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Abstract This chapter introduces techniques for the capture andiesffidis-
play of dynamic three-dimensional non-stationary gas flaes describe a flexible
Schlieren-tomographic system consisting of multiple coner camcorders. A spe-
cial choice of background pattern for Background Orientehliren (BOS) imag-
ing provides for flexibility in the experimental setup. Qyatii flow techniques are
used to measure image space deflections due to heated aifrffoavarbitrary cam-
era positions. A specially tailored sparse-view algebragonstruction algorithm is
employed to tomographically recover a refractive indexdgrat field. After robust
integration of these gradient fields, time-varying, fullyrege-dimensional refrac-
tive index fields are obtained. These can be rendered efliciesing a ray-casting
style algorithm that is suitable for graphics hardware Ereéion. Additional opti-
cal properties can be rendered within the same computafiamaework.
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1 Overview

Schlieren imaging techniques have long been used as a noedgtett minute varia-
tions in refractive index. They convert angular deflectiohight rays into intensity
variations upon a surface, which can be more easily obseBaty systems placed
a refractive medium (often a candle plume) inside a setuppcised of precision
lenses and/or mirrors. A beam of collimated light, when shitmough the medium,
would pass by a filter before being focused onto an imagingepldny ray de-
flected from its original parallel path would be attenuatgdtbs filter, resulting in
a correspondingly darker spot on the imaging plane. Fudbtils can be found in
Settles’ book [18], the most complete reference on Schiiespics available today.

Classic Schlieren setups suffer from their high cost anfitdify of calibration.
Recently, a different approach based on digital image [sng has been proposed.
The “Background Oriented Schlieren” (BOS) method [10, 16, requires only a
high frequency background pattern, positioned behindéfracting volume, and a
camera to observe the pattern. Deflections of light rayspgdsrough the medium
cause apparent distortion of the background, which can tgraiely measured us-
ing computer vision techniques.

While the projected refractive index variations can usubHbyinterpreted by a
trained user, they do not describe the full three-dimeradistnucture of the medium.
For this, we need to perform a tomographic reconstructiaty oing Schlieren im-
ages captured from multiple viewpoints. Previous Schiigmmographic systems
were made possible with only a single camera by operatingotationally sym-
metric media [4] (in which views from any angle would be e@l@nt) or else on
stationary flows [17] (in which the apparatus could be ratdteobtain more view-
points). In our work, we present the first method to captur mconstruct non-
symmetric, non-stationary, time-varying refractive ird@riations [6]. We also de-
velop a method to efficiently render the effects producechbpimogeneous refrac
tive index fields.

The chapter is structured as follows: we introduce the nreasent setup for
“Background Oriented Schlieren” capture of gas flows in B®ac® and describe
their tomographic reconstruction in Section 3. In Sectiomeddescribe a light ray
model which is used for the rendering of continuously vagyiefractive index fields
such as the recovered gas flows. We conclude the chapter withesults and a
discussion thereof in Section 5.

2 Background Oriented Schlieren Imaging

Any medium of inhomogeneous refractive index will causatligys to bend as they
traverse through it, leading to a characterigittering distortion of the background.
BOS uses digital image processing techniques to convertlisiortion directly into
a measurement of the ray’s total amount of deflection alenpdth.
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Unlike with traditional Schlieren configurations, the BO$timod has very mod-
erate hardware requirements, which in turn makes multigespoint acquisition
quite feasible. The basic principle, assuming a simple gdooptics model, is
illustrated in Figure 1. A high frequency background patter viewed through a
lens (implying that depth of field is of concern). Under nokiecumstances, the
ray travels straight, leading to poiAt, being imaged a#;. However, introducing
a refractive medium into the scan volume causes the ray td, lztording to the
well-known laws of optics. This causes an apparent distortif the background
pattern, withB, now being imaged a#;. Optical flowalgorithms can be used to
compare this distorted image with a known reference imageder to obtain the
displacement vector field [8, 11, 14].

Fig. 1 Virtual displacement

caused by ray deflection. Ay
Under normal circumstances, (
points A, and B, on the o

background are imaged At d(our), d(im 5
andB; respectively. However, ; ; I
when refraction takes place, By ]5
By, appears af and we see a S A

virtual displacement od. U

Note that the amount of distortion is proportional to thetatise between the
background and the scan volume, which should be maximiseddier to ease the
optical flow computation. However, to remain in focus, tharseolume should also
be positioned as close to the background as possible. Weroamge by placing
it half-way between the camera and background (which are Bant)a The cam-
era array consists of 16 synchronised Sony HDR-SR7 camispreguipped with
400mm (35mm equivalent) lenses, positioned in an arc of siirh80 around the
measurement volume.

Optical flow algorithms perform best when the image contdigh frequency
texture throughout. A random noise pattern will suffice, toild cause problems
when its resolution differs greatly from that of the camdfar example, a noise
pattern drawn from a Gaussian distribution will have annstty histogram like
that in the bottom left of Figure 2. Moving the pattern furthevay from the camera
causes large patches of it to be imaged to each pixel in theregain effect blurring
the whole image. The intensity histogram therefore becomesh narrower (see
bottom right of Figure 2), which makes distinguishing begwéright and dark spots
more difficult, and hence the optical flow performance degsambnsiderably.

We solve this problem by using a multi-scale noise patteuchsas Wavelet
Noise [9]. It is a sum of multiple independent noise funcsievith non-overlapping
frequency spectra. This guarantees that the image willatorgufficient high-
contrast detail at any scale. Histograms for the multiescalise pattern before and
after scaling are shown in Figure 2, demonstrating the mdiffee when compared to
Gaussian noise.
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We evaluated four different optical flow algorithms using/atietically-warped
noise pattern. For each algorithm we identified the singlegaameter that most
affects its results, and varied it across an empiricallyeigined range. Figure 3
shows the average vector difference (endpoint) errordiresulting vector fields,
divided into three groups representing low, medium and kiglounts of distortion.
Within each group, the bars are grouped into four sets oéthags, representing the
four algorithms and three of the selected parameter vallresgreen bars represent
a variational algorithm by Brox et. al. [8] which produce®damptical flow results in
general, but tends to oversmooth this high frequency dé&aMatPIV [19] toolbox
(red) has been extensively used in earlier BOS work, but waddhat significantly
better results could be obtained with either the Horn-Schib1] (blue) or Lucas-
Kanade [14] (brown) algorithms. The latter’s lower sengifito parameter choice
led to us choosing it for our later experiments.

When performing tomographic reconstruction, the intefeaaif the view frusta
from all the cameras defines the reconstruction volume. Meryehe refractive
medium may only occupy a small region inside this volume, smdve detect the
visual hull [13] of the medium and exclude all the empty spaicaind it from the
equation system. This both speeds up the solution, and irapron the quality of
the results.

To obtain a 3D visual hull we first require a binary mask forle2® optical
flow vector field, classifying pixels as either in- or outsttie medium. To see why
such a mask cannot be obtained by simply thresholding thewgeld, consider the
trivial case of a ray propagating parallel to the refractiéex gradient. Such a ray
will not be deflected at all, yet it should clearly be classifés inside the medium.
A solution to this problem is to first integrate the opticalfleector field by solving
the associated Poisson equation, and then thresholdimgghiant heightfield.

As input to the tomography algorithm we require 3D deflectrentors, but are
only able to capture 2D projections of these via optical fldfvese can be trans-
formed into 3D worldspace via the camera calibration mesim obtaird(™ and
an approximatior(©49 to d (@4,

3 Tomographic Reconstruction

The 2D displacement vectors that have been computed by tlealdfpow algorithm
are projections of 3D ray deflections, which are relatedre Integrals of the 3D
refractive index gradients. We derive the relation betwesndeflections and the
refractive index field from theay equation of geometric opticsvhich describes
light propagation in optically inhomogeneous media as

g(ndl
ds' ds

wheren denotes the refractive index field,is the position of a mass-less particle
travelling along the ray, andsis the differential path along the curved ray. Re-

)=vn (1)
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Fig. 2 Top left: final wavelet
noise imagejop right: fre-
quency spectrum of one of
the noise bandsvliddle row:
the intensity histogram of a
wavelet noise pattern remains
Gaussian-shaped, even if the
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formulating Equation 1 as a first-order ODE system and isettgy leads to the
following equation, which relates 3D ray deflections to thadient of the index
field:
d —d™ — [ vnds ®)
C

Hered(" denotes the incoming ray direction ad®®"? denotes the outgoing ray
direction with respect to the measurement volume for a rély pa

We discretise the vector-valued functiom using normalised scalar basis func-
tions@. Insertion in Equation 2 yields
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where the vector-valued coefficiemtsparametrise the components of the unknown
gradient. Reformulating Equation 3 as three linear systefhegjuations in each of
the vector components leads to

SNixyz = A yz —d™ iy @)

Here(x,y, z) denote the individual linear systems, & the system matrix having
the following structure:

fCl (plds e fCl %bds

S= )

fcnp (R]_dS T fcnp %bds

wheren, denotes the number of basis functignsindn, expresses the total number
of deflection measurements in all cameras. We approximatatégrals of the indi-
vidual matrix entries by Riemann sums over the single basistfons. The curved
rays are approximated by straight rays. This is known asxpdrapproximation,
and is justified by the fact that the deviation between dttaggnd curved rays is
small. Simulations of our measurement setup have showrthibaltifference does
not exceed A mm for measurement volumes of about 2GFcm

We employ localised radially symmetric basis functionshitain a sparse linear
system that can be solved by standard numerical algebraitpes. For the actual
computation we only use the basis functions inside the Visul[13] of the refrac-
tive index fields. The visual hull serves as a regularizerhenshape of the volume
and minimizes projection artifacts [12].

The tomographic reconstruction results in a three-dinmerasigradient field7n
of the refractive index. It is then integrated by solving d@sBon equation. Note
however, that the set of gradient vectors is not consistegeneral. To deal with
gradient inconsistency we resort to anisotropically wigghPoisson integration [3]

v-(Dvn)=v-(D¥n) (6)

whereD is a gradient-weighting diffusion tensor. For standardsBan integration
the tensor can be chosenas= 1. In our case we employ a tensor which prefers
gradients from similar iso-surfaces of the underlying aefive index field, while
weakening the influence of gradients orthogonal to them details on the defini-
tion and use of diffusion tensors refer to [2, 6, 20].

Equation 6 is again discretised within the visual hull, ofiljze boundary val-
ues are set to the refractive index of air, resulting in aspand positive definite
linear system which is solved using a Jacobi-preconditioBenjugate Gradient
method [7].
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4 Continous Refraction Rendering

Once three-dimensional models of gas flows have been obthinéhe techniques
described above, they can be placed into virtual environsadineir optical param-
eters can also be changed. For example, it is possible tocadigisng and absorb-
ing smoke patrticles even though smoke has not been preseng dhe capture.
To achieve this, we first derive a mathematical descriptifath@® underlying image
formation model, which is suitable for rendering continsigurefracting objects,
including advanced optical properties like scatteringission and absorption. We
then discretize and simplify the model to map it efficientit@modern graphics
hardware.

The radiance recorded by a camera is accumulated along adctaly passing
through the pixel and the refracting volume. The image fdiomaprocess can be
described by the following equation:

L(c) = /‘:Lc(x,d)a(s,c)ds+ Log@(Sa.C) 7)

where L. expresses the radiance at a particular point in spade a particu-
lar directiond due to the combined effect of emission and scattering,c) =
exp(— [s dt oc(t) dt) denotes the absorption of light along the ray at a certain dis
tances andL,q denotes background radiance. The radidng#,d) can be written
in more detail by summing the out-scattered and emittechreg:

Le(x,d) = @Ls(x,d) + Le(x,d). 8)

Herels is the out-scattered arlg the locally emitted radiance, whil@ expresses
the albedo of the material. Introducing the scattering pHaactionp, the scatter-
ing termLg can be formulated as an integral over the sph@ref incoming light
directions

Ls(x,d) = /Q p(x,d, W)L (X, @) dow = /Q p(x,d, @) dEs. ©)

This general formulation is clearly too involved to be corgalquickly on graphics
hardware. Therefore we simplify it by assuming that the edenlluminated by a
finite number of light sources, and that each point in the sgeneives light by a
finite number of incoming rays only. Applying these assumito our continuous
model,Ls(x,d) can be discretised and expressed as a sum over the incoigiing li
rays:
Ls(x,d) = z p(x,d,1j) AEg, - (10)
]

This allows us to precompute the irradiance values for abiming light direc-
tions. Afterwards, Equation 7 can be computed on the fly bjopeing irradiance
lookups into an additional three-dimensional texture.

Applying this discussion to our acquired gas flows, we seewm®sado not ac-
quire emission, absorption or scattering properties. JThuis simply zero. Because
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the attenuation coefficiert; is zero throughout the volume, the absorption factor
0 (s»,C) equals one and we obtain

L(c)= /COds+ Lbga (Sw,C) = Lpg. (11)

The volume rendering of continuous refraction is a simptéig of the background
radiance. Additional optical properties like emissions@iption and scattering co-
efficients can be synthetically added to increase the vispaéal of the renderings.
Since Equation 7 describes the forward model of volumeiglat iransport it could
also serve as a basis for more advanced reconstruction sshem

5 Results

We evaluated the accuracy of our reconstruction algoritlsmgusimulated data
experiments. We started by assessing the numerical errthreahtegration step,
adding complexity to the synthetic experiments until tHedystem error as well as
the errors introduced by the single processing steps cauttetermined.

Using a static, three-dimensional fuel injection data &ét\ve first computed
ground truth gradient vectors. By performing anisotrofiycaeighted Poisson in-
tegration on the synthetic gradients we established a lbwend on the expected
error of 42.15 dB peak signal-to-noise ratio (PSNR), or %7#®ot mean square
(RMS) error.

In a second experiment we simulated the 3D deflection ved(6t8 — d(™ by
tracing curved rays according to Equation 1. A tomograpitonstruction was then
performed on the simulated measurement data. The resultssoéxperiment are
shown in the first row of Table 1. In reality, only projectioofthis 3D deflection
vector into the image planes of the cameras can be measurednfluence of this
approximation was assessed in a third experiment (secandable 1). Finally, we
distorted a wavelet background noise pattern using thegt@ij, simulated deflec-
tion vectors. We applied optical flow computation to thealigtd images to assess
the influence of the optical flow on overall reconstructiopwaeacy (third row, Ta-
ble 1). As can be seen from the results, optical flow comparaititroduces the
largest error, followed by the approximation of the 3D deftetvector. However,
using only 16 cameras, detailed reconstructions with enll% RMS error can be
achieved.

We performed a number of measurements on real-world gas.flogusre 4 (left)
shows the resulting deflections from an air jet dispersingradle plume measured
with the BOS technique, and (middle) visualizes the 3D gmaidi of a flow caused
by a gas burner. The gradient vectors where recovered ugprgxmately 150000
basis functions and 70000 pixel measurements for each time frame. Another ex-
periment shows that our system is able to clearly separatea#lp distinct features.
The reconstructed plumes of three tea lights are overlaid ome of the input im-
ages in Figure 4 (right).
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Simulation errors for tomographic reconstruction
Experiment 8 Cameras 16 Cameras 32 Cameras
PSNR RMS PSNR RMS PSNR RMS
Ground truthd (4 40.55 0.94% 41.29 0.86% 41.39 0.85%
Approximated (@4 40.01] 1.00% 40.69 0.92% 40.76 0.92%
Optical flow 39.29 1.09% 39.84 1.02% 39.88 1.01%

Table 1 Measured simulation errors for the tomographic reconstruclibe. root mean square
(RMS) error and the peak signal-to-noise ratio (PSNR) are cozddar camera different setups.

We also modified the optical properties of the measured gas fladding ab-
sorption and scattering properties in regions of high miva index gradient. In
Figure 5, the refractive index volume of the gas burner flowtiached to an oil
lamp and a candle data set is placed above a virtual candéeligtt rays pass-
ing through the volume are distorted and cause the typidamns of heated air
flows. The wall relief is distorted as well as the content efithage on the opposite
wall.

Fig. 4 Left: the displacement magnitude of a candle plume’s interactionavjgh of compressed
air; Middle: the 3D refractive index gradients of a flow from a gas burnet tueir integrated
refractive index fieldRight: the reconstructed plumes of 3 tea lights rendered into onesoffut
camera’s view. Figures reproduced from [6].

Fig. 5 The reconstructed gas volume is placed into a virtual scenevdloene is attached to an
oil lamp and distorts the relief on the wall.
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