
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Tugging Graphs Faster: Efficiently Modifying
Path-Preserving Hierarchies for Browsing Paths

Daniel Archambault Member, IEEE , Tamara Munzner Member, IEEE , and David Auber

Abstract—Many graph visualization systems use graph hierarchies to organize a large input graph into logical components. These

approaches detect features globally in the data and place these features inside levels of a hierarchy. However, this feature detection is

a global process and does not consider nodes of the graph near a feature of interest.

TugGraph is a system for exploring paths and proximity around nodes and subgraphs in a graph. The approach modifies a pre-existing

hierarchy in order to see how a node or subgraph of interest extends out into the larger graph. It is guaranteed to create path-preserving

hierarchies, so that the abstraction shown is meaningful with respect to the underlying structure of the graph. The system works well

on graphs of hundreds of thousands of nodes and millions of edges. TugGraph is able to present views of this proximal information in

the context of the entire graph in seconds, and does not require a layout of the full graph as input.

Index Terms—Graph Visualization, Proximity, Graph Hierarchies

F

1 INTRODUCTION

Many systems engineered to explore and create graph hier-

archies search for subgraphs globally in the input graph as

a basis for hierarchy construction. These approaches search

for topological features [2], [5] or features based on attribute

data [23], [6] associated with the nodes and edges. The graph

hierarchy is recursively constructed by globally searching for

subgraphs fitting the desired criteria and is thus suited for

overviews of the graph structure. In a computer networking

scenario, one could ask: What is the high-level, topological

structure of the Internet? or How do servers known to be in

France connect to the Internet?

However, these approaches do not have provisions for

browsing parts of the graph topologically near a node or a

subgraph. As an analogy, consider a library. Global approaches

would be able to find all books on a given topic by keyword

search, but frequently there are relevant books which are

discovered by browsing the shelf near books on the topic. In

our computer networking scenario, this activity corresponds

to browsing nodes near a node or subgraph: What is the

topological structure near servers known to be in France? We

term this notion proximity in this paper, and in TugGraph,

we exploit graph hierarchies to browse proximity to a node or

subgraph of interest.

A graph hierarchy or hierarchy is defined as a recursive

grouping placed on the nodes in the input graph. For example,

in a computer networking scenario where nodes are servers

and edges are connections between servers a hierarchy would

recursively group servers into subnetworks, networks, and

finally the Internet. Metanodes are the interior nodes of

Daniel Archambault is with INRIA Bordeaux Sud-Ouest (email:

daniel.archambault@inria.fr).
Tamara Munzner is with the University of British Columbia (email:

tmm@cs.ubc.ca).

David Auber is with the University of Bordeaux I (email: auber@labri.fr).
Manuscript received July 1, 2009; revised Sept. 15, 2009; accepted Oct. 27,

2009.

this hierarchy which contain a subgraph. In our networking

example, metanodes are nodes representing the subnetworks

and networks. The leaves in the hierarchy are the nodes of the

input graph. In our computer networking example, these are

the servers. TugGraph creates metanodes that contain elements

of the underlying graph that are directly connected to the

subgraph or node of interest by an edge. We will call these

subgraphs proximal components.

Interactive systems use hierarchy cuts to present meaningful

abstractions of the input graph. A hierarchy cut defines

which metanodes and leaves will be shown in the drawing

of the graph. In the graph drawing literature, a hierarchy

cut is frequently called an antichain. Cut nodes are nodes

that appear on the hierarchy cut. These nodes are drawn

opaquely in the abstract view. Nodes above the hierarchy

cut are transparent and display the structure of the hierarchy

using containment while nodes below the hierarchy cut are

hidden from view. By manipulating the hierarchy cut, users

can control which parts of the graph are abstracted away.

In TugGraph, we tug out nodes adjacent to a selection, as

shown in Fig. 1(a) and place their connected components into

metanodes as shown in Fig. 1(b).

Usually, the subgraph of interest is small compared to the

size of the entire graph. In our networking example, the

network at UBC is contained in a small number of metanodes

compared to the rest of the Internet. Drawing the large

metanodes is difficult as they contain hundreds of thousands of

nodes and edges. Many coarsening techniques exist to handle

this case [2], [6], but these techniques do not consider elements

near a node in the hierarchy. Our metaphor is to tug out nodes

adjacent to UBC from the larger Internet components, and the

process can be repeated to summarize paths. The challenge is

the efficient computation of this summary in a way that if a

path exists in the hierarchy cut, the path exists in the input

graph. Not all graph hierarchies guarantee this property, and

we define the space of these path-preserving hierarchies in

the next section.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

The TugGraph system, originally presented at IEEE Paci-

ficVis [7], introduced the TugGraph technique, and algorithms

implementing the technique, for exploring a region of the

graph located near a feature. In this article, we present

TugGraph as described in the conference proceedings and

extend the work in two ways. First of all, we present an

improved algorithm and system implementation that speeds up

the TugGraph approach by modifying, rather than completely

deleting and reconstructing, the hierarchy each time a node

or metanode is tugged. Secondly, we re-evaluate the system

on the same three data sets, plus an additional data set, to

show how these algorithm modifications improve the execution

speed of TugGraph. The new algorithm performs two to four

times faster than the previous approach on the same machine.

2 PATH-PRESERVING HIERARCHIES

A path-preserving hierarchy1 [6], shown in Fig. 2, is a spe-

cific type of graph hierarchy that must respect two properties:

1) Edge Conservation: An edge exists between two

metanodes m1 and m2 if and only if there exists an edge

between two leaves l1 and l2 such that l1 is a descendant

of m1 and l2 is a descendant of m2.

2) Connectivity Conservation: Any subgraph contained

inside a metanode must be connected.

Hierarchies that ensure both of these properties guarantee

that paths in the hierarchy cut also exist in the underlying

input graph. Edge conservation guarantees that all edges in

the hierarchy cut are witnessed by at least one edge in the

input graph as shown in Fig. 2(a). Connectivity conservation

guarantees that there exists a path in the original graph through

the metanode on the hierarchy cut as shown in Fig. 2(b). Both

edge and connectivity conservation are required in order to

visualize paths and proximity information.

If hierarchies do not respect the path-preserving properties,

paths that exist in the underlying graph may not appear in the

view provided by the graph hierarchy. Also, paths that do not

exist in the underlying graph may appear to exist in the graph

hierarchy view. A complete presentation of these properties

is presented in GrouseFlocks [6], but we present an example

here. Fig. 3 shows a cycle at the top level of the hierarchy.

If the red edge does not exist, connectivity conservation is

not respected. As a result, this top level cycle illustrated by

the graph hierarchy does not really exist in the input graph.

Similarly, if edge conservation is not respected, we are unsure

if edges between metanode in the hierarchy actually exist. By

enforcing these constraints, TugGraph ensures paths extending

out from the node or subgraph of interest exist in the graph.

3 PREVIOUS AND RELATED WORK

As TugGraph uses GrouseFlocks [6] and graph hierarchies to

explore proximity to a node or subgraph, we present previous

work on graph hierarchy exploration in Section 3.1. We also

present some techniques for extracting subgraphs proximal

1. In the GrouseFlocks paper, the term used was topologically pre-
serving hierarchy. Subsequently, we found path-preserving hierarchy
a better term for this concept.

(a) TugGraph Selection (b) Output

Fig. 1. TugGraph selection and decomposition. Struc-

ture within normally-opaque cut nodes shown with dotted
lines. (a) Selection of the light blue metanode propagates

to the hierarchy leaves, which are all beneath the current
cut. (b) The hierarchy is modified by tugging out adjacent

leaves, bringing them to the top level, and placing their

connected components into metanodes.

(a) Edge Conservation (b) Connectivity Conservation

Fig. 2. Edge conservation and connectivity conservation
are required to preserve paths in hierarchy cuts. (a) Edge

conservation ensures that edges exist between metan-

odes of a hierarchy cut if and only if there exists one
or more edges between descendants of the metanodes.

(b) Connectivity conservation ensures that paths exist
through metanodes. If the red dashed edge did not exist,

there would not be a path from the bold metaedge on the

left through to the bold metaedge on the right.

to nodes in a larger graph in Section 3.2 and highlighting

techniques for subgraphs in the context of a large graph in

Section 3.3.

3.1 Graph Hierarchy Exploration

In interactive approaches to hierarchy exploration, the entire

graph is not shown at once. These systems present abstractions

of the input graph which can be interactively modified to

display metanodes and leaves. In this section, we present

systems which use this technique to explore large graphs.

3.1.1 Existing Layout Required

These systems exploit properties of a precomputed layout to

illustrate graph and hierarchy structure in a single drawing.

Various techniques exist including: visualizing the graph and

associated hierarchy extruded into the third dimension [13],

multi-focal fisheye approaches where metanodes are expanded

and viewed in the context of the entire graph [25], topological

fisheyes where abstract versions of the graph are presented

far away from a focus centre [17], linking the graph hierar-

chy to a separate treemap view [1], interactively visualizing

hierarchies of small world clusterings [27], and visualization

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

(a) (b)

Fig. 3. The importance of edge and connectivity conser-

vation in understanding paths when using a graph hier-
archy. A more complete version is presented in Grouse-

Flocks [6]. (a) Top level of graph hierarchy consisting of

three metanodes with a cycle. (b) Underlying graph and
graph hierarchy. If the red edge does not exist, there

appears to be a cycle at the top level of the hierarchy
when no such cycle exists in the underlying graph. If

edge conservation is not respected, we are unsure if

metaedges on the cut really exist. If connectivity conser-
vation is not respected, as in this example, we are unsure

if paths in the underlying graph actually exist.

of complex software in three dimensions using level of detail

techniques [10].

All of these techniques use a static layout that is com-

puted once up front, and a static hierarchy computed using

the position of the vertices in the drawing. Exploiting this

static layout has the advantage of quick and fluid interaction.

However, computing this layout for a large graph can be

computationally expensive. Also, elements near to each other,

in a graph theoretic sense, may be quite distant in the pre-

computed layout, as a full drawing cannot always map graph

theoretic and Euclidean distance well. TugGraph computes the

layout, like other steerable systems, on the fly. Steerability

allows the layout computation to take these focus centres into

account, allowing for a more compact presentation of paths

and proximity.

3.1.2 Steerable Exploration

Steerable systems compute the graph layout dynamically

during exploration and do not require a pre-existing layout.

Therefore, they can more readily be adapted for exploring

paths where the source and destination nodes are not known

in advance.

Steerable systems have been developed to visualize search

engine query results [12] and graph hierarchies formed by

detecting topological features [2], [5]. These systems do not

support hierarchy editing, which allows users to customize

their graph hierarchies. Steerable hierarchy editing is required

in order to create the proximal components as described in the

introduction.

3.1.3 Steerable Hierarchy Editing

Several systems have been developed to edit graph hierarchies

using topological or attribute information. These systems are

directed towards exploring the global structure of the graph

and the topological or attribute features present in it.

The DA-TU system [14] of Huang and Eades is a force-

directed approach which biases the hierarchy cut towards its

hierarchy structure; Auber and Jourdan [9] support interactive

hierarchy editing; and the Clovis system [23] supports interac-

tive clustering of an input graph based on querying the attribute

values associated with the nodes and edges of the graph.

GrouseFlocks [6], the system on which TugGraph is based,

allows for the interactive exploration and creation of graph

hierarchies based on attribute data. The system uses Reform-

Below-Cut operations which divide based on attribute data

associated with each node. GrouseFlocks resorts to coarsening

with global topological feature detection and edge contraction

when the hierarchy cut is too large to be explored interactively.

However, none of these systems have been adapted to

browse proximity in the original graph beyond manual se-

lection. In TugGraph, we develop a system that modifies an

existing hierarchy to better illustrate proximity information in

the underlying graph.

3.2 Other Notions of Proximity

Many other works, primarily in the data mining literature,

focus on good formalisms for proximity to elements of a

graph [15], [16], [18], [19]. These approaches provide algo-

rithms to find the nodes which exist between or around a node

or subgraph of interest in a large graph. The smaller subgraph

can be extracted and drawn for the purposes of visualization.

However, the context of how this subgraph connects with

the rest of the network is lost and the work does not focus

on interactive techniques. Although we use a simpler notion

of proximity in this work, direct adjacency, these techniques

could be adapted to allow TugGraph to display these forms of

adjacency. TugGraph could be adapted to handle these notions

of adjacency by substituting the adjacency computation with

the decomposition computed by one of these methods.

3.3 Subgraph Highlighting in Graphs

Selection and other techniques that exploit pre-attentive chan-

nels such as motion [28] or colour using hover queries [22]

can be used to highlight parts of a graph including paths. In

contrast, Boutin et al. [11] support filtering using a graph

hierarchy based on an interactive choice of focus node but

aimed at showing a global overview rather than local structure.

These techniques are very effective but have two drawbacks.

Firstly, a significant portion of the entire of the graph must

be drawn before visualization can begin. Secondly, large

amounts of visual clutter are still a barrier to comprehension

of the set of nodes in the context of the entire graph and

the approaches cannot exploit spatial position to emphasize

proximity. However, these techniques may be used to better

emphasize paths and proximity.

3.4 Subgraph Highlighting by Dynamic Layout

There exist a number of techniques which modify an existing

layout of the graph to show local connectivity around a node.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

If the user performs a number of these operations in sequence,

these techniques can help facilitate the navigation of paths in

a graph.

The Bring Neighbours Lens [26] is a lens which adjusts the

layout of a graph, bringing nodes directly adjacent to a focus

node spatially close. Although the technique was not designed

for path navigation, it does allow for the visualization of nodes

nearby a graph element. Bring & Go [21] is an interactive

technique following a particular path in a graph. When a node

in the graph is selected, the layout is adjusted so that the

nodes directly adjacent to the focus node are brought in close

to it. Subsequently, an adjacent node can be selected and the

view is smoothly animated with zoom-in and out for context.

McGuffin and Jurisica [20] present several subgraph selection

techniques. Their spread neighbours technique interactively

modifies the layout by placing nodes at increasing distance

from a focus node on concentric rings around it. This selec-

tion technique is probably the closest of the above-described

methods to TugGraph.

All three of these techniques have the advantage that the

full layout of the graph is computed once and upfront. Thus,

all modifications to the layout can be computed interactively.

However, the users are required to wait for a full layout of the

graph to be computed beforehand. Also, as the graph drawing

algorithm does not know which paths will be explored at the

time of the layout, nodes on the path being explored may be

spatially distant, making simplification of the graph that does

not participate in the paths more difficult. Therefore, one could

say that TugGraph makes a trade off where per-interaction cost

is more expensive then the above techniques, but we have the

benefits of more flexibility in graph layout and in abstracting

away of parts of the graph that do not participate in the paths

being explored.

4 ALGORITHM

In this section, we present the original TugGraph algorithm [7],

and then the modified algorithm and system improvements that

accelerate the execution of the algorithm by a factor of about

two to four.

In both versions of the algorithm, TugGraph takes a graph

and a hierarchy as input. If multiple connected components

exist, each component is stored inside its own metanode at the

root of the hierarchy drawn with component packing. The user

then clicks on a node in the hierarchy cut to obtain proximity

information about it. This source node is a node of the input

graph or a metanode of the hierarchy that is tugged. A tug

on this source node selects all adjacent leaf nodes and places

them into metanodes directly below metanodes on the cut. The

hierarchy is modified accordingly, ensuring that it is still path-

preserving. The cut is then lowered, revealing the components

adjacent to the source node.

4.1 Tugging with Hierarchy Reconstruction

The original TugGraph algorithm, as presented at PacificVis,

is outlined in red in Fig. 4(a). On this input, the algorithm

operates in five steps:

1) Compute the set of nodes in the input graph, or leaf

nodes in the hierarchy, that are descendants of the

source. This set of nodes is the source set denoted S

(Fig. 4(c)).

2) Discover the set of leaf nodes of graph-theoretic distance

one from the source set that are not elements of the

source set themselves. This set is the proximal set

denoted P (Fig. 4(d)).

3) Determine the set of cut metanodes that contain elements

of the proximal set. This set is the proximal cut set

denoted C (Fig. 4(e)).

4) For each element n of the proximal cut set, place

nodes of the proximal set inside their own metanodes

respecting the constraints of a path-preserving hierarchy

directly below n (Fig. 4(f) and 4(g)).

5) Reconstruct the hierarchy for all other leaf nodes that

are descendants of metanodes of the proximal cut set

but not elements of the proximal set (Fig. 4(h)).

Fig. 4(h) shows the result of the five steps on a metanode

selected on the graph hierarchy. When describing each step,

the complexity of each step is presented. The execution

of TugGraph produces a modified graph hierarchy and cut.

Elements of the proximal set, all of which were below the

cut supplied as input, appear in their containing proximal cut

metanodes and leaves that are moved above the hierarchy cut.

4.1.1 Computing the Source Set

The source set S is the set of nodes of the input graph that are

descendants of the selected node on the hierarchy cut. If the

selected node is a leaf, S contains one element: the selected

node. If S is a metanode, as in Fig. 4(a), the algorithm traverses

the graph hierarchy top down from the selected metanode to

discover all leaf descendants as shown in Fig. 4(b). These

leaves are the source set S, outlined in red in Fig. 4(c).

To compute the source set, the algorithm traverses the

hierarchy below the selected metanode and extracts the set

of leaf descendants. Let MS be the set of metanodes below

the selected node. Then, this traversal takes |MS|+ |S| time as

each leaf and metanode is scanned exactly once.

4.1.2 Computing the Proximal Set

Once the source set has been computed, the algorithm com-

putes the proximal set. The proximal set is defined as the set

of leaf nodes of graph-theoretic distance one from the source

set that are not elements of the source set themselves. It is

computed on the input graph. More formally, let Eu be the

set of edges adjacent to a vertex u ∈ S; the proximal set P is

defined as follows:

P = {v|(u,v) ∈ Eu,u ∈ S,v /∈ S} (1)

For each element of the source set, the algorithm scans the

adjacent leaf nodes in the input graph and determines if it

satisfies the criteria in Equation (1). The result of this part of

the algorithm is shown in Fig. 4(d).

To compute the proximal set, the algorithm scans the set

of nodes directly adjacent to all elements of the source set.

Leaves that adjacent to an element of the source set but that

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(a) Selected Cut Node (b) Full Hierarchy Shown (c) Computed Source Set (d) Computed Proximal Set

(e) Computed Proximal Cut Set (f) Destroy Below Proximal Cut (g) Created Proximal Components (h) Reconstructed Hierarchy

Fig. 4. All steps of the TugGraph algorithm with hierarchy above and graph below. (a) The input to the algorithm with

the node the user has clicked on outlined in red. (b) The same selection is shown, but with the full graph visible to
the leaves. Dashed lines are used for the parts of the graph hierarchy below the hierarchy cut. (c) Elements of the

source set S are outlined in red. (d) Each element of the proximal set P is outlined in blue. The edges that were used
to create the proximal set are highlighted in blue as well. (e) The proximal cut set C is outlined in yellow. The hierarchy

edges used to compute the proximal cut set are in blue in the hierarchy view. (f) The hierarchy is destroyed below

each proximal cut element. (g) The proximal components are computed. These components are outlined in red in the
figure. (h) The final hierarchy is presented.

are not elements of the source set themselves are, by definition,

elements of the proximal set. Let DS be the sum of the degrees

of the source set. This step is then O(DS).

4.1.3 Computing the Proximal Cut Set

The algorithm derives the proximal cut set C from the proximal

set. The proximal cut set is the set of metanodes currently

present on the hierarchy cut that contain elements of the

proximal set. This set is computed by traversing the graph

hierarchy bottom up from each proximal set element up to the

first cut metanode ancestor. Fig. 4(e) shows how the proximal

cut set is computed. The proximal cut set links each element

of the proximal set to a cut metanode so that they can be

placed into components one level below their containing cut

metanode. This is why a traversal up to the hierarchy cut is

required for each proximal component.

To compute the proximal cut set, the algorithm performs a

bottom up traversal of the hierarchy above the proximal set.

Whenever the algorithm discovers the cut metanode that is the

ancestor of the element of the proximal set, it is stored in a

hash table. Therefore each metanode in the hierarchy above

elements of the proximal set is visited twice. Let MP be the

metanodes above the proximal set P. Then, this step is O(|P|+
|MP|).

4.1.4 Computing the Proximal Components

Once the algorithm has determined the proximal cut set and the

proximal set, it will proceed to reconstruct the hierarchies be-

low the proximal cut set such that the elements of the proximal

set are in metanodes that respect the rules of a path-preserving

hierarchy. These subgraphs are proximal components as every

element is an element of the proximal set, meaning they are

directly connected by an edge to an element of the source set.

Fig. 4(e) shows the input to this step of TugGraph. The

proximal set, P, is outlined in blue, while the proximal cut

set, C, is outlined in yellow. Before proceeding, a copy of

the graph hierarchy is created so that it can be reconstructed

below the proximal cut nodes in the last phase.

In Fig. 4(f), the hierarchy below every element of the

proximal cut set is destroyed. The resulting hierarchy below

any proximal cut node is always a set of leaves. If the element

of the proximal cut set is a leaf of the graph hierarchy, it

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

remains unaffected by this step as there is no hierarchy below it

to destroy. This step is identical to a recursive delete operation

as described in GrouseFlocks [6].

The algorithm then computes the proximal components as

shown in Fig. 4(g). These components are the set of induced

subgraphs by nodes of the proximal set and each induced sub-

graph is placed inside its own metanode. An induced subgraph

is defined by a set of nodes, in this case the nodes of P, and

any edge that links a pair of nodes in P. The result is a set

of connected subgraphs. If each connected subgraph is placed

in its own metanode, it respects connectivity conservation. If

every edge that connects a node in the proximal component to

a node not in that proximal component n is replaced by an edge

between the metanode and n, it respects edge conservation.

Thus, the result is a path-preserving hierarchy as it respects

both connectivity and edge conservation.

As any fixed fraction of nodes in the proximal set can create

a component, at most O(|P|) proximal components are created.

4.1.5 Reconstructing the Hierarchy

Finally, the algorithm reconstructs the hierarchy that existed

previously below the elements of the proximal cut sets, using

the backup it had created previously. The hierarchy is con-

structed bottom up in a way that ensures a path-preserving

hierarchy. The removal of a proximal node may disconnect a

metanode of the hierarchy by having its edges be the only link

between two disjoint subgraphs. As a result, the two newly dis-

connected components must be placed in separate components

in order to respect connectivity conservation. This operation

is essentially a recursive application of the Reform-Below-Cut

operation of GrouseFlocks, as described in GrouseFlocks [6],

where the components are divided into sets defined by the

previous hierarchy. Once complete, TugGraph has modified

the hierarchy so that proximal sets can be investigated below

the proximal cut nodes of the hierarchy. The metanodes in the

proximal cut set are opened, displaying the results to the user.

The final step involves reconstructing the hierarchy above

the proximal set. Let this hierarchy be the set of MP metanodes

and EP the set of hierarchy edges above nodes in the proximal

set. A proximal node can split a number of metanodes pro-

portional to its degree. If DP is the sum of the degrees of the

proximal nodes, the complexity is O(|MP|+ |EP|+ |P|+ DP).

4.1.6 Worst Case Complexity

Let the graph G = (N,E) consist of two sets: the node set N

and the edge set E . Assume the depth of the hierarchy is at

most O(|N|) or that metanodes must contain at least two nodes.

In worst case, a tug can take O(|E|) time. This worst case is

realized when the sum of the degrees, DS or DP, is O(|E|),
causing proximal set computation or hierarchy construction to

be expensive. For deep hierarchies, computing the source set

and reconstructing the hierarchy is expensive but O(|N|). For

large proximal sets or source sets, computing the respective

set dominates but is O(|N|).

4.2 Tugging with Hierarchy Modification

We now describe the algorithmic and implementation changes

that improve the execution speed of TugGraph over its original

Step Complexity

Computing Source Set O(|MS|+ |S|)
Computing Proximal Set O(DS)

Computing Proximal Cut Set O(|P|+ |MP|)
Computing Proximal Components O(|P|)

Original Reconstruction O(|MP|+ |EP|+ |P|+DP)
New Reconstruction O(|M′P| log |M′P|+d|E ′P|)

Fig. 5. Summary of asymptotic complexity of TugGraph

steps. The sets S is and P are the source and proximal

sets. The sets DS and DP are the sum of the degrees of
all nodes in the S and P sets respectively. The sets MS

and MP consist of the sets of metanodes that exist above
S and P to the elements of C. Likewise, EP is the number

of metaedges. The maximum depth of the hierarchy is d.

M′P and E ′P are the sets of metanodes and metaedges
in the hierarchy locally involved in a split event. New

Reconstruction is presented later in Section 4.2.

implementation.

4.2.1 TugGraph Algorithm Improvements

Instead of destroying the graph hierarchy and reconstructing it

in its entirety around tugged nodes, we present a new algorithm

that replaces the three steps presented in Fig. 4(f) through 4(h)

and discussed in Sections 4.1.4 and 4.1.5 to only modify the

parts of the graph hierarchy affected by a tug. Fig. 6 shows the

execution of this algorithm on a simple two level hierarchy.

In order to modify these hierarchy components, we place

each metanode containing at least one node of the proximal

set into a priority queue with the priority of each node of the

hierarchy equal to its depth. At each step in the algorithm, the

top element of the priority queue is removed and the subgraph

it contains is processed in two ways: disconnected metanodes

one level down are split and adjacent edges to a proximal node

are removed. Thus, once a step of the algorithm is completed

any metanode below the current level is guaranteed to be

connected.

Before taking the first element off the priority queue, all

the nodes of the proximal set and all the edges linking two

nodes of this set are moved inside metanodes on the hierarchy

cut that contain them. When constructing the proximal cut

set, the algorithm additionally stores the nodes one level

below the proximal cut set for nodes in and adjacent to the

proximal set. Using this new mapping, we can directly connect

proximal set nodes to their corresponding metanodes at this

level of the hierarchy. Subsequently, we remove all proximal

component nodes and their adjacent edges from the lower

levels of the hierarchy, possibly disconnecting elements at this

deepest level. Pseudocode for the initialization of the priority

queue and its processing is provided in Fig. 7.

At this point, the first node is taken off the priority queue

and processed. The parent of the metanode is placed onto

the priority queue if it is on or below the hierarchy cut as

edges incident to a proximal set node could be present at any

level. When a metanode is taken off the priority queue, the

algorithm starts by removing any edges incident to a node of

the proximal set because these edges have moved up to the

level just below the hierarchy cut. Then, the algorithm checks

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) Input to New Algorithm (b) Delete Edges (c) Split and Reform Hierarchy

Fig. 6. New steps for hierarchy modification. (a) The input is the proximal set as in the previous version of the algorithm.

(b) Proximal components are tugged out and edges are deleted. The grey metanode is now disconnected. (c) Grey
metanode is split in two to preserve connectivity conservation. Edge deletions followed by splits are propagated up

the hierarchy until the cut metanodes are reached.

q←{p|p = v.parent,v ∈ N,v ∈ P}
for all v ∈ P do

- move each v to the graph contained by its cut metanode.

- connect second last metanode and v and other v ∈ P.

∀v flag[v]← false

while q 6= /0 do

v← q.pop ()

if !flag[v] then

flag[v] ← true

filterEdges (metagraph (v))
splitMetaNodes (metagraph (v))
if v.parent /∈C then

q.push (depth (v.parent), v.parent)

Fig. 7. Algorithm to populate q with the elements of P.
The first part of the algorithm loads q with all metanodes

that are direct parents of leaf nodes that are elements

of P. Let G = (N,E) be the input graph, and let g.N and
g.E be the node and edge sets of graph g respectively.

The second part of the algorithm processes the priority

queue, removing edges and splitting metanodes below
the element taken off the queue if it has not been pro-

cessed previously. In this pseudocode, metagraph returns
the graph contained by the passed metanode and depth

returns the depth of the node in the graph hierarchy. The

functions filterEdges and splitMetaNodes are described
with pseudocode in Figs. 9 and 11 respectively.

all metanodes below the current metanode to see if they are

connected. If any metanode is not connected, it is split into

several components.

Fig. 6(b) shows how edges incident to elements of the proxi-

mal set are removed from the hierarchy, possibly disconnecting

the graph. As each metaedge has a list of edges in the input

graph it represents, this list is scanned once and any metaedge

connected to a proximal set node is removed from the list as

shown in Fig. 8. If the list of input graph edges is empty after a

Fig. 8. Filtering metaedges. Edges in the original graph

that are represented by a metaedge at this level are

scanned. If at least one incident node of an edge is a
part of the proximal set, the nodes highlighted in red,

the edge removed from the list of edges associated with

the metaedge. If a metaedge has an empty list at the
end of this process, it is removed. Solid black metaedges

at this level are kept while dashed black metaedges are
removed. Red dashed edges are adjacent to an element

of the proximal set while red solid edges still subtend a

metaedge at this level.

metaedge has been processed, the metaedge no longer subtends

an input graph edge and therefore is deleted. Otherwise, the

new list of input graph edges is assigned to the metaedge and

stored with it. Pseudocode for this step of the algorithm is

provided in Fig. 9.

This pass of the algorithm could possibly disconnect the

subgraph contained in this metanode. For example, Fig. 8

shows three connected metanodes as input, but the yellow

metanode will be disconnected after the sets of original edges

have been processed as indicated by the dashed metaedge.

However, in this case, when its parent is processed, the

metanode will be split into several metanodes that are then

reconnected, as we now describe.

Fig. 6(c) shows how metanodes in the graph hierarchy one

level below the current metanode are split into two or more

metanodes, if they contain several connected components. A

connected components test is run to determine if the subgraph

is connected. If the subgraph is not connected, each connected

component is assigned its own separate metanode at the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

filterEdges (Graph *g)

for all e ∈ {(u,v)|(u,v) ∈ g.E, flag[u] or flag[v]} do

OE← originalEdges(e)
NE ←{(u,v)|(u,v) ∈ OE,u /∈ P,v /∈ P}
if NE = /0 then

delete(e)
else

setOriginalEdges(e,NE)

Fig. 9. Pseudocode to filter input graph edge lists associ-

ated with a metaedge and remove metaedges no longer
subtended by an edge of the input graph. The function

originalEdges returns the set of input graph edges asso-

ciated with the metaedge and setOriginalEdges sets this
list of edges. The function delete deletes an edge from the

graph. Fig. 8 shows this process graphically.

(a) Before Split (b) After Split

Fig. 10. A split event before and after an element of

the proximal set, the blue node highlighted in red, is

removed. (a) Before the node is removed. The red node
at the top of the diagram is tugged. (b) After the node is

removed. The green metanode is destroyed and a blue
metanode is created after the split. Red edges are edges

in the original graph that must be redistributed among the

two newly created metaedges. This set of edges over all
metanodes affected by the tug in the hierarchy is the E ′P in

the complexity analysis. For diagram clarity, only relevant

edges and nodes are shown.

current metanode level as shown in Fig. 10. The edge lists

associated with each metaedge connected to the metanode

being split are scanned to determine to which new metanode

they should be attached. This scan involves tracing the input

edge of the graph up to the current level of the hierarchy. If

the hierarchy has depth d and the set of original graph edges

of this type is E ′P, then this can cost O(d|E ′P|). Pseudocode

for this step is provided in Fig. 11.

The worst case complexity of the new hierarchy modifica-

tion scheme is O(|M′P| log |M′P|+ d|E ′P|) where d is the depth

of the hierarchy and |M′P| and |E ′P| are the sets of metanodes

and metaedges affected directly by the tug. The additional

factor of O(log |M′P|) is incurred because our reconstruction is

no longer global and processes metanodes one at a time. This

logarithmic factor is not important as long as the number of

metanodes affected by a tug is smaller than the total number

of nodes above the proximal set or more precisely when

|M′P| log |M′P|< |MP|. As an example, the old algorithm would

perform in O(|MP|+ |EP|) time and the new algorithm would

perform in O(|MP| log |MP|+d|EP|) time if every node above

splitMetaNodes (Graph *g)

for all v ∈ {v|v ∈ g.N, flag [v]} do

gv←metagraph(v)
if !isConnected (gv) then

Mv← conCompDecomp (gv)

g.N← g.N
⋃

Mv

for all e incident to v do

OE← originalEdges(e)
for all eo ∈ OE do

em← findMv(eo)
g.E← g.E

⋃

{em}
setOriginalEdges(e,OE

⋃

{eo})
delete (v)

Fig. 11. Pseudocode to split metanodes in the graph

g if they are disconnected and redistribute input graph
edges incident to the split metanode v to newly created

metaedges by the split. In this pseudocode, isConnected

returns true if the passed graph is connected and con-

CompDecomp computes a connected component decom-

position of the passed graph and places each component

inside its own metanode, returning a set of metanodes
Mv as a result. The function findMv traces the two nodes

incident to eo through the hierarchy to this level of the
hierarchy, returning the metaedge em that subtends it.

Fig. 10 shows this process graphically.

the proximal set needs to be recomputed or when M′P = MP

and likewise E ′P = EP. However, the usual case is that the

number of metanodes to examine is much smaller than the

total number of nodes above the proximal set, and in practice,

better performance is realized.

4.2.2 TugGraph System Improvements

In this section, we describe two architectural improvements to

the TugGraph system that made a difference in the execution

speed of the algorithm.

In the Tulip graph drawing library [8] used heavily by the

TugGraph system, metanodes are quite frequently rendered as

transparent entities that allow for all levels of a graph hierarchy

to be seen at once. Therefore, when any element of the

hierarchy is modified, the properties of these elements need to

be updated. As TugGraph renders metanodes on the hierarchy

cut opaquely, we do not need to update the properties of nodes

and metanodes below the cut. To increase the efficiency of our

implementation, we disabled several linear scans that updated

these properties. This change led to a significant speed up in

the algorithm.

Secondly, the contents of widgets in the interface were

completely destroyed and rebuilt in the previous implemen-

tation. For example, there is a list view, similar to a Windows

Explorer file drop-down view, that displays the contents of

the hierarchy. As the algorithm no longer needs to completely

destroy the hierarchy below affected metanodes, widgets, such

as these, can be updated rather than completely reconstructed.

In many cases, this implementation change, made possible by

the faster algorithm, offers improved performance.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

5 COLOURING AND NODE SIZES

Many TugGraph operations can be executed on an input graph

one after the other and in conjunction with Reform Below Cut

operations of GrouseFlocks. In order to distinguish multiple

tugs, the system rotates through the colours: purple, tan,

blue, green, and light blue. Proximal components are a more

saturated version of the colour while all other components are

less saturated. Open metanodes are bounded in a background

disk of the same colour.

We observed on our data that TugGraph tends to produce

many small components and a few large components when

operating on a graph. These results may be due to the small

world nature of our data sets. The small components are the

few nodes adjacent to the node or feature in the hierarchy. The

large components are the remaining elements of the graph not

adjacent to the node or feature. Due to this disparity in sizes

of components, the
√

|N| size estimate used in Grouse and

GrouseFlocks prevents a compact drawing. Thus, TugGraph

can present nodes at a logscale node size. When logscale is

used, it is explicitly indicated in the text.

6 RESULTS

In this section, we present the performance of our imple-

mentations of TugGraph on several data sets. Section 6.1

presents the original TugGraph results as presented in the

conference article. Section 6.2 presents the results of the

previous implementation of TugGraph against the improved

algorithm on the same machine.

6.1 Previous TugGraph Performance

TugGraph is implemented using the Tulip graph drawing

libraries [8] and GrouseFlocks [6]. We compare TugGraph to

existing systems on three data sets.

The Airport data set is a graph of worldwide airline

flights where nodes are airports and there exists an edge

between two nodes if there exists a non-stop flight between

the two airports. The data set only has airport name as a

node attribute, making attribute-based systems less effective.

No physical location information is available. The data set has

1,540 nodes and 16,523 edges.

The Net05 data set [4] shows the structure of the Internet

backbone routers as generated in 2005 by Cheswick’s Internet

Mapping Project2. Nodes in this graph are servers and an edge

exists if two servers exchanged packets. Each node has its

server name and its IP address as attributes. It has 190,384

nodes and 228,354 edges.

The Actors data set is an IMDB subset centred around

Sharon Stone only considering movies in the years 1998

through 2001. In this graph, nodes are actors and there exists

an edge between two nodes if those actors acted in a movie

together in those years. Actor name is the only attribute on the

nodes. The data set has 38,997 nodes and 1,948,712 edges.

For each data set, a result is presented using TugGraph and

the result or part of the result is highlighted in the remaining

systems. As TugGraph supports label editing, we manually

2. www.cheswick.com/ches/map

rename proximal component metanodes created during explo-

ration to have meaningful names. When a TugGraph operation

is executed, the metanode that was tugged to generate the

image is outlined in red. Proximal components are always

presented in saturated colours. We used a 3.0GHz Pentium

IV with 3.0GB of memory running SuSE Linux with a 2.6.5-

7.151 kernel.

6.1.1 Airport

We browse how the flight paths between Columbus and

Vancouver are interconnected in Airport. Fig. 12 shows

the results for Airport under Grouse, GrouseFlocks, and

TugGraph. In Grouse, the decomposition into topological

features neither takes advantage of the attribute information

nor the proximity information. Fig. 12(a) shows that even

finding the airports one hop away is buried very deep in

a hierarchy of topological features. Fig. 12(b) demonstrates

that GrouseFlocks is better able to solve this problem. The

system decomposes the graph into three components initially:

Vancouver, Columbus, and other airports. Since there is no

attribute information for node proximity, coarsening is used to

explore the airports adjacent to both Vancouver and Columbus

as shown in Fig. 12(c). The solution improves on that of

Grouse, but the airports one hop away from Vancouver are

still scattered over the hierarchy.

Fig. 12(d) and 12(e) present the results using TugGraph.

The process starts with same initial decomposition shown in

Fig. 12(b). First, the source node Vancouver is tugged,

extracting the airports one hop away from it. In Fig. 12(d),

the tugged Vancouver node is outlined in red, and the dark

tan node labelled Van One Hop contains all airports one

hop from Vancouver. Many small light tan nodes surround

it on the periphery: they are airports connected to airports

one hop from Vancouver, thus there are many components

two hops from Vancouver. Other Airports contains most

of the airports two or more hops from Vancouver. Notice

that Vancouver is only connected to Van One Hop and

Columbus is only connected to Van One Hop and Other

Airports. These connections signify that all paths between

Vancouver and Columbus must pass through at least one of

Van One Hop or Other Airports. One stop-over flights

exist to Columbus, since both Vancouver and Columbus

are connected to Van One Hop. However, there is no direct

flight since the two airports are not connected by an edge.

Fig. 12(e) shows the results of subsequently tugging on

Van One Hop. The new blue metanode, Van Two Hops,

contains airports two hops away from Vancouver because they

are adjacent to the set of airports one hop away. The paths are

still highly connected as few connections exist to Columbus

at the bottom of the figure.

6.1.2 Net05

We browse the structure around the *.net.ubc.ca portions

of the network in Net05. After twelve hours of computation,

Grouse had not finished computing a hierarchy of topological

features, so we do not show it here. Instead, drawings produced

by LGL [3] and SPF [4] are included as these algorithms work

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

(a) Grouse (b) GrouseFlocks Decomposition (c) GrouseFlocks Coarsen

(d) Van One Hop (e) Van Two Hop

Fig. 12. Browsing paths between Vancouver and Columbus: (a) Grouse, (b) initial GrouseFlocks decomposition,

(c) GrouseFlocks coarsening, and (d)-(e) TugGraph. In Grouse, metanodes of the hierarchy are coloured using the

type of topological feature they contain. (b) In GrouseFlocks and TugGraph, Vancouver and Columbus are coloured
in saturated purple while the large component in desaturated purple is the remaining airports. (c) The coarsened

metanodes are brown, and the ones containing airports one hop from Vancouver are outlined in red. (d) The saturated
tan Van One Hop contains airports one hop from Vancouver. (e) Van One Hop is outlined in red, and Van Two

Hops contains airports two hops from Vancouver. Van Two Hops is in saturated blue.

well on this type of data. We use logscale size nodes on this

data set.

The results are shown in Fig. 13. Once again, the problem

is solved using TugGraph, and we use highlighting to show

the solution in other approaches. Figs. 13(a) and 13(b) show

where the UBC servers are in the data set and highlight the

portions that are four hops away. In these figures, all nodes

and edges of the data set four hops from the *.net.ubc.ca

servers are highlighted. As the graph has not been simplified,

it is difficult to see the path in the context of the entire graph.

The paths between the UBC servers that are far away from

each other cannot be emphasized without redrawing the data.

With GrouseFlocks, shown in Fig. 13(c), the initial decom-

position segments out the UBC servers into two disconnected

components with the rest of the Internet in between them.

As with the previous data set, when the huge Internet

metanode is expanded it is too complex to draw in full and

must be coarsened, as shown in Fig. 13(d). The servers four

hops away are all inside the single large metanode outlined in

red. The GrouseFlocks solution is more suitable for this task,

but browsing the connections between UBC and the rest of

the Internet is difficult.

Figs. 13(e) through 13(j) show how TugGraph can

help browse the connections of UBC into the Internet

to see if there is a single server that connects UBC

to the Internet. Again, TugGraph starts from the initial

GrouseFlocks decomposition shown in Fig. 13(c). First,

the UBC metanode is tugged, revealing that the two

parts of the UBC network are still disconnected and

adjacent to the two saturated tan leaves 142.103.204.2

and ubci9-tx-vantx.bc.net. However, there is

no single connection. ubci9-tx-vantx.bc.net

is tugged and the result is shown in Fig. 13(f).

rx0wh-bcnet.vc.bigpipeinc.com is the greatest

common ancestor, joining the two disconnected components

of UBC to Internet as no other edges connect Internet to

the rest of the graph. We continue browsing this connection

in Figs. 13(g) through 13(j) by tugging on the nodes named

in the captions and outlined in red in each of these figures.

6.1.3 Actors

On Actors, we demonstrate that we can generate an

overview of Bacon numbers for any movie released between

1998 and 2001. The Bacon number of an actor is zero if the

actor is Kevin Bacon and b + 1 if the actor has acted in a

movie with an actor of Bacon number b. In a graph where

nodes are actors and an edge is a movie both actors have acted,

Bacon numbers are paths through this graph and the length of

a path to get to an actor from Kevin Bacon determines the

Bacon number. If we consider shortest paths, like we do with

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) LGL (b) SPF

(c) GrouseFlocks Decom-
position

(d) GrouseFlocks Coarsen (e) Tug UBC (f) Tug ubci9

(g) Tug rx0wh (h) Tug c7507 (i) Tug 69.156.254.254 (j) Tug bellnexia

Fig. 13. Exploration of the Net05 data set using: (a) LGL, (b) SPF, (c) initial GrouseFlocks decomposition, (d)

GrouseFlocks coarsening, and (e)-(j) TugGraph. In the LGL and SPF drawings, UBC servers and those four hops

away are highlighted red. GrouseFlocks shows a good initial decomposition but is unable to go further since the

attribute information on this data set is minimal. TugGraph, however, shows how UBC connects to the Internet.

TugGraph, we are considering the minimum Bacon number

of the actor. Grouse was unable to generate a hierarchy of

topological features in over twelve hours of execution time.

GrouseFlocks could be used for this exploration, but would

produce images very similar to the ones already shown. We

thus show only a TugGraph result in Fig. 14. For this data set,

logscale node sizes are used.

Fig. 14 shows that two tugs creates an overview of how

Bacon numbers are organized in this graph. The diagram

shows that all actors with Bacon Number 1 have acted in

a movie with at least one other actor with the same Bacon

number by connectivity conservation. Actors with Bacon

Number 2 also have this property as there are only two

saturated blue components. However, the trend stops at a

Bacon number of three as there are many desaturated blue

components connected to Bacon Number 2. Actors with

Bacon numbers of one or two tend to act in movies together

as there are few connected components.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 14. Bacon number trends in Actors. Bacon

Number 1 contains all actors with a Bacon number of

one. The saturated blue node to its right and Bacon

Number 2 contain actors with a Bacon number of 2. We

see that actors with Bacon numbers of one or two tend to
act with each other as their components are connected.

6.1.4 Timings

This section presents timing numbers for the results section.

On Airport, to compute the hierarchy of topological

features required by Grouse, the decomposition algorithm took

189 seconds. In GrouseFlocks, selection and decomposition

into Columbus and Vancouver took about 1.5 seconds. Coars-

ening in the next step took 0.64 seconds. As the first step

of TugGraph is the same as GrouseFlocks, the decomposition

and selection was about the same. Each tug took about two

seconds to complete.

To draw the Net05 data set LGL and SPF took 12

hours and 30 minutes respectively to draw the entire graph.

GrouseFlocks took 115 seconds for the initial decomposition

and 15 seconds to produce the coarsened graph. After selection

and decomposition into UBC and non-UBC servers, TugGraph

took about 20 seconds to tug out each proximal component

along the path.

TugGraph took about 110 seconds for the initial decompo-

sition into Kevin Bacon and the rest of the graph in Actors.

The algorithm took 101 seconds to tug out Bacon Number

1, and 409 seconds for Bacon Number 2.

6.2 New TugGraph Performance

We ran the three data sets again and measured the performance

of the previous version of TugGraph with the new version.

The new performance numbers are presented in Fig. 15. As

the images produced by the new algorithm on the previous

data sets were the same, we do not present these images.

In this second set of results, both the old version and the

new version of TugGraph were run on a 2.16GHz dual core

Pentium IV with 2.0GB of memory, running Fedora Core 8

with a 2.6.26.8-57 kernel.

Our running time numbers were similar to those presented

in the PacificVis article for the original version of TugGraph.

Thus, we could say that, for the most part, we reproduced

the results of the TugGraph algorithm on the slightly slower

machine. In most cases, the new version of the TugGraph

algorithm was two to four times faster than the previous

version.

The largest improvement was seen in Net05 where a

factor of four speed up was obtained. The reason behind

this improvement in performance is the relatively small size

of the UBC network compared to the rest of the data set.

Additionally, this network is loosely connected, and, therefore,

has few edges involved in the tug. In this case, relatively few

metanodes needed to be constructed in the new version of the

algorithm where nearly all of them were reconstructed in the

previous version of the algorithm. The run time improvement

was mostly noted in the Total column. As such, it seems that

both the algorithmic and implementation changes helped for

this test case.

Airport and Actors had similar improvements in per-

formance, both registering about a factor of two improvement.

Airport may have seen only a factor of two improvement

due to its small size. Actors most likely only improved by a

factor of two because of its high connectivity. As the number

of edges processed increases, the degree and edge terms in the

complexity analysis approach |E|, the total number of edges in

the graph, and dominate. This gives both algorithms a similar

running time performance.

Airport Deep is a new data set for this set of algorithm

test runs. A result of tugging a small top level component

is shown in Fig. 16. The data set is the Airport clustered

recursively using the strength metric. Recursive strength de-

composition has been shown to be helpful for geographers

when analysing the structure of worldwide transportation

networks [24]. The hierarchy above the proximal components

has a depth of twenty.

The small component group of cities at the top level interact

with a few cities located at depths very close to twenty in the

hierarchy. Although the test only shows an improvement of

1.6 times over the original TugGraph algorithm, notice the

larger improvement in the execution time of the hierarchy

decomposition. This improvement is primarily due to the new

algorithm that modifies only nodes affected by the tug. How-

ever, it seems that further implementation improvements are

needed to reduce the overall execution time of the algorithm.

7 DISCUSSION

In the three example data sets, the dependence on the sizes

of the source and proximal sets along with the sum of

their degrees is apparent. The tests on Net05 and Actors

provides evidence that increasing average node degree affects

the running time significantly.

TugGraph can be used to explore structure near a feature in

the graph or the paths between two features. Although in two

of the three scenarios the destination was known, we do not

view knowing the destination as a requirement of the system.

One could envision a use case that consists of iteratively

tugging out structure from the larger graph starting from only

a source node.

Another important observation is that the TugGraph result

images do not require zoomed-in insets to show details of the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Data set |N| |E| Reconstruction (sec.) Modification (sec.) × faster

Hier. Total Hier. Total

Airport 1,540 16,523 << 0.01 1.05 << 0.01 0.53 2.0

Net05 190,384 228,354 7 32 6 8 4.0

Actors 38,997 1,948,712 26 114 17 56 2.0

Airport Deep 1,540 16,523 1 21 << 0.01 13 1.6

Fig. 15. Table containing execution time of the old TugGraph algorithm and the new TugGraph algorithm on the three
data sets used in the PacificVis article and a new data set. Hier is the time required in order to restructure/recompute

the hierarchies. Total is the total time for the tug from start to finish. The value << 0.01 indicates that the time to

compute this value was less than a hundredth of a second.

Fig. 16. A component in the first level of Airport Deep

is tugged. The result pulls loosely connected components

from near the bottom of the hierarchy to the top.

graph structure. Typically in large graph visualization systems,

many scales are needed to understand features in the data in a

global context. Hierarchy-based visualization tools, including

TugGraph, are able to represent the sought structure succinctly

at a single scale.

Through algorithm execution time, we see that TugGraph is

suitable for displaying the structure near a small set of nodes

in a larger graph. TugGraph has a running time advantage over

computing a hierarchy of topological features or computing a

full layout with SPF or LGL. Also, the diagrams it produces

are better suited for exploring connectivity near a feature,

because elements proximal to the focus node are emphasized

in the layout and less relevant portions of the graph are

abstracted away.

8 FUTURE WORK

In future work, we believe that TugGraph can be improved in

many ways to improve its performance well beyond what we

have seen here Although we have made significant advances

towards the goal of interactive performance over the version

of the paper presented at IEEE PacificVis, on data set sizes

with millions of nodes and edges, we have not achieved this

goal. We believe that further optimization of the software and

potential algorithmic improvements may make this technique

competitive with the algorithms that require a pre-existing

layout. However, further research and software improvements

are required to confirm this conjecture.

Frequently, the edges in a graph have weights. These

weights can be used in conjunction with the topological

structure of the graph to determine proximity. We hope to

extend TugGraph to handle weighted graphs. It may also

be interesting to allow TugGraph to display nodes of the

graph that are multiple hops from a source node in a single

click. However, this functionality needs to be implemented and

tested to determine if it can be done efficiently and in a useful

way for exploring graphs.

A graph hierarchy is able to help summarize the structure

of a graph, because it groups a large number of nodes together

with a common meaning. A limitation of TugGraph exists

when a tug produces a large number of proximal components

that cannot be easily summarised in a path-preserving way.

Situations such as these can result in a visually cluttered

drawing. In future work, we should investigate path-preserving

coarsening techniques which can effectively summarise a

large number of proximal components in a simple drawing.

Additionally, more compact representations for a large number

of disconnected components remains future work.

The TugGraph metaphor relies on a sequential series of tugs

to produce a graph hierarchy emanating from a single node

or metanode chosen by the user. TugGraph can tug at a graph

from multiple nodes or metanodes, but an interesting direction

for future work would be to investigate browsing methods

that are more inherently multi-focus in terms of computational

efficiency and visual representation.

Finally, user experimentation and studies with domain

experts would be essential to validate the usability of the

technique. Currently, we are investigating the readability of

path-preserving hierarchies when performing certain tasks,

which would help validate this work. Direct comparisons of

TugGraph with other techniques which use a pre-existing

layout may also be beneficial. Also, we hope to work with

users in the computer networking domain, where this problem

originally arose, to determine if the technique helps experts

better understand their data.

9 CONCLUSION

We have presented an improved algorithm for our interaction

metaphor where users can tease out nodes from a large graph

by tugging on a feature in a path-preserving way, and we have

tested the system on input graphs with hundreds of thousands

of nodes and millions of edges. The new algorithm performs

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

two to four times faster than the previous version of TugGraph

published at IEEE PacificVis.

ACKNOWLEDGEMENTS

The first author would like to thank the InfoVis groups at UBC

and INRIA Bordeaux Sud-Ouest as well as the reviewers of

his thesis who helped improve this work further. Finally, we

would like to thank the anonymous reviewers of TVCG for

their comments.

REFERENCES

[1] J. Abello, S. G. Kobourov, and R. Yusufov. Visualizing large graphs
with compound-fisheye views and treemaps. In Proc. of Graph Drawing,
volume 3383 of LNCS, pages 431–441. Springer-Verlag, 2004.

[2] J. Abello, F. van Ham, and N. Krishnan. ASK-GraphView: A large scale
graph visualization system. IEEE Trans. on Visualization and Computer
Graphics (Proc. Vis/InfoVis ’06), 12(5):669–676, 2006.

[3] A. T. Adai, S. V. Date, S. Wieland, and E. M. Marcotte. LGL: Creating
a map of protein function with an algorithm for visualizing very large
biological networks. Journal of Molecular Biology, 340(1):179–190,
June 2004.

[4] D. Archambault, T. Munzner, and D. Auber. Smashing peacocks
further: Drawing quasi-trees from biconnected components. IEEE

Trans. on Visualization and Computer Graphics (Proc. Vis/InfoVis 2006),
12(5):813–820, Sept.-Oct. 2006.

[5] D. Archambault, T. Munzner, and D. Auber. Grouse: Feature-based,
steerable graph hierarchy exploration. In Proc. of Eurographics/IEEE
VGTC Symp. on Visualization (EuroVis ’07), pages 67–74, 2007.

[6] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steerable
exploration of graph hierarchy space. IEEE Trans. on Visualization and

Computer Graphics, 14(4):900–913, 2008.
[7] D. Archambault, T. Munzner, and D. Auber. TugGraph: Path-preserving

hierarchies for browsing proximity and paths in graphs. In Proc. of the

2nd IEEE Pacific Visualization Symposium, pages 113–121, 2009.
[8] D. Auber. Tulip : A huge graph visualization framework. In P. Mutzel

and M. Jünger, editors, Graph Drawing Software, Mathematics and
Visualization, pages 105–126. Springer-Verlag, 2003.

[9] D. Auber and F. Jourdan. Interactive refinement of multi-scale network
clusterings. In Proc. 9th Int. Conf. on Information Visualisation (IV’05),
pages 703–709, 2005.

[10] M. Balzer and O. Deussen. Level-of-detail visualization of clustered
graph layouts. In Proc. of the 6th International Asia-Pacific Symp. on

Visualization (APVIS’07), pages 133–140, February 2007.
[11] F. Boutin, J. Thièvre, and M. Hascoët. Focus-based filtering + clustering

technique for power-law networks with small world phenomenon. In
Proc. of the Conference on Visualization and Data Analysis, 2006.

[12] E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. Graph visualization
techniques for web clustering engines. IEEE Trans. on Visualization and

Computer Graphics, 13(2):294–304, March/April 2007.
[13] P. Eades and Q. Feng. Multilevel visualization of clustered graphs. In

Proc. Graph Drawing (GD’96), volume 1190 of LNCS, pages 101–112.
Springer-Verlag, 1996.

[14] P. Eades and M. L. Huang. Navigating clustered graphs using force-
directed methods. Journal of Graph Algorithms and Applications,
4(3):157–181, 2000.

[15] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs. In Proc. of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 118–127,
2004.

[16] G. Flake, S. Lawrence, and C. L. Giles. Efficient identification of
web communities. In Proc. of the 6th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 150–160,
2000.

[17] E. Gansner, Y. Koren, and S. North. Topological fisheye views for
visualizing large graphs. IEEE Trans. on Visualization and Computer

Graphics, 11(4):457–468, 2005.
[18] D. Gibson, J. M. Kleinberg, and P. Raghavan. Inferring web communities

from link topology. In Proc. of the 9th ACM Conference on Hypertext

and Hypermedia, pages 225–234, 1998.
[19] Y. Koren, S. North, and C. Volinsky. Measuring and extracting

proximity in networks. In Proc. of SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 245–255, 2006.

[20] M. McGuffin and I. Jurisica. Interaction techniques for selecting and
manipulating subgraphs in network visualizations. IEEE Transactions

on Visualization and Computer Graphics (Proc. Vis/InfoVis 2009), 2009,
to appear.

[21] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J. D. Fekete.
Topology-aware navigation in large networks. In SIGCHI Conference

on Human Factors in Computing Systems (2009), pages 2319–2328,
2009.

[22] T. Munzner, F. Guimbretiere, and G. Robertson. Constellation: A
visualization tool for linguistic queries from mindnet. In Proc. IEEE

Symp. on Information Visualization (InfoVis’99), pages 132–135, 1999.
[23] T. Pattison, R. Vernik, and M. Phillips. Information visualization using

composable layouts and visual sets. In Proc. of the 2001 Asia-Pacific

Symp. on Information Visualization, pages 1–10, 2001.
[24] C. Rozenblat, G. Melançon, M. Amiel, D. Auber, C. Discazeaux,

A. L’Hostis, P. Langlois, and S. Larribe. Worldwide multi-level networks
of cities emerging from air traffic. In Urban changes in different scales:

systems and structures, pages 487–502, 2006.
[25] D. Schaffer et al. Navigating hierarchically clustered networks through

fisheye and full-zoom methods. ACM Trans. on Computer-Human

Interaction (TOCHI), 3(2):162–188, 1996.
[26] C. Tominski, J. Abello, F. van Ham, and H. Schumann. Fisheye tree

views and lenses for graph visualization. In Proc. 10th Int. Conf. on

Information Visualisation (IV’06), pages 17–24, 2006.
[27] F. van Ham and J. van Wijk. Interactive visualization of small world

graphs. In Proc. IEEE Symp. on Information Visualization (InfoVis’04),
pages 199–206, 2004.

[28] C. Ware and R. Bobrow. Motion to support rapid interactive queries on
node-link diagrams. In ACM Trans. on Applied Perception, pages 1–15,
2004.

Daniel Archambault received the BSc Hons.
degree from Queen’s University at Kingston in
2001 and the PhD degree from the University
of British Columbia in 2008. He is currently
a post doctoral researcher at INRIA Bordeaux
Sud-Ouest. His interests include graph drawing,
visualization, and computer graphics.

Tamara Munzner received the PhD degree in
2000 from Stanford and has been an assis-
tant professor in the Computer Science Depart-
ment of the University of British Columbia since
2002. She was a technical staff member at the
University of Minnesota Geometry Center from
1991 to 1995, and a research scientist at the
Compaq Systems Research Center from 2000
to 2002. Her research interests are information
visualization, graph drawing, and dimensionality
reduction.

David Auber received the PhD degree in 2003
from the University of Bordeaux I. He has been
an assistant professor in the University of Bor-
deaux Department of Computer Science since
2004. His current research interests are informa-
tion visualization, graph drawing, bioinformatics,
databases, and software engineering.

