If the graph
has directed edges, a layered approach can be used to show hierarchical struc-
ture through the horizontal or vertical spatial ordering of nodes, as shown in Fig-
ure 27.2.

Figure 27.22. Graph lay-
out aesthetic criteria. Top:
Edge crossings should be
minimized. Middle: Angular
resolution should be max-
imized. Bottom: Symme-
try is maximized on the left,
whereas crossings are min-
imized on the right, showing
the conflict between the in-
dividually NP-hard criteria.

A suite of aesthetic criteria operationalize human judgements about readable
graphs as metrics that can be computed on a proposed layout (Ware et al., 2002).
Figure 27.22 shows some examples. Some metrics should be minimized, such
as the number of edge crossings, the total area of the layout, and the number of
right-angle bends or curves. Others should be maximized, such as the angular
resolution or symmetry. The problem is difficult because most of these criteria
are individually NP-hard, and moreover they are mutually incompatible (Bran-
denburg, 1988).

Many approaches to node-link graph drawing use force-directed placement,
motivated by the intuitive physical metaphor of spring forces at the edges drawing
together repelling particles at the nodes. Although naive approaches have high
time complexity and are prone to being caught in local minima, much work has
gone into developing more sophisticated algorithms such as GEM (Frick et al.,
1994) or IPSep-CoLa (Dwyer et al., 2006). Figure 27.23 shows an interactive
system using ther-PolyLog energy model, where a focus+context view of the
clustered graph is created with both geometric and semanticfisheye (van Ham &
van Wijk, 2004).

Figure 27.23. Force-directed placement showing a clustered graph with both geometric
and semantic fisheye. Image courtesy Jarke van Wijk (van Ham & van Wijk, 2004), c© 2004
IEEE.
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Figure 27.24. Graphs can be shown with either matrix or node-link views. Image courtesy
Jean-Daniel Fekete (Henry & Fekete, 2006), c© 2006 IEEE.

Graphs can also be visually encoded by showing the adjacency matrix, where
all vertices are placed along each axis and the cell between two vertices is colored
if there is an edge between them. The MatrixExplorer system uses linked multi-
ple views to help social science researchers visually analyze social networks with
both matrix and node-link representations (Henry & Fekete, 2006). Figure 27.24
shows the different visual patterns created by the same graph structure in these
two views: A represents an actor connecting several communities; B is a com-
munity; and C is a clique, or a complete sub-graph. Matrix views do not suffer
from cluttered edge crossings, but many tasks including path following are more
difficult with this approach.

27.8.3 Trees

Trees are a special case of graphs so common that a great deal of visualization
research has been devoted to them. A straightforward algorithm to lay out trees in
the two-dimensional plane works well for small trees (Reingold & Tilford, 1981),
while a more complex but scalable approach runs in linear time (Buchheim et
al., 2002). Figures 27.17 and 27.18 also show trees with different approaches
to spatial layout, but all four of these methods visually encode the relationship
between parent and child nodes by drawing a link connecting them.
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Figure 27.25. Treemap showing a filesystem of nearly one million files. Image courtesy
Jean-Daniel Fekete (Fekete & Plaisant, 2002), c© 2002 IEEE. (See also Plate LII.)

Treemaps use containment rather than connection to show the hierarchical
relationship between parent and child nodes in a tree (B. Johnson & Shneider-
man, 1991). That is, treemaps show child nodes nested within the outlines of
the parent node. Figure 27.25 shows a hierarchicalfilesystem of nearly one mil-
lion files, wherefile size is encoded by rectangle size andfile type is encoded by
color (Fekete & Plaisant, 2002). The size of nodes at the leaves of the tree can
encode an additional data dimension, but the size of nodes in the interior does not
show the value of that dimension; it is dictated by the cumulative size of their de-
scendants. Although tasks such as understanding the topological structure of the
tree or tracing paths through it are more difficult with treemaps than with node-
link approaches, tasks that involve understanding an attribute tied to leaf nodes
are well supported. Treemaps are space-filling representations that are usually
more compact than node-link approaches.

27.8.4 Geographic

Many kinds of analysis such as epidemiology require understanding both geo-
graphic and nonspatial data. Figure 27.26 shows a tool for the visual analysis
of a cancer demographics dataset that combines many of the ideas described in
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Figure 27.26. Two matrices of linked small multiples showing cancer demographic
data (MacEachren et al., 2003), c© 2003 IEEE. (See also Plate LIII).
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this chapter (MacEachren et al., 2003). The top matrix of linked views features
small multiples of three types of visual encodings: geographic maps showing Ap-
palachian counties at the lower left, histograms across the diagonal of the matrix,
and scatterplots on the upper right. The bottom2 × 2 matrix, linking scatterplots
with maps, includes the color legend for both. The discrete bivariate sequential
colormap has lightness increasing sequentially for each of two complementary
hues and is effective for color-deficient people.

27.8.5 Spatial Fields

Most nongeographicspatial data is modeled as afield, where there are one or more
values associated with each point in 2D or 3D space. Scalarfields, for example
CT or MRI medical imaging scans, are usually visualized byfinding isosurfaces
or using direct volume rendering. Vectorfields, for exampleflows in water or air,
are often visualized using arrows, streamlines (McLouglin et al., 2009), andline

integral convolution (LIC) (Laramee et al., 2004). Tensorfields, such as those
describing the anisotropic diffusion of molecules through the human brain, are
particularly challenging to display (Kindlmann et al., 2000). In the next chapter,
spatialfields are discussed in detail.

Frequently Asked Questions

• What conferences and journals are good places to look for further infor-
mation about visualization?

The IEEE VisWeek conference comprises three subconferences: InfoVis (Infor-
mation Visualization), Vis (Visualization), and VAST (Visual Analytics Science
and Technology). There is also a European EuroVis conference and an Asian
PacificVis venue. Relevant journals include IEEE TVCG (Transactions on Visu-
alization and Computer Graphics) and Palgrave Information Visualization.

• What software and toolkits are available for visualization?

The most popular toolkit for spatial data isvtk, a C/C++ codebase available at
www.vtk.org. For abstract data, the Java-basedprefuse (http://www.prefuse.
org) and Processing (processing.org) toolkits are becoming widely used. The
ManyEyes site from IBM Research (www.many-eyes.com) allows people to up-
load their own data, create interactive visualizations in a variety of formats, and
carry on conversations about visual data analysis.
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Plate XLI. Shader config-
uration in Maya. The in-
terface on the right is used
to select the shader, assign
textures to shader inputs,
and set the values of non-
texture shader inputs (such
as the “Specular Color” and
“Specular Power” sliders).
The rendering on the left is
updated dynamically while
these properties are modi-
fied, enabling immediate vi-
sual feedback. Image cour-
tesy Keith Bruns. (See also
Figure 26.14.)

Plate XLII. The
Tableau/Polaris system
default mappings for four
visual channels according
to data type. Image cour-
tesy Chris Stolte (Stolte et
al., 2008), c© 2008 IEEE.
(See also Figure 27.6.)

Plate XLIII. Complex
glyphs require significant
display area so that the
encoded information can
be read. Image courtesy
Matt Ward, created with
the SpiralGlyphics soft-
ware (M. O. Ward, 2002).
(See also Figure 27.14.)
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Plate XLIV. Left: The standard rainbow colormap has two defects: it uses hue to denote ordering, and it is
not perceptually isolinear. (See also Figure 27.8.) Right: The structure of the same dataset is far more clear
with a colormap where monotonically increasing lightness is used to show ordering and hue is used instead
for segmenting into categorical regions. (See also Figure 27.9.) Courtesy Bernice Rogowitz.

Plate XLV. Top: A 3D rep-
resentation of this time se-
ries dataset introduces the
problems of occlusion and
perspective distortion. Bot-
tom: The linked 2D views of
derived aggregate curves
and the calendar allow di-
rect comparison and show
more fine-grained patterns.
Image courtesy Jarke van
Wijk (van Wijk & van Selow,
1999), c© 1999 IEEE. (See
also Figure 27.10.)
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Plate XLVI. Tarantula
shows an overview of
source code using one-
pixel lines color coded
by execution status of
a software test suite.
Image courtesy John
Stasko (Jones et al., 2002),
c© 2002 ACM, Inc. In-
cluded here by permission.
(See also Figure 27.11.)

Plate XLVII. Visual lay-
ering with size, saturation,
and brightness in the Con-
stellation system (Munzner,
2000). (See also Figure
27.12.)
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Plate XLVIII. The Improvise toolkit was used to create this multiple-view visualization. Image courtesy Chris
Weaver. (See also Figure 27.16.)

Plate XLIX. The Tree-
Juxtaposer system features
stretch and squish naviga-
tion and guaranteed vis-
ibility of regions marked
with colors (Munzner et al.,
2003). (See also Figure
27.17).
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Plate LI. Hierarchical parallel coordinates show high-dimensional data at multiple levels of detail. Image courtesy Matt
Ward (Fua et al., 1999), c© 1999 IEEE. (See also Figure 27.21).

Plate L. Dimensionality
reduction with the Glimmer
multidimensional scaling
approach shows clusters
in a document dataset (In-
gram et al., 2009), c© 2009
IEEE. (See also Figure
27.19.)
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Plate LII. Treemap showing a filesystem of nearly one million files. Image courtesy Jean-Daniel Fekete (Fekete & Plaisant,
2002), c© 2002 IEEE. (See also Figure 27.25.)
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Plate LIII. Two matrices of linked small multiples showing cancer demographic
data (MacEachren et al., 2003), c© 2003 IEEE. (See also Figure 27.26).
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