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Abstract This chapter introduces techniques for the capture and efficient dis-
play of dynamic three-dimensional non-stationary gas flows. We describe a flexible
Schlieren-tomographic system consisting of multiple consumer camcorders. A spe-
cial choice of background pattern for Background Oriented Schlieren (BOS) imag-
ing provides for flexibility in the experimental setup. Optical flow techniques are
used to measure image space deflections due to heated air flowsfrom arbitrary cam-
era positions. A specially tailored sparse-view algebraicreconstruction algorithm is
employed to tomographically recover a refractive index gradient field. After robust
integration of these gradient fields, time-varying, fully three-dimensional refrac-
tive index fields are obtained. These can be rendered efficiently using a ray-casting
style algorithm that is suitable for graphics hardware acceleration. Additional opti-
cal properties can be rendered within the same computational framework.
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1 Overview

Schlieren imaging techniques have long been used as a means to detect minute varia-
tions in refractive index. They convert angular deflectionsof light rays into intensity
variations upon a surface, which can be more easily observed. Early systems placed
a refractive medium (often a candle plume) inside a setup comprised of precision
lenses and/or mirrors. A beam of collimated light, when shone through the medium,
would pass by a filter before being focused onto an imaging plane. Any ray de-
flected from its original parallel path would be attenuated by this filter, resulting in
a correspondingly darker spot on the imaging plane. Furtherdetails can be found in
Settles’ book [18], the most complete reference on Schlieren topics available today.

Classic Schlieren setups suffer from their high cost and difficulty of calibration.
Recently, a different approach based on digital image processing has been proposed.
The “Background Oriented Schlieren” (BOS) method [10, 15, 16] requires only a
high frequency background pattern, positioned behind the refracting volume, and a
camera to observe the pattern. Deflections of light rays passing through the medium
cause apparent distortion of the background, which can be accurately measured us-
ing computer vision techniques.

While the projected refractive index variations can usuallybe interpreted by a
trained user, they do not describe the full three-dimensional structure of the medium.
For this, we need to perform a tomographic reconstruction ofit, using Schlieren im-
ages captured from multiple viewpoints. Previous Schlieren-tomographic systems
were made possible with only a single camera by operating on rotationally sym-
metric media [4] (in which views from any angle would be equivalent) or else on
stationary flows [17] (in which the apparatus could be rotated to obtain more view-
points). In our work, we present the first method to capture and reconstruct non-
symmetric, non-stationary, time-varying refractive index variations [6]. We also de-
velop a method to efficiently render the effects produced by inhomogeneous refrac-
tive index fields.

The chapter is structured as follows: we introduce the measurement setup for
“Background Oriented Schlieren” capture of gas flows in Section 2 and describe
their tomographic reconstruction in Section 3. In Section 4we describe a light ray
model which is used for the rendering of continuously varying refractive index fields
such as the recovered gas flows. We conclude the chapter with our results and a
discussion thereof in Section 5.

2 Background Oriented Schlieren Imaging

Any medium of inhomogeneous refractive index will cause light rays to bend as they
traverse through it, leading to a characteristicjittering distortion of the background.
BOS uses digital image processing techniques to convert this distortion directly into
a measurement of the ray’s total amount of deflection along its path.
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Unlike with traditional Schlieren configurations, the BOS method has very mod-
erate hardware requirements, which in turn makes multiple-viewpoint acquisition
quite feasible. The basic principle, assuming a simple geometric optics model, is
illustrated in Figure 1. A high frequency background pattern is viewed through a
lens (implying that depth of field is of concern). Under normal circumstances, the
ray travels straight, leading to pointAb being imaged atAi . However, introducing
a refractive medium into the scan volume causes the ray to bend, according to the
well-known laws of optics. This causes an apparent distortion of the background
pattern, withBb now being imaged atAi . Optical flowalgorithms can be used to
compare this distorted image with a known reference image inorder to obtain the
displacement vector field [8, 11, 14].

Fig. 1 Virtual displacement
caused by ray deflection.
Under normal circumstances,
points Ab and Bb on the
background are imaged atAi

andBi respectively. However,
when refraction takes place,
Bb appears atAi and we see a
virtual displacement ofδ .

Ab

Bb

Ai

Bi

δ

d(out) d(in)

Note that the amount of distortion is proportional to the distance between the
background and the scan volume, which should be maximised inorder to ease the
optical flow computation. However, to remain in focus, the scan volume should also
be positioned as close to the background as possible. We compromise by placing
it half-way between the camera and background (which are 5m apart). The cam-
era array consists of 16 synchronised Sony HDR-SR7 camcorders, equipped with
400mm (35mm equivalent) lenses, positioned in an arc of almost 180◦ around the
measurement volume.

Optical flow algorithms perform best when the image containshigh frequency
texture throughout. A random noise pattern will suffice, butcould cause problems
when its resolution differs greatly from that of the camera.For example, a noise
pattern drawn from a Gaussian distribution will have an intensity histogram like
that in the bottom left of Figure 2. Moving the pattern further away from the camera
causes large patches of it to be imaged to each pixel in the camera, in effect blurring
the whole image. The intensity histogram therefore becomesmuch narrower (see
bottom right of Figure 2), which makes distinguishing between bright and dark spots
more difficult, and hence the optical flow performance degrades considerably.

We solve this problem by using a multi-scale noise pattern, such as Wavelet
Noise [9]. It is a sum of multiple independent noise functions with non-overlapping
frequency spectra. This guarantees that the image will contain sufficient high-
contrast detail at any scale. Histograms for the multi-scale noise pattern before and
after scaling are shown in Figure 2, demonstrating the difference when compared to
Gaussian noise.
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We evaluated four different optical flow algorithms using a synthetically-warped
noise pattern. For each algorithm we identified the single key parameter that most
affects its results, and varied it across an empirically determined range. Figure 3
shows the average vector difference (endpoint) errors for the resulting vector fields,
divided into three groups representing low, medium and highamounts of distortion.
Within each group, the bars are grouped into four sets of three bars, representing the
four algorithms and three of the selected parameter values.The green bars represent
a variational algorithm by Brox et. al. [8] which produces good optical flow results in
general, but tends to oversmooth this high frequency data. The MatPIV [19] toolbox
(red) has been extensively used in earlier BOS work, but we found that significantly
better results could be obtained with either the Horn-Schunck [11] (blue) or Lucas-
Kanade [14] (brown) algorithms. The latter’s lower sensitivity to parameter choice
led to us choosing it for our later experiments.

When performing tomographic reconstruction, the intersection of the view frusta
from all the cameras defines the reconstruction volume. However, the refractive
medium may only occupy a small region inside this volume, andso we detect the
visual hull [13] of the medium and exclude all the empty spacearound it from the
equation system. This both speeds up the solution, and improves on the quality of
the results.

To obtain a 3D visual hull we first require a binary mask for each 2D optical
flow vector field, classifying pixels as either in- or outsidethe medium. To see why
such a mask cannot be obtained by simply thresholding the vector field, consider the
trivial case of a ray propagating parallel to the refractiveindex gradient. Such a ray
will not be deflected at all, yet it should clearly be classified as inside the medium.
A solution to this problem is to first integrate the optical flow vector field by solving
the associated Poisson equation, and then thresholding theresultant heightfield.

As input to the tomography algorithm we require 3D deflectionvectors, but are
only able to capture 2D projections of these via optical flow.These can be trans-
formed into 3D worldspace via the camera calibration matrices to obtaind(in) and
an approximation̂d(out) to d(out).

3 Tomographic Reconstruction

The 2D displacement vectors that have been computed by the optical flow algorithm
are projections of 3D ray deflections, which are related to line integrals of the 3D
refractive index gradients. We derive the relation betweenray deflections and the
refractive index field from theray equation of geometric optics, which describes
light propagation in optically inhomogeneous media as

d
ds

(n
dx
ds

) = ▽n (1)

wheren denotes the refractive index field,x is the position of a mass-less particle
travelling along the ray, andds is the differential path along the curved ray. Re-
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Fig. 2 Top left: final wavelet
noise image;Top right : fre-
quency spectrum of one of
the noise bands;Middle row :
the intensity histogram of a
wavelet noise pattern remains
Gaussian-shaped, even if the
pattern is downsampled;Bot-
tom row: if a Gaussian noise
pattern is downsampled, its
dynamic range decreases con-
siderably. Figures reproduced
from [5].

Fig. 3 The endpoint errors
of different optical flow al-
gorithms for a synthetic flow
on a wavelet noise pattern.
Figure reproduced from [5].
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formulating Equation 1 as a first-order ODE system and integrating leads to the
following equation, which relates 3D ray deflections to the gradient of the index
field:

d(out)
−d(in) =

∫

c
▽nds. (2)

Hered(in) denotes the incoming ray direction andd(out) denotes the outgoing ray
direction with respect to the measurement volume for a ray path c.

We discretise the vector-valued function▽n using normalised scalar basis func-
tionsφi . Insertion in Equation 2 yields



6 Ivo Ihrke, Kai Berger, Bradley Atcheson, Marcus Magnor and Wolfgang Heidrich

∑
i

ni

∫

c
φids= d(out)

−d(in) (3)

where the vector-valued coefficientsni parametrise the components of the unknown
gradient. Reformulating Equation 3 as three linear systemsof equations in each of
the vector components leads to

Sn(x,y,z) = d(out)
(x,y,z)−d(in)

(x,y,z) . (4)

Here(x,y,z) denote the individual linear systems, andS is the system matrix having
the following structure:

S=




∫
c1

φ1ds · · ·
∫

c1
φnbds

...
. ..

...∫
cnp

φ1ds · · ·
∫

cnp
φnbds


 (5)

wherenb denotes the number of basis functionsφi andnp expresses the total number
of deflection measurements in all cameras. We approximate the integrals of the indi-
vidual matrix entries by Riemann sums over the single basis functions. The curved
rays are approximated by straight rays. This is known as paraxial approximation,
and is justified by the fact that the deviation between straight and curved rays is
small. Simulations of our measurement setup have shown thatthe difference does
not exceed 0.1 mm for measurement volumes of about 20 cm3.

We employ localised radially symmetric basis functions to obtain a sparse linear
system that can be solved by standard numerical algebra techniques. For the actual
computation we only use the basis functions inside the visual hull [13] of the refrac-
tive index fields. The visual hull serves as a regularizer on the shape of the volume
and minimizes projection artifacts [12].

The tomographic reconstruction results in a three-dimensional gradient field̂▽n
of the refractive index. It is then integrated by solving a Poisson equation. Note
however, that the set of gradient vectors is not consistent in general. To deal with
gradient inconsistency we resort to anisotropically weighted Poisson integration [3]

▽ · (D▽n) = ▽ · (D▽̂n) (6)

whereD is a gradient-weighting diffusion tensor. For standard Poisson integration
the tensor can be chosen asD = 1. In our case we employ a tensor which prefers
gradients from similar iso-surfaces of the underlying refractive index field, while
weakening the influence of gradients orthogonal to them. Fordetails on the defini-
tion and use of diffusion tensors refer to [2, 6, 20].

Equation 6 is again discretised within the visual hull, only. The boundary val-
ues are set to the refractive index of air, resulting in a sparse and positive definite
linear system which is solved using a Jacobi-preconditioned Conjugate Gradient
method [7].
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4 Continous Refraction Rendering

Once three-dimensional models of gas flows have been obtained by the techniques
described above, they can be placed into virtual environments. Their optical param-
eters can also be changed. For example, it is possible to add scattering and absorb-
ing smoke particles even though smoke has not been present during the capture.
To achieve this, we first derive a mathematical description of the underlying image
formation model, which is suitable for rendering continuously refracting objects,
including advanced optical properties like scattering, emission and absorption. We
then discretize and simplify the model to map it efficiently onto modern graphics
hardware.

The radiance recorded by a camera is accumulated along a curved ray passing
through the pixel and the refracting volume. The image formation process can be
described by the following equation:

L(c) =
∫

c
Lc(x,d)α(s,c)ds+Lbgα(s∞,c) (7)

where Lc expresses the radiance at a particular point in spacex, in a particu-
lar directiond due to the combined effect of emission and scattering,α(s,c) =
exp(−

∫ s
0 σt ◦c(t)dt) denotes the absorption of light along the ray at a certain dis-

tances andLbg denotes background radiance. The radianceLc(x,d) can be written
in more detail by summing the out-scattered and emitted radiance:

Lc(x,d) = ω̂ Ls(x,d)+Le(x,d). (8)

HereLs is the out-scattered andLe the locally emitted radiance, whilêω expresses
the albedo of the material. Introducing the scattering phase functionp, the scatter-
ing termLs can be formulated as an integral over the sphereΩ of incoming light
directions

Ls(x,d) =
∫

Ω
p(x,d,ω)L(x,ω)dω =

∫

Ω
p(x,d,ω)dEω . (9)

This general formulation is clearly too involved to be computed quickly on graphics
hardware. Therefore we simplify it by assuming that the scene is illuminated by a
finite number of light sources, and that each point in the scene receives light by a
finite number of incoming rays only. Applying these assumptions to our continuous
model,Ls(x,d) can be discretised and expressed as a sum over the incoming light
rays:

Ls(x,d) = ∑
j

p(x,d, l j)△Eω j . (10)

This allows us to precompute the irradiance values for all incoming light direc-
tions. Afterwards, Equation 7 can be computed on the fly by performing irradiance
lookups into an additional three-dimensional texture.

Applying this discussion to our acquired gas flows, we see that we do not ac-
quire emission, absorption or scattering properties. Thus, Lc is simply zero. Because
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the attenuation coefficientσt is zero throughout the volume, the absorption factor
α(s∞,c) equals one and we obtain

L(c) =

∫

c
0ds+Lbgα(s∞,c) = Lbg. (11)

The volume rendering of continuous refraction is a simple lookup of the background
radiance. Additional optical properties like emission, absorption and scattering co-
efficients can be synthetically added to increase the visualappeal of the renderings.
Since Equation 7 describes the forward model of volumetric light transport it could
also serve as a basis for more advanced reconstruction schemes.

5 Results

We evaluated the accuracy of our reconstruction algorithm using simulated data
experiments. We started by assessing the numerical error ofthe integration step,
adding complexity to the synthetic experiments until the full system error as well as
the errors introduced by the single processing steps could be determined.

Using a static, three-dimensional fuel injection data set [1], we first computed
ground truth gradient vectors. By performing anisotropically weighted Poisson in-
tegration on the synthetic gradients we established a lowerbound on the expected
error of 42.15 dB peak signal-to-noise ratio (PSNR), or 0.78% root mean square
(RMS) error.

In a second experiment we simulated the 3D deflection vectorsd(out)
−d(in) by

tracing curved rays according to Equation 1. A tomographic reconstruction was then
performed on the simulated measurement data. The results ofthis experiment are
shown in the first row of Table 1. In reality, only projectionsof this 3D deflection
vector into the image planes of the cameras can be measured. The influence of this
approximation was assessed in a third experiment (second row, Table 1). Finally, we
distorted a wavelet background noise pattern using the projected, simulated deflec-
tion vectors. We applied optical flow computation to the distorted images to assess
the influence of the optical flow on overall reconstruction accuracy (third row, Ta-
ble 1). As can be seen from the results, optical flow computation introduces the
largest error, followed by the approximation of the 3D deflection vector. However,
using only 16 cameras, detailed reconstructions with only≈ 1% RMS error can be
achieved.

We performed a number of measurements on real-world gas flows. Figure 4 (left)
shows the resulting deflections from an air jet dispersing a candle plume measured
with the BOS technique, and (middle) visualizes the 3D gradients of a flow caused
by a gas burner. The gradient vectors where recovered using approximately 150,000
basis functions and 700,000 pixel measurements for each time frame. Another ex-
periment shows that our system is able to clearly separate spatially distinct features.
The reconstructed plumes of three tea lights are overlaid onto one of the input im-
ages in Figure 4 (right).
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Simulation errors for tomographic reconstruction

Experiment 8 Cameras 16 Cameras 32 Cameras

PSNR RMS PSNR RMS PSNR RMS

Ground truthd(out) 40.55 0.94% 41.29 0.86% 41.39 0.85%

Approximated̂(out) 40.01 1.00% 40.69 0.92% 40.76 0.92%

Optical flow 39.29 1.09% 39.84 1.02% 39.88 1.01%

Table 1 Measured simulation errors for the tomographic reconstruction.The root mean square
(RMS) error and the peak signal-to-noise ratio (PSNR) are compared for camera different setups.

We also modified the optical properties of the measured gas flows, adding ab-
sorption and scattering properties in regions of high refractive index gradient. In
Figure 5, the refractive index volume of the gas burner flow isattached to an oil
lamp and a candle data set is placed above a virtual candle. The light rays pass-
ing through the volume are distorted and cause the typical deflections of heated air
flows. The wall relief is distorted as well as the content of the image on the opposite
wall.

Fig. 4 Left: the displacement magnitude of a candle plume’s interaction witha jet of compressed
air; Middle: the 3D refractive index gradients of a flow from a gas burner and their integrated
refractive index field;Right: the reconstructed plumes of 3 tea lights rendered into one of the input
camera’s view. Figures reproduced from [6].

Fig. 5 The reconstructed gas volume is placed into a virtual scene. Thevolume is attached to an
oil lamp and distorts the relief on the wall.
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