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Abstract

We present a method that allows for reconstructing
non-stationary, time-varying gas flows around mov-
ing objects. Our work extends the background ori-
ented Schlieren tomography (3D-BOS) acquisition
technique to capture gas flows also in the presence
of occluding objects. An algorithm is presented that
exploits the unique properties of BOS background
patterns to robustly segment occluding objects. Nu-
merical issues in the refractive index field recon-
struction are addressed and successfully solved by
the new method.

1 Introduction

In past decades gas flows were visualized with the
so-calledSchlierentechnique. It is based on a colli-
mated light source shining light through a gas flow,
and a spatial filter to attenuate non-parallel light be-
fore projection onto an image plane. Due to refrac-
tive index variations in the gas flow, deflected light
rays result in darker streaks in the image plane. A
good overview of classical Schlieren measurement
setups can be found in Settle’s book [17].

Schlieren imaging is quite difficult to set up and
calibrate. In recent years, another method based
on image processing techniques, the so-called
Background-Oriented Schlieren(BOS) method has
been developed to simplify these measurements
[7, 13, 14]. For BOS acquisition, it is sufficient to
place a textured background pattern behind the gas
flow and record with a camera. A still image of
the scene without the refractive index field is cap-
tured and used as a reference image. Recording
the gas flow, every newly captured frame is com-
pared with the reference image by computing the
optical flow for every pixel [9, 3]. The physical
principle causing the apparent flow is depicted in

Fig. 1. It is obvious that both, classical Schlieren
measurement setups, and the BOS method are only
capable of qualitative measurements, because vol-
umetric effects are visible only as projections to a
plane. Recently, a method for tomographic recon-
struction of gas flows using the BOS method was
introduced [4]. With this so-called3D-BOSmethod
it is possible to perform a quantitative measurement
of the underlying refractive index field of the gas
flow under observation.

While this method is capable of reconstructing gas
flows accurately, it is currently not possible to mea-
sure interactions between gas flows and objects in
the flow. Measuring such interactions yields inter-
esting insight into the behavior of gas flows and the
evolution of e.g. turbulent flow structures around
object boundaries as occurring for instance in tur-
bine blades. Our contribution is the extension of
the 3D-BOS method to robustly handle occlusions
in order to quantitatively measure the surrounding
gas flow. After reviewing related work and giv-
ing a brief introduction into the 3D-BOS technique
in Sect. 2, in Sect. 3, the necessary changes for
each step of the existing method [4] are described.
In Sect. 4, the alterations are integrated into the
method and its performance in reconstructing inter-
actions with occluders is examined.

2 Related Work and Background

While previous methods have only been able to
reconstruct rotationally symmetric [2] or station-
ary gas flows [16], Atcheson et al. [4] describe a
method, that is capable of tomographically recon-
structing time-varying and non-stationary gas flows.
Their method is based on the BOS technique, where
a high-frequency background pattern is placed be-
hind the gas flow under observation and recorded
with a camera. A wavelet noise pattern [6] has been
shown to increase BOS performance compared to
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Figure 1: Virtual displacement caused by ray de-
flection. Under normal circumstances, pointsAb

andBb on the background are imaged atAi andBi

respectively. However, when refraction takes place,
Bb appears atAi and we see a virtual displacement
of δ.

previously used patterns [3]. The image of the cur-
rent frame is then compared with a previously cap-
tured reference image of the background pattern
without the gas flow. Between these two images the
per-pixeloptical flow is computed [9, 11, 5]. The
measured optical flow corresponds to the 2D pro-
jection of the deflections caused by the gas flow. It
has been experimentally shown, that Horn-Schunck
[9] optical flow is the best method to measure the
2D deflections [3].

Based on these 2D deflection vectors the method in
[4] aims to reconstruct the 3D refractive index field
that causes the measured 2D deflections. There-
fore, the volume under observation has to be cap-
tured from multiple views. In Fig. 2 the process-
ing pipeline of this method is shown. At first, the
2D vectorsIoflow are computed. Afterwards, the
method generates silhouettesMgas around the sig-
nificant vectors in the image to mark the projected
area of the gas plume in stage 2. Based on these sil-
houettes a visual hull [10]Vgas of the gas volume is
computed by backprojecting the silhouettesMgas

into a voxelized grid.

In stage 3, an equation system is set up which is
solved for each voxel inside the visual hull by stan-
dard numerical algebra techniques. The equation
system is solved for the best-fitting set of 3D refrac-
tive index gradients which causes the measured 2D
deflection vectors in every captured image inside
the silhouette. After solving the equation system,
each voxel inside the visual hull of the gas volume
is assigned a 3D vector, which is the gradient of the
unknown refractive index function at this voxel.

In stage 4, a Poisson-Integration [1] is performed to

compute the refractive index field from the 3D vec-
tor field. This refractive index field is the best-fitting
solution for the measured 2D deflection vectors in
the input images of the camera and is a tomographic
reconstruction of the captured gas flow.

Figure 2: The main stages of the reconstruction
method of Atcheson et al. [4]. At first the 2D de-
flection vectorsIoflow are computed for each cam-
era using optical flow (S1, color-coded flow vec-
tors overlayed on captured image). Then, the flow
vectors are used to determine consistent silhouettes
Mgas for computing a visual hullVgas (S2). Within
this hull an equation system is solved for 3D gra-
dient vectors (S3), which are finally integrated to
retrieve the refractive index volume (S4).

The acquisition method [4], however, is only capa-
ble of reconstructing gas flows from setups, where
the camera view of the background pattern through
the gas volume is not occluded by objects. In the
presence of occluders, on the other hand, the opti-
cal flow computation in stage 1 results in erroneous
per pixel deflection data in the projected area of the
occluding object, so that the following stages can-
not be performed correctly.



3 Obstruction 3D-BOS

As the method presented in [4] is not capable of
handling objects inside the gas flow which partially
occlude the background pattern, certain modifica-
tions to the method have to be implemented to en-
able measurement setups with occluding objects in
the gas flow:

• In stage 1, the method has to ensure that only
the deflection vectors outside the projected
area of the occluder are used for the optical
flow reconstruction. This is necessary, because
the flow between occluded pixels and back-
ground pixels from the reference image would
result in incorrect information. We discuss this
in more detail in Sect. 3.1.

• In stage 2, having masked out the occluder, the
silhouettes of the gas flow contain only pixels
outside the projected area of the occluding ob-
ject. However, the refractive index volume has
to be fitted tightly around the volume of the
occluder. We discuss this in Sect. 3.2.

• In stage 3, the 3D gradients can only be com-
puted in the voxels which are projected to pix-
els containing 2D deflection information in the
input images. Hence, gradient information is
missing in the voxels inside the visual hull of
the occluding volume. Since the final integra-
tion is a global operation over the voxelized
grid, the missing information in the voxel vol-
ume of the occluder corrupts the refractive in-
dex estimates of the surrounding voxels. We
discuss this in Sect. 3.3.

3.1 Masking Occluders

At the first stage, the occluding objects in the
recorded camera image have to be segmented. This
is necessitated by the fact that in the image regions
occluded by an object no sensible optical flow be-
tween the camera image and the reference image
can be computed. Furthermore, the pixel region
comprised by the occluder can corrupt the optical
flow values of neighboring pixels. In the case of
BOS imaging we can state several properties useful
for image segmentation:

Figure 3: High-Pass-Filtering an image containing
occluders. The high-frequency areas of the back-
ground pattern exhibit many edges while the oc-
cluder is out of focus and appears as one blurred
area (left). High-pass filtering the image results in
high values in background areas and low values in
the occluded areas (marshmallow,middle). The fi-
nal maskMocc is shown in theright image.

1. The background pattern always consists of
high-frequency noise, e.g. wavelet noise,

2. The occluding object is out of focus and thus
low-pass filtered,

3. The background pattern has a well-defined in-
tensity distribution, e.g. a normal distribution,
and

4. The occluder moves consistently over time in
the input images. Sudden topological changes
of the mask are unlikely.

The first and second property can be exploited by
applying a high-pass filter to the current image,
which results in high values in the area of the back-
ground pattern, Fig. 3. In the occluder area , low
values dominate because the occluder is out of fo-
cus. We blur the resulting values and apply a thresh-
old to obtain an occluder maskMocc. We employ
a search for connected components [15] to clean up
the resulting mask.

The third property suggests that the background pat-
tern has a consistent intensity histogram, Fig. 4.
Comparing the histograms of small patches of the
image with this intensity histogram and measuring
the distance with a suitable distance function (e.g.
Mahalanobis-distance [12]) results in a likelihood
image Ilikely. The higher a pixel value inIlikely,
the more likely a patch is belonging to the back-
ground pattern. Thresholding the image results in
a similar occluder maskM

′

occ to filter out the oc-
cluder area .

The fourth property can be utilized after having
computed the occluder masks for a full image se-



Figure 4: Low-frequency occluder areas exhibit
a different intensity distribution than the high-
frequency background. While the histogram of the
background pattern is Gaussian-shaped (bottom
histogram), the histograms of the occluder (middle
histogram) and the white wall (top histogram) have
a significantly different shape.

quence. Randomly occurring outliers can be re-
moved by applying a temporal blur over a time-
varying sequence of masksM t−n,...,t,t+n

occ . When
the temporally blurred masks are thresholded, only
pixels remain, that are consistently marked as be-
longing to an occluder over a small period of time.
However, boundary pixels of a moving occluder
are likely to be filtered out with this approach.
Thus, the resulting mask has to be dilated to al-
low for a reasonable speed of motion in the se-
quence. All three presented masking approaches,
Mocc, M

′

occ, M
t−n,...,t,t+n
occ have advantages and

drawbacks, which are discussed in Sect. 4.

3.2 Computing 3D Gradients

At this stage the occluder masksMocc have been
computed. ApplyingMocc to the input image and
computing the optical flowIoflow results, after in-
tegration, in the non-occluded gas silhouetteMgas

with
Mgas ∩ Mocc = ∅.

The computed 2D deflection vectors inMgas are
then used for determining the index gradient field.

The index gradients can only be solved for in
Vgas = V H(Mgas), the visual hull of the gas
plume that surrounds the occluder (V H(·) indicates

(a) Munion (b) Mocc (c) Mgas

(d) Vunion (e) Vocc (f) Vgas

Figure 5: The OccluderMocc (b) is masked out and
Mgas is computed from the remaining valid opti-
cal flow data (c). To fit Vgas (f) tightly around the
occluder, we computeVunion (d) fromMunion (a).
The index gradients are then computed in the voxels
in Vgas = Vunion\Vocc (e).

the visual hull computation from the input masks of
each camera). Only these voxels project to plausi-
ble optical flow data in the input images. In order to
fit Vgas tightly around the occluder we compute the
union maskMunion, with

Munion = Mgas ∪ Mocc.

Next we compute the union visual hullVunion from
Munion with

Vunion = V H(Munion)

The union visual hullVunion consists of both
the gas visual hullVgas and the occluder visual
hull Vocc. The 3D vector computation is then per-
formed inVgas = Vunion\Vocc, Fig. 5.

Note that alternatively performing a direct mask
subtraction in image plane and a visual hull gen-
eration of the remaining maskV H(Mgas) would
result in an incomplete visual hull, Fig. 6, red re-
gions. For the remaining voxel volumeVgas three
n×m equation systems are set up withn being the
number of measured 2D deflection vectors andm

being the voxels ofVgas. The equation systems are
solved for each component of the 3D gradients of
these voxels.
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Figure 7: When the 3D gradients are Poisson-integrated to obtain the final refractive index field, the missing
gradients in the occluder volume influence the refractive index estimate in the nearby voxels. The refractive
index field of a test data set [8] (a) is compared to the resulting index field after applying a rod-shaped
occluder to the scene (b). Note that the estimated refractive indices of voxels near the occluder arehigher
(c) than in the original data set.

I1

I2

I3

Mocc

Mgas

Munion = Mgas ∪ Mocc

V H(Mgas)

VoccVgas Vunion

Figure 6: The visual hullVgas (red and gray
regions) is approximated best by computingVocc

and Vunion separately and subtractingVocc from
Vunion. Performing, instead, a mask subtraction in
each image planeI1, I2, I3 and a visual hull gen-
eration afterwards results in an incomplete visual
hull, red regions.

3.3 Handling holes in the gradient volume

After determining the integration volumeVgas and
computing the 3D gradients for the voxels in it, we
finally have to take care of the Poisson-integration
of the index gradients. Fig. 7 shows the problem
that occurs, when a synthetic test volume (a) with
a synthetic occluder positioned inside the volume
(b) is Poisson-integrated. After straight-forward
Poisson-integration the refractive index estimates of

(a) (b)

Figure 8: In the volume of the occluder 3D gra-
dients cannot not be computed (a), because no 2D
deflection data is available. We diffuse the gradient
information from the boundary into the holes (b).

voxels near the occluder differ significantly (c) from
the input data set. Thus the influence of the bound-
ary has to be minimized for the voxels around the
occluder. In order to solve this problem we perform
the Poisson-integration not inVgas, but in the union
visual hullVunion. We fill the holes in the occluder
volume Vocc with sensible gradient data from the
boundary. This process is a 3D equivalent to image
inpainting. The gradient values ofVgas are diffused
into the the voxels ofVocc. Vocc acts as the mask
for the diffusion process. The result is visualized in
Fig. 8. Before the diffusion step, a 2D slice of the
3D vector field shows a hole in the area occupied
by the occluder (a). Afterwards, the data from the
boundary are propagated into the hole (b). Note that
the values of voxels inVgas remain unchanged due
to prior masking withVocc.



Figure 9: The histograms of small patches of the
background pattern (top right, bottom right) are
shifted and obtain a narrow peak shape and are
not as similar to the average background histogram
(top left) as expected.

4 Experiments and Results

At first we tested the occluder segmentation in
the first stage of the tomographic reconstruction
method. We recorded scenes similar to the mea-
surement setup in [4]: We placed a high-frequency
background pattern behind the gas volume under
observation and additionally moved small occlud-
ing objects into the gas plume. The occluding ob-
jects were recorded out of focus and thus appear
blurred and low-pass filtered in the image sequence.

We found that the histogram-based approach is ca-
pable of masking out objects in the recorded se-
quences, which have a significantly different inten-
sity distribution from the background. However, if
filter patches are chosen too small, detection can be-
come unreliable. Fig. 9 depicts the histograms of
small patches and of a large area of the background.
The histograms of the small patches are shifted and
resemble narrow peaks rather than Gaussian shapes.
This is due to variation in the average intensity be-
tween neighboring patches in the background pat-
tern.

The high-pass filter method is able to determine oc-
cluder silhouettes of objects which are out of fo-
cus or exhibit a homogeneous intensity. We found
that using this method the smallest detectable area
size equals the average area between two detectable
edges in the background pattern. A higher reso-
lution in the background pattern thus enables the
detection of smaller or thinner objects in the input

Figure 10: Masking out occluders. An input im-
age captured from a typical measurement setup con-
tains the high-frequency background, a gas flow and
an occluder (left). The thresholded high-pass fil-
tered image shows a good separation of occluder
and background (middle). The resulting conserva-
tive mask overlaid onto the input image shows the
robustness of the segmentation method (right).

image. A typical output of the masking process is
shown in Fig. 10.

We also tested the gradient diffusion process with
synthetic intensity images. We computed the gra-
dients of the images and removed information by
applying different masks, Fig. 11 (far left). The
masked out holes were filled with gradient data
from the boundary. We integrated the diffused gra-
dients again to retrieve an intensity image, Fig. 11
(middle right), which we compared to the original
image, Fig. 11 (middle left). In Fig. 12 the max-
imum per pixel errors for each applied mask are
listed. We found that the amount of the absolute
per pixel error is related to the position of the mask.
When the mask is positioned in a high-frequency
area of the image, the absolute error is higher than
when it is positioned in a low frequency area.

Finally we tested the Poisson integration with a vol-
ume consisting both of voxels with and without a
gradient value. We used a synthetic fuel injection
data set with known refractive indices [8] and virtu-
ally placed a rod-shaped occluder diagonally inside
the volume. After generating the occluder masks
for every camera, we subtracted the visual hull of



(a) no mask

(b) mask 1

(c) mask 2

Figure 11: Absolute per-pixel error for integrating
diffused images. A binary mask (far left column)
is applied to the gradients of an intensity image
(middle left column). The masked-out gradients
are filled out with diffusion. The resulting image is
obtained by Poisson-integration (middle right col-
umn). The absolute per pixel error is depicted in
thefar right column.

the occluder from the visual hull of the fuel injec-
tion volume and computed the gradient values only
in the remaining voxels.

After straight-forward integration, we found that
voxels in the neighborhood of the occluder volume
are significantly over-estimated, Fig. 13 (top right).
When the occluder voxels are filled with sensible
gradient data from the neighboring voxels by the
diffusion process, the resulting estimates are much
closer to the original values of the test data set,
Fig.13 (bottom right).

5 Conclusion

We have presented a new gas flow reconstruction
method that enables the measurement of interac-
tions of the index field with occluders. We have
identified the problems that occur when placing oc-
cluders into the measurement setup.

We derived modifications for each stage of the ex-

Mask Maximal per
pixel error

% Differ-
ence to error
without mask

no 0.2088 0 %
1 0.2091 0.14 %
2 0.2118 1.43 %

Figure 12: The maximum per pixel error after the
gradient diffusion. For every mask in Fig. 11 (left
row) the maximum absolute error (middle row) and
the percentage of difference to the maximum abso-
lute error in an integrated image without a mask
(right row) is listed.

isting 3D-BOS method [4] to allow for an index
field computation in the presence of occluders. In
the first stage we add a robust image segmentation
method to mask out the occluder silhouette. In the
second stage we define the integration volume to be
the union of the visual hulls of the gas flow and the
occluder. In the third step finally we diffuse the
computed 3D gradient data into the voxels inside
the visual hull of the occluder to provide for min-
imized artifact Poisson integration at the boundary
to these voxels.

With the presented method one can now for the first
time visualize interaction processes of heated gas
flows with stationary and moving occluders in the
BOS measurement setup.
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