
TugGraph: Path-Preserving Hierarchies for Browsing Proximity and Paths

in Graphs

Daniel Archambault∗

University of British Columbia & INRIA Bordeaux Sud-Ouest

Tamara Munzner†

University of British Columbia

David Auber‡

University of Bordeaux

ABSTRACT

Many graph visualization systems use graph hierarchies to orga-
nize a large input graph into logical components. These approaches
detect features globally in the data and place these features inside
levels of a hierarchy. However, this feature detection is a global
process and does not consider nodes of the graph near a feature of
interest. TugGraph is a system for exploring paths and proximity
around nodes and subgraphs in a graph. The approach modifies a
pre-existing hierarchy in order to see how a node or subgraph of
interest extends out into the larger graph. It is guaranteed to create
path-preserving hierarchies, so that the abstraction shown is mean-
ingful with respect to the structure of the graph. The system works
well on graphs of hundreds of thousands of nodes and millions of
edges. TugGraph is able to present views of this proximal infor-
mation in the context of the entire graph in seconds, and does not
require a layout of the full graph as input.

Keywords: Graph Visualization, Proximity, Graph Hierarchies

Index Terms: H.5.0 [Information Systems]: Information Inter-
faces and Presentation—General G.2.2 [Mathematics of Comput-
ing]: Discrete Mathematics—Graph Algorithms

1 INTRODUCTION

Many systems engineered to explore and create graph hierarchies
detect subgraphs in the input graph as a basis for hierarchy con-
struction. These approaches search for topological features [2, 5]
or features based on attribute data [18, 6] associated with the nodes
and edges. The graph hierarchy is recursively constructed by glob-
ally searching for subgraphs fitting the desired criteria and is thus
suited for overviews of graph structure. Examples of these global
questions would include: Where are the trees in this graph? or
What parts of the Internet are backbone servers?

However, these approaches do not have provisions for brows-
ing parts of the graph near, in a graph theoretic sense, a node or
subgraph of interest. As an analogy, consider a library. Global
approaches would be able to find all books on a given topic by key-
word search, but frequently there are relevant books which are dis-
covered by browsing the shelf. In a graph context, the user searches
for nodes near a node or subgraph: How does my computer network
connect to the Internet? or What flights are there to Vancouver?
We term this notion proximity. In TugGraph, we exploit graph
hierarchies to browse proximity to a feature.

A graph hierarchy or hierarchy, shown in Figure 1(a), is de-
fined as a recursive grouping placed on the nodes in the input
graph. For example, in a computer networking scenario where
nodes are servers and edges are connections between servers a hier-
archy would recursively group servers into subnetworks, networks,
and finally the Internet. Metanodes are the interior nodes of this
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hierarchy which contain a subgraph. In our networking example,
metanodes are nodes representing the subnetworks and networks.
The leaves in the hierarchy are the nodes of the input graph. In
our computer networking example, these are the servers. TugGraph
creates metanodes that contain elements of the underlying graph
that are directly connected to the subgraph or node of interest by an
edge. We will call these subgraphs proximal components.

Interactive systems use hierarchy cuts to present meaningful ab-
stractions of the input graph. A hierarchy cut, the grey swath
shown in Figure 1(a), defines which metanodes and leaves will be
shown in the drawing of the graph. In the graph drawing litera-
ture, a hierarchy cut is frequently called an antichain. Cut nodes
are drawn opaquely in the graph view at the bottom. Nodes above
the hierarchy cut are transparent and display the structure of the
hierarchy using containment while nodes below the hierarchy cut
are hidden from view. By manipulating the hierarchy cut, users
can control which parts of the graph are abstracted away. In Tug-
Graph, after computing the metanodes which contain the proximal
components, the hierarchy cut is lowered, revealing the metanodes
containing those proximal components as shown in Figure 1(b).

Usually, the subgraph of interest is small compared to the size of
the entire graph. In our networking example, the network at UBC is
contained in a small number of metanodes compared to the rest of
the Internet. Drawing the large metanodes is difficult as they con-
tain hundreds of thousands of nodes and edges. Many coarsening
techniques exist to handle this case [2, 6], but these techniques do
not consider elements near a node in the hierarchy. Our metaphor
is to tug out nodes adjacent to UBC from the larger Internet com-
ponents, and the process can be repeated to summarize paths. The
challenge is the efficient computation of this summary in a way that
if a path exists in the hierarchy cut, the path exists in the input graph.
Not all graph hierarchies guarantee this property, and we define the
space of these path-preserving hierarchies in the next section.

The primary contribution of TugGraph is a technique, and algo-
rithms implementing the technique, for exploring a region of the
graph located near a feature. We demonstrate TugGraph on input
graphs with hundreds of thousands of nodes and millions of edges.
The system is built on the GrouseFlocks [6] architecture, which
supports both the navigation and creation of graph hierarchies. Tug-
Graph does not require the entire graph to be drawn beforehand,
allowing exploration to begin immediately.

2 PATH-PRESERVING HIERARCHIES

A path-preserving hierarchy1 [6], shown in Figure 2, is a specific
type of graph hierarchy that must respect two properties:

1. Edge Conservation: An edge exists between two metanodes
m1 and m2 if and only if there exists an edge between two
leaves in the input graph l1 and l2 such that l1 is a descendant
of m1 and l2 is a descendant of m2.

2. Connectivity Conservation: Any subgraph contained inside
a metanode must be connected.

1In the GrouseFlocks paper, the term used was topologically preserving hierarchy.

Subsequently, we found path-preserving hierarchy a better term for this concept.



(a) Input (b) Output

Figure 1: Result of one TugGraph operation, with hierarchy view
above and graph view below. (a) A cut node of the hierarchy is se-
lected, in this case, the highlighted node in light blue as shown. (b)

The result of the TugGraph operation on this node. All the nodes in
red consist of leaves or proximal components of the light blue node.

(a) Edge Conservation (b) Connectivity Conservation

Figure 2: Edge conservation and connectivity conservation are re-
quired to preserve paths in hierarchy cuts. (a) Edge conservation
ensures that edges exist between metanodes of a hierarchy cut if
and only if there exists one or more edges between descendants of
the metanodes. (b) Connectivity conservation ensures that paths ex-
ist through metanodes. If the red dashed edge did not exist, there
would not be a path from the bold metaedge on the left through to
the bold metaedge on the right.

Hierarchies that ensure both of these properties guarantee that
paths in the hierarchy cut also exist in the underlying input graph.
Edge conservation guarantees that all edges in the hierarchy cut are
witnessed by at least one edge in the input graph as shown in Fig-
ure 2(a). Connectivity conservation guarantees that there exists a
path in the original graph through the metanode on the hierarchy cut
as shown in Figure 2(b). Both edge and connectivity conservation
are required in order to visualize paths and proximity information.
By enforcing these constraints, TugGraph ensures paths extending
out from the node or subgraph of interest exist in the graph.

3 PREVIOUS AND RELATED WORK

As TugGraph uses GrouseFlocks [6] and graph hierarchies to ex-
plore proximity to a node or subgraph, we present previous work on
graph hierarchy exploration in Section 3.1. We also present some
techniques for extracting subgraphs proximal to nodes in a larger
graph in Section 3.2 and highlighting techniques for subgraphs in
the context of a large graph in Section 3.3.

3.1 Graph Hierarchy Exploration

In interactive approaches to hierarchy exploration, the entire graph
is not shown at once. These systems present abstractions of the
input graph which can be interactively modified to display metan-
odes and leaves. In this section, we present systems which use this
technique to explore large graphs.

3.1.1 Existing Layout Required

These systems exploit properties of a precomputed layout to illus-
trate graph and hierarchy structure in a single drawing. Various
techniques exist including: visualizing the graph and associated hi-
erarchy extruded into the third dimension [12], multi-focal fisheye
approaches where metanodes are expanded and viewed in the con-
text of the entire graph [19], topological fisheyes where abstract ver-
sions of the graph are presented far away from a focus centre [15],
linking the graph hierarchy to a separate treemap view [1], interac-
tively visualizing hierarchies of small world clusterings [20], and
visualization of complex software in three dimensions using level
of detail techniques [9].

All of these techniques use a static layout that is computed once
up front, and a static hierarchy computed using the position of the
vertices in the drawing. Exploiting this static layout has the advan-
tage of quick and fluid interaction. However, computing this layout
for a large graph can be computationally expensive. Also, elements
near to each other, in a graph theoretic sense, may be quite distant in
the precomputed layout, as a full drawing cannot always map graph
theoretic and Euclidean distance well. TugGraph computes the lay-
out, like other steerable systems, on the fly. Steerability allows the
layout computation to take these focus centres into account, allow-
ing for a more compact presentation of paths and proximity.

3.1.2 Steerable Exploration

Steerable systems compute the graph layout dynamically during ex-
ploration and do not require a pre-existing layout. Therefore, they
can more readily be adapted for exploring paths where the source
and destination nodes are not known in advance.

Steerable systems have been developed to visualize search en-
gine query results [11] and graph hierarchies formed by detecting
topological features [2, 5]. These systems do not support hierarchy
editing, which allows users to customize their graph hierarchies.
Steerable hierarchy editing is required in order to create the proxi-
mal components as described in the introduction.

3.1.3 Steerable Hierarchy Editing

Several systems have been developed to edit graph hierarchies us-
ing topological or attribute information. These systems are directed
towards exploring the global structure of the graph and the topolog-
ical or attribute features present in it.

The DA-TU system [13] of Huang and Eades is a force-directed
approach which biases the hierarchy cut towards its hierarchy struc-
ture; Auber and Jourdan [8] support interactive hierarchy editing;
and the Clovis system [18] supports interactive clustering of an in-
put graph based on querying the attribute values associated with
the nodes and edges of the graph. GrouseFlocks [6], the system on
which TugGraph is based, allows for the interactive exploration and
creation of graph hierarchies based on attribute data. The system
uses Reform-Below-Cut operations which divide based on attribute
data associated with each node. GrouseFlocks resorts to coarsen-
ing with global topological feature detection and edge contraction
when the hierarchy cut is too large to be explored interactively.

However, none of these systems have been adapted to browse
proximity in the original graph beyond manual selection. In Tug-
Graph, we develop a system that modifies an existing hierarchy to
better illustrate proximity information in the underlying graph.

3.2 Other Notions of Proximity

Many other works, primarily in the data mining literature, focus
on good formalisms for proximity to elements of a graph [14, 16].
These approaches provide algorithms to find the nodes which exist
between or around a node or subgraph of interest in a large graph.
The smaller subgraph can be extracted and drawn for the purposes
of visualization. However, the context of how this subgraph con-
nects with the rest of the network is lost and the work does not



focus on interactive techniques. Although we use a simpler notion
of proximity in this work, direct adjacency, these techniques could
be adapted to allow TugGraph to display these forms of adjacency.

3.3 Subgraph Highlighting in Graphs

Selection and other techniques that exploit pre-attentive channels
such as motion [21] or colour using hover queries [17] can be used
to highlight parts of a graph including paths. In contrast, Boutin et
al. [10] support filtering using a graph hierarchy based on an inter-
active choice of focus node but aimed at showing a global overview
rather than local structure.

These techniques are very effective but have two drawbacks.
Firstly, a significant portion of the entire of the graph must be drawn
before visualization can begin. Secondly, large amounts of visual
clutter are still a barrier to comprehension of the set of nodes in
the context of the entire graph and the approaches cannot exploit
spatial position to emphasize proximity. However, these techniques
may be used to better emphasize paths and proximity.

4 ALGORITHM

TugGraph takes a graph and a hierarchy as input. If multiple con-
nected components exist, each component is stored inside its own
metanode at the root of the hierarchy drawn with component pack-
ing. The user then clicks on a node in the hierarchy cut to obtain
proximity information about it. This source node is a node of the
input graph or a metanode of the hierarchy that is tugged to re-
veal adjacent input graph components. It is outlined in red in Fig-
ure 3(a). On this input, the algorithm operates in five stages:

1. Compute the set of nodes in the input graph, or leaf nodes in
the hierarchy, that are descendants of the source. This set of
nodes is the source set denoted S.

2. Discover the set of leaf nodes of graph-theoretic distance one
from the source set that are not elements of the source set
themselves. This set is the proximal set denoted P.

3. Determine the set of cut metanodes that contain elements of
the proximal set. This set is the proximal cut set denoted C.

4. For each element n of the proximal cut set, place nodes of
the proximal set inside their own metanodes respecting the
constraints of a path-preserving hierarchy directly below n.

5. Reconstruct the hierarchy for all other leaf nodes that are de-
scendants of metanodes of the proximal cut set but not ele-
ments of the proximal set.

Figure 3(h) shows the result of the five stages on a metanode
selected on the graph hierarchy. When describing each step, the
complexity of each step is presented. The execution of TugGraph
produces a modified graph hierarchy and cut. Elements of the prox-
imal set, all of which were below the cut supplied as input, appear
in their containing proximal cut metanodes that are moved above
the hierarchy cut.

4.1 Computing the Source Set

The source set S is the set of nodes of the input graph that are de-
scendants of the selected node on the hierarchy cut. If the selected
node is a leaf, S contains one element: the selected node. If S is a
metanode, as in Figure 3(a), the algorithm traverses the graph hi-
erarchy top down from the selected metanode to discover all leaf
descendants as shown in Figure 3(b). These leaves are the source
set S, outlined in red in Figure 3(c).

To compute the source set, the algorithm traverses the hierarchy
below the selected metanode and extracts the set of leaf descen-
dants. Let MS be the set of metanodes below the selected node.
Then, this traversal takes |MS|+ |S| time as each leaf and metanode
is scanned exactly once.

4.2 Computing the Proximal Set

Once the source set has been computed, the algorithm computes the
proximal set. The proximal set is defined as the set of leaf nodes
of graph-theoretic distance one from the source set that are not el-
ements of the source set themselves. It is computed on the input
graph. More formally, for an edge of the input graph (u,v) and the
edges incident to node u in the set Eu, this set is denoted P:

P = {v|(u,v) ∈ Eu,u ∈ S,v /∈ S} (1)

For each element of the source set, the algorithm scans the adja-
cent leaf nodes in the input graph and determines if it satisfies the
criteria in Equation (1). The result of this part of the algorithm is
shown in Figure 3(d).

To compute the proximal set, the algorithm scans the set of nodes
directly adjacent to all elements of the source set. Leaves that are
not elements of the source set are, by definition, elements of the
proximal set. Let DS be the sum of the degrees of the source set.
This stage is then O(DS).

4.3 Computing the Proximal Cut Set

The algorithm derives the proximal cut set C from the proximal set.
The proximal cut set is the set of metanodes currently present on
the hierarchy cut that contain elements of the proximal set. This set
is computed by traversing the graph hierarchy bottom up from each
proximal set element up to the first cut metanode ancestor. Fig-
ure 3(e) shows how the proximal cut set is computed. The proximal
cut set links each element of the proximal set to a cut metanode so
that they can be placed into components one level below their con-
taining cut metanode. This is why a traversal up to the hierarchy
cut is required for each proximal component.

To compute the proximal cut set, the algorithm performs a bot-
tom up traversal of the hierarchy above the proximal set. Whenever
the algorithm discovers the cut metanode that is the ancestor of the
element of the proximal set, it is stored in a hash table. Therefore
each metanode in the hierarchy above elements of the proximal set
is visited twice. Let MP be the metanodes above the proximal set
P. Then, this stage is O(|P|+ |MP|).

4.4 Computing the Proximal Components

Once the algorithm has determined the proximal cut set and the
proximal set, it will proceed to reconstruct the hierarchies below
the proximal cut set such that the elements of the proximal set are
in metanodes that respect the rules of a path-preserving hierarchy.
These subgraphs are proximal components as every element is an
element of the proximal set, meaning they are directly connected
by an edge to an element of the source set.

Figure 3(e) shows the input to this stage of TugGraph. The prox-
imal set, P, is outlined in blue, while the proximal cut set, C, is
outlined in yellow. Before proceeding, a copy of the graph hierar-
chy is created so that it can be reconstructed below the proximal cut
nodes in the last phase.

In Figure 3(f), the hierarchy below every element of the proximal
cut set is destroyed. The resulting hierarchy below any proximal cut
node is always a set of leaves. If the cut proximal element is a leaf
of the graph hierarchy, it remains unaffected by this step as there is
no hierarchy below it to destroy. This step is identical to a recursive
delete operation as described in GrouseFlocks [6].

The algorithm then computes the proximal components as shown
in Figure 3(g). These components are the set of induced subgraphs
by nodes of the proximal set and each induced subgraph is placed
inside its own metanode. An induced subgraph is defined by a set
of nodes, in this case the nodes of P, and any edge that links a
pair of nodes in P. The result is a set of connected subgraphs. If
each connected subgraph is placed in its own metanode, it respects
connectivity conservation. If every edge that connects a node in the



(a) Selected Cut Node (b) Full Hierarchy Shown (c) Computed Source Set (d) Computed Proximal Set

(e) Computed Proximal Cut Set (f) Destroy Below Proximal Cut (g) Created Proximal Components (h) Reconstructed Hierarchy

Figure 3: All steps of the TugGraph algorithm with hierarchy above and graph below. (a) The input to the algorithm with the node the user has
clicked on outlined in red. (b) The same selection is shown, but with the full graph visible to the leaves. Dashed lines are used for the parts of the
graph hierarchy below the hierarchy cut. (c) Elements of the source set S are outlined in red. (d) Each element of the proximal set P is outlined
in blue. The edges that were used to create the proximal set are highlighted in blue as well. (e) The proximal cut set C is outlined in yellow. The
hierarchy edges used to compute the proximal cut set are in blue in the hierarchy view. (f) The hierarchy is destroyed below each proximal cut
element. (g) The proximal components are computed. These components are outlined in red in the figure. (h) The final hierarchy is presented.

proximal component to a node not in that proximal component n is
replaced by an edge between the metanode and n, it respects edge
conservation. Thus, the result is a path-preserving hierarchy as it
respects both connectivity and edge conservation.

As any fixed fraction of nodes in the proximal set can create a
component, at most O(|P|) proximal components are created.

4.5 Reconstructing the Hierarchy

Finally, the algorithm reconstructs the hierarchy that existed previ-
ously below the elements of the proximal cut sets, using the backup
it had created previously. The hierarchy is constructed bottom up
in a way that ensures a path-preserving hierarchy. The removal
of a proximal node may disconnect a metanode of the hierarchy
by having its edges be the only link between two disjoint sub-
graphs. As a result, the two newly disconnected components must
be placed in separate components in order to respect connectivity
conservation. This operation is essentially a recursive application
of the Reform-Below-Cut operation of GrouseFlocks, as described
in GrouseFlocks [6], where the components are divided into sets
defined by the previous hierarchy. Once complete, TugGraph has
modified the hierarchy so that proximal sets can be investigated be-
low the proximal cut nodes of the hierarchy. The metanodes in the
proximal cut set are opened, displaying the results to the user.

The final stage involves reconstructing the hierarchy above the
proximal set. Let this hierarchy be the set of MP metanodes. A
proximal node can split a number of metanodes proportional to its

degree. If DP is the sum of the degrees of the proximal nodes, the
complexity is O(|MP|+ |P|+DP).

4.6 Worst Case Complexity

Let the graph G = (N,E) consist of two sets: the node set N and the
edge set E. Assume the depth of the hierarchy is at most O(|N|) or
that we cannot have a metanode contain a single metanode with no
edges. In worst case, a tug can take O(|E|) time. This worst case is
realized when the sum of the degrees, DS or DP, is O(|E|), causing
proximal set computation or hierarchy construction to be expensive.
For deep hierarchies, computing the source set and reconstructing
the hierarchy is expensive but O(|N|). For large proximal sets or
source sets, computing the respective set dominates but is O(|N|).

5 COLOURING AND NODE SIZES

Many TugGraph operations can be executed on an input graph one
after the other and in conjunction with Reform Below Cut opera-
tions of GrouseFlocks. In order to distinguish multiple tugs, the
system rotates through the colours: purple, tan, blue, green, and
light blue. Proximal components are a more saturated version of the
colour while all other components are less saturated. Open metan-
odes are bounded in a background disk of the same colour.

We observed on our data that TugGraph tends to produce many
small components and a few large components when operating on
a graph. These results may be due to the small world nature of
our datasets. The small components are the few nodes adjacent



Stage Complexity

Computing Source Set O(|MS|+ |S|)
Computing Proximal Set O(DS)

Computing Proximal Cut Set O(|P|+ |MP|)
Computing the Proximal Components O(|P|)

Reconstructing Hierarchy O(|MP|+ |P|+DP)

Figure 4: Summary of asymptotic complexity of TugGraph stages.
The sets S is and P are the source and proximal sets. The sets DS

and DP are the sum of the degrees of all nodes in the S and P sets
respectively. The sets MS and MP consist of the sets of metanodes
that exist above S and P to the elements of C.

to the node or feature in the hierarchy. The large components are
the remaining elements of the graph not adjacent to the node or

feature. Due to this disparity in sizes of components, the
√

|N|
size estimate used in Grouse and GrouseFlocks prevents a compact
drawing. Thus, TugGraph can present nodes at a logscale node size.
When logscale is used, it is explicitly indicated in the text.

6 RESULTS

TugGraph is implemented using the Tulip graph drawing li-
braries [7] and GrouseFlocks [6]. We compare TugGraph to ex-
isting systems on three datasets.

The Airport dataset is a graph of worldwide airline flights
where nodes are airports and there exists an edge between two
nodes if there exists a non-stop flight between the two airports. The
dataset only has airport name as a node attribute, making attribute-
based systems less effective. No physical location information is
available. The dataset has 1,540 nodes and 16,523 edges.

The Net05 dataset [4] shows the structure of the Internet back-
bone routers as generated in 2005 by Cheswick’s Internet Mapping
Project2. Nodes in this graph are servers and an edge exists if two
servers exchanged packets. Each node has its server name and its
IP address as attributes. It has 190,384 nodes and 228,354 edges.

The Actors dataset is an IMDB subset centered around Sharon
Stone only considering movies in the years 1998 through 2001. In
this graph, nodes are actors and there exists an edge between two
nodes if those actors acted in a movie together in those years. Actor
name is the only attribute on the nodes. The dataset has 38,997
nodes and 1,948,712 edges.

For each dataset, a result is presented using TugGraph and the
result or part of the result is highlighted in the remaining systems.
As TugGraph supports label editing, we manually rename proximal
component metanodes created during exploration to have meaning-
ful names. When a TugGraph operation is executed, the metanode
that was tugged to generate the image is outlined in red. Proximal
components are always presented in saturated colours. We used a
3.0GHz Pentium IV with 3.0GB of memory running SuSE Linux
with a 2.6.5-7.151 kernel.

6.1 Airport

We browse how the flight paths between Columbus and Vancou-
ver are interconnected in Airport. Figure 5 shows the results for
Airport under Grouse, GrouseFlocks, and TugGraph. In Grouse,
the decomposition into topological features neither takes advantage
of the attribute information nor the proximity information. Fig-
ure 5(a) shows that even finding the airports one hop away is buried
very deep in a hierarchy of topological features. Figure 5(b) demon-
strates that GrouseFlocks is better able to solve this problem. The
system decomposes the graph into three components initially: Van-
couver, Columbus, and other airports. Since there is no attribute
information for node proximity, coarsening is used to explore the

2www.cheswick.com/ches/map

airports adjacent to both Vancouver and Columbus as shown in Fig-
ure 5(c). The solution improves on that of Grouse, but the airports
one hop away from Vancouver are still scattered over the hierarchy.

Figure 5(d) and 5(e) present the results using TugGraph. The
process starts with same initial decomposition shown in Figure 5(b).
First, the source node Vancouver is tugged, extracting the air-
ports one hop away from it. In Figure 5(d), the tugged Vancouver
node is outlined in red, and the dark tan node labeled Van One

Hop contains all airports one hop from Vancouver. Many small
light tan nodes surround it on the periphery: they are airports con-
nected to airports one hop from Vancouver, thus there are many
components two hops from Vancouver. Other Airports con-
tains most of the airports two or more hops from Vancouver. No-
tice that Vancouver is only connected to Van One Hop and
Columbus is only connected to Van One Hop and Other

Airports. These connections signify that all paths between Van-
couver and Columbus must pass through at least one of Van One

Hop or Other Airports. One stop-over flights exist to Colum-
bus, since both Vancouver and Columbus are connected to Van
One Hop. However, there is no direct flight since the two airports
are not connected by an edge. Figure 5(e) shows the results of sub-
sequently tugging on Van One Hop. The new blue metanode,
Van Two Hops, contains airports two hops away from Vancou-
ver because they are adjacent to the set of airports one hop away.
The paths are still highly connected as few connections exist to
Columbus at the bottom of the figure.

6.2 Net05

We browse the structure around the *.net.ubc.ca portions of
the network in Net05. After twelve hours of computation, Grouse
had not finished computing a hierarchy of topological features, so
we do not show it here. Instead, drawings produced by LGL [3] and
SPF [4] are included as these algorithms work well on this type of
data. We use logscale size nodes on this dataset.

The results are shown in Figure 6. Once again, the problem is
solved using TugGraph, and we use highlighting to show the so-
lution in other approaches. Figures 6(a) and 6(b) show where the
UBC servers are in the dataset and highlight the portions that are
four hops away. In these figures, all nodes and edges of the dataset
four hops from the *.net.ubc.ca servers are highlighted. As
the graph has not been simplified, it is difficult to see the path in the
context of the entire graph. The paths between the UBC servers that
are far away from each other cannot be emphasized without redraw-
ing the data. With GrouseFlocks, shown in Figure 6(c), the initial
decomposition segments out the UBC servers into two disconnected
components with the rest of the Internet in between them. As with
the previous dataset, when the huge Internet metanode is ex-
panded it is too complex to draw in full and must be coarsened, as
shown in Figure 6(d). The servers four hops away are all inside the
single large metanode outlined in red. The GrouseFlocks solution
is more suitable for this task, but browsing the connections between
UBC and the rest of the Internet is difficult.

Figures 6(e) through 6(j) show how TugGraph can help browse
the connections of UBC into the Internet to see if there is a
single server that connects UBC to the Internet. Again, Tug-
Graph starts from the initial GrouseFlocks decomposition shown
in Figure 6(c). First, the UBC metanode is tugged, revealing
that the two parts of the UBC network are still disconnected and
adjacent to the two saturated tan leaves 142.103.204.2 and
ubci9-tx-vantx.bc.net. However, there is no single con-
nection. ubci9-tx-vantx.bc.net is tugged and the result is
shown in Figure 6(f). rx0wh-bcnet.vc.bigpipeinc.com

is the greatest common ancestor, joining the two disconnected com-
ponents of UBC to Internet as no other edges connect Internet
to the rest of the graph. We continue browsing this connection in
Figures 6(g) through 6(j) by tugging on the nodes named in the



(a) Grouse (b) GrouseFlocks Decomposition (c) GrouseFlocks Coarsen

(d) Van One Hop (e) Van Two Hop

Figure 5: Browsing paths between Vancouver and Columbus: (a) Grouse, (b) initial GrouseFlocks decomposition, (c) GrouseFlocks coarsening,
and (d)-(e) TugGraph. In Grouse, metanodes of the hierarchy are coloured using the type of topological feature they contain. (b) In GrouseFlocks
and TugGraph, Vancouver and Columbus are coloured in saturated purple while the large component in desaturated purple is the remaining
airports. (c) The coarsened metanodes are brown, and the ones containing airports one hop from Vancouver are outlined in red. (d) The
saturated tan Van One Hop contains airports one hop from Vancouver. (e) Van One Hop is outlined in red, and Van Two Hops contains
airports two hops from Vancouver. Van Two Hops is in saturated blue.

captions and outlined in red in each of these figures.

6.3 Actors

On Actors, we demonstrate that we can generate an overview of
Bacon numbers for any movie released between 1998 and 2001.
The Bacon number of an actor is zero if the actor is Kevin Bacon
and b + 1 if the actor has acted in a movie with an actor of Bacon
number b. In a graph where nodes are actors and an edge is a movie
both actors have acted, Bacon numbers are paths through this graph
and the length of a path to get to an actor from Kevin Bacon deter-
mines the Bacon number. If we consider shortest paths, like we do
with TugGraph, we are considering the minimum Bacon number of
the actor. Grouse was unable to generate a hierarchy of topologi-
cal features in over twelve hours of execution time. GrouseFlocks
could be used for this exploration, but would produce images very
similar to the ones already shown. We thus show only a TugGraph
result in Figure 7. For this dataset, logscale node sizes are used.

Figure 7 shows that two tugs creates an overview of how Ba-
con numbers are organized in this graph. The diagram shows that
all actors with Bacon Number 1 have acted in a movie with at
least one other actor with the same Bacon number by connectivity
conservation. Actors with Bacon Number 2 also have this prop-
erty as there are only two saturated blue components. However, the
trend stops at a Bacon number of three as there are many desatu-
rated blue components connected to Bacon Number 2. Actors
with Bacon numbers of one or two tend to act in movies together as
there are few connected components.

6.4 Timings

This section presents timing numbers for the results section.

On Airport, to compute the hierarchy of topological features
required by Grouse, the decomposition algorithm took 189 seconds.
In GrouseFlocks, selection and decomposition into Columbus and
Vancouver took about 1.5 seconds. Coarsening in the next step took
0.64 seconds. As the first step of TugGraph is the same as Grouse-
Flocks, the decomposition and selection was about the same. Each
tug took about two seconds to complete.

To draw the Net05 dataset LGL and SPF took 12 hours and
30 minutes respectively to draw the entire graph. GrouseFlocks
took 115 seconds for the initial decomposition and 15 seconds to
produce the coarsened graph. After selection and decomposition
into UBC and non-UBC servers, TugGraph took about 20 seconds
to tug out each proximal component along the path.

TugGraph took about 110 seconds for the initial decomposition
into Kevin Bacon and the rest of the graph in Actors. The algo-
rithm took 101 seconds to tug out Bacon Number 1, and 409
seconds for Bacon Number 2.

7 DISCUSSION

In the three example datasets, the dependence on the sizes of the
source and proximal sets along with the sum of their degrees is ap-
parent. The tests on Net05 and Actors provides evidence that in-
creasing average node degree affects the running time significantly.

Another important observation is that the TugGraph result im-
ages do not require zoomed-in insets to show details of the graph
structure. Typically in large graph visualization systems, many
scales are needed to understand features in the data in a global con-
text. Hierarchy-based visualization tools, including TugGraph, are
able to represent the sought structure succinctly at a single scale.



(a) LGL (b) SPF

(c) GrouseFlocks Decom-

position

(d) GrouseFlocks Coarsen (e) Tug UBC (f) Tug ubci9 (g) Tug rx0wh

(h) Tug c7507 (i) Tug 69.156.254.254 (j) Tug bellnexia

Figure 6: Exploration of the Net05 dataset using: (a) LGL, (b) SPF, (c) initial GrouseFlocks decomposition, (d) GrouseFlocks coarsening, and
(e)-(j) TugGraph. In the LGL and SPF drawings, UBC servers and those four hops away are highlighted red. GrouseFlocks shows a good
initial decomposition but is unable to go further since the attribute information on this dataset is minimal. TugGraph, however, shows how UBC
connects to the Internet.



Figure 7: Bacon number trends in Actors. Bacon Number 1 con-
tains all actors with a Bacon number of one. The saturated blue node
to its right and Bacon Number 2 contain actors with a Bacon num-
ber of 2. We see that actors with Bacon numbers of one or two tend
to act with each other as their components are connected.

Through algorithm execution time, we see that TugGraph is suit-
able for displaying the structure near a small set of nodes in a larger
graph. TugGraph has a running time advantage over computing a
hierarchy of topological features or computing a full layout with
SPF or LGL. Also, the diagrams it produces are better suited for
exploring connectivity near a feature, because elements proximal
to the focus node are emphasized in the layout and less relevant
portions of the graph are abstracted away.

8 CONCLUSION AND FUTURE WORK

We have presented an interaction metaphor where users can tease
out nodes from a large graph by tugging on a feature in a path-
preserving way, and we have tested the system on input graphs with
hundreds of thousands of nodes and millions of edges. TugGraph
does not require the entire graph to be drawn beforehand, allowing
exploration to begin immediately.

TugGraph provides a fairly simple way to discover elements di-
rectly adjacent to a source node in unweighted graphs. In future
work, we hope to extend TugGraph to handle weighted graphs, to
handle elements multiple hops away and to speed up execution of
the algorithm as response is still not interactive. This generalization
would allow TugGraph to handle a wider range of data.

A graph hierarchy is able to help summarize the structure of a
graph, because it groups a large number of nodes together with a
common meaning. A limitation of TugGraph exists when a tug
produces a large number of proximal components that cannot be
summarized in a path-preserving way. In future work, we should
investigate path-preserving coarsening techniques which can effec-
tively summarise a large number of proximal components in a sim-
ple drawing. Additionally, more compact representations for a large
number of disconnected components remains future work.

Finally, user experimentation and studies with domain experts
would be essential to validate the usability of the technique. In
the future, we hope to work with users in the computer networking
domain, where this problem originally arose, to determine if the
technique helps experts better understand their data.
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