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ABSTRACT

This paper presents a technique for visualizing the differences be-
tween two graphs. The technique assumes that a unique labeling of
the nodes for each graph is available, where if a pair of labels match,
they correspond to the same node in both graphs. Such labeling
often exists in many application areas: IP addresses in computer
networks, namespaces, class names, and function names in soft-
ware engineering, to name a few. As many areas of the graph may
be the same in both graphs, we visualize large areas of difference
through a graph hierarchy. We introduce a path-preserving coars-
ening technique for degree one nodes of the same classification.
We also introduce a path-preserving coarsening technique based on
betweenness centrality that is able to illustrate major differences
between two graphs.

Index Terms: H.5.0 [Information Systems]: Information Inter-
faces and Presentation—General G.2.2 [Mathematics of Comput-
ing]: Discrete Mathematics—Graph Algorithms

1 INTRODUCTION

A difference map is a single graph Gdiff = (Ndiff,Ediff) con-
structed from the union of two input graphs G1 = (N1,E1) and
G2 = (N2,E2). This graph encodes all of the differences between
the node and edge sets of G1 and G2. Figure 1 shows an example.

If the one-to-one correspondence between the nodes of the
graphs needs to be computed, the problem is equivalent to subgraph
isomorphism which is known to be NP-complete [7]. However, if
N1 and N2 have a labeling, such that a node in G1 is the same as a
node in G2, if and only if, their labels are equal, then computing a
difference map can be done efficiently. Such graphs exist in prac-
tice, especially in the area of dynamic graph drawing. For example,
in a computer network, where nodes are servers and edges are con-
nections between those servers, each server has a unique IP address.
These IP addresses can be used to determine correspondences be-
tween the nodes and edges of G1 and G2 which are snapshots of
the network at two different dates, demonstrating how the network
evolved during that time.

In previous work, animation has been used to show how nodes
and edges are added and removed from the graph. If a node is
the same in both graphs, its position in the layout is preserved as
much as possible and an animation is used to transform G1 into
G2. This preservation of the mental map is highly dependent on
user task and requires compromises with accepted graph drawing
aesthetics [21]. An alternative to animation would be to present the
differences between G1 and G2 in a single drawing. In this drawing,
less emphasis would need to be placed on mental map preservation,
allowing additional computational resources to be placed on graph
drawing aesthetics. A small multiples approach could then be used
to demonstrate how the graph evolves over time. Small multiples
is an information visualization technique that places several images
side-by-side in a sequence.
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Figure 1: Example of a difference map between two small example
graphs G1 and G2 based on the labeling shown in all three subfigures.
(a) The input graph G1. (b) The input graph G2. (c) The difference
map of G1 and G2. In this figure, black nodes and edges only appear
in G1, light grey nodes and edges only appear in G2, and the dark
grey nodes and edges appear in both G1 and G2.

These difference maps can be very large, possibly on the order
of twice the number of nodes and edges in the two input graphs. As
these sets can be on the order of tens of thousands of edges, a direct
drawing of the difference map suffers from high computational cost
and extensive visual clutter. It may be advantageous to consider ab-
stracting away areas of the difference map with similar meaning. In
the field of information visualization and graph drawing, graph hi-
erarchies or cluster trees have been used for this purpose. A graph
hierarchy, or hierarchy, is defined as a recursive grouping placed
on the nodes in this graph. Metanodes are the interior nodes of
this hierarchy that contain a subset of nodes and a subset of the
edges between those nodes. Leaves are the original nodes of the
graph. A hierarchy is path-preserving if any path in a graph hi-
erarchy level corresponds to one or more paths in the underlying
difference map. The two conditions for a path-preserving hierarchy
are: the subgraph contained in each metanode is connected and an
edge between two metanodes must represent at least one edge in the
underlying graph [2]. In this work, metanodes store areas of graph
difference, providing the user with an overview of the areas that are
common to both G1 and G2 or present in only one of these graphs.

The primary contribution of this paper is a method for visualiz-
ing the differences between two graphs using a difference map and
a graph hierarchy. Using a graph hierarchy allows a difference map
to scale to larger graphs, as areas of the graph that the user is not in-
terested in are abstracted away, reducing visual complexity. Our hi-
erarchy creation technique takes into account edges as well as nodes
to illustrate both differences. We introduce two path-preserving
coarsening techniques. The first technique coarsens away nodes of
degree one, while the second coarsens the graph by the magnitude
of the change in betweenness centrality of each node. Betweenness
centrality is a measure of the number of shortest paths in which the
node participates, and, is in a way, a measure of the importance of
the node in the graph. Finally, although we defined the properties
for a graph hierarchy to be path-preserving elsewhere [2], in this
work, we extend the definition of path-preserving to allow nodes
of degree one connected to the same node to be coarsened together
inside metanodes.

2 PREVIOUS AND RELATED WORK

We categorize related work into two sections. Section 2.1 presents
work on dynamic graph drawing. Although our technique is only
able to present the differences between two time steps, small mul-



tiples could be used to show how the graph evolves. Section 2.2
presents hierarchy-based graph visualization techniques. We use
one of these techniques in order for the visualization of the differ-
ence map to be tractable.

2.1 Dynamic Graph Drawing

The field of dynamic graph drawing conveys evolving graphs over
time. The problem can be either offline, where the full sequence
of graphs is known ahead of time or online, where the sequence is
not known in advance. Our approach would work best in an offline
scenario, where all the time steps are available ahead of time.

In offline dynamic graph drawing, Diehl and Görg [9] consid-
ered the problem of general dynamic graph drawing by using what
they term a supergraph which encodes all graphs of the time se-
quence. Using the supergraph and temporal equivalence classes,
they give several layout adjustment strategies in order to update the
graph layout between time steps. Erten et al. [11] applies a force-
directed algorithm to this supergraph as a preprocess in order to
derive animations. The work of Brandes et al. [5] focuses on creat-
ing smooth animations between several graphs in a sequence using
spectral graph drawing techniques. An animation sequence which
dynamically adds or removes elements from a graph hierarchy is
presented in Kumar and Garland [19].

Online dynamic graph drawing started with a restricted set of
graphs, mainly directed acyclic graphs drawn in a hierarchical man-
ner [20]. General graphs were considered by Brandes and Wag-
ner [6] where a Bayesian approach, in combination with force-
directed techniques, is applied. Some work on drawing orthogonal
and hierarchical graphs has been undertaken by Görg et al. [16] as
well as force-directed methods with weighting functions to evolve
the network dynamically while preserving the mental map [13, 14].
Boitmanis et al. [3] describe a way to show animations of the evolv-
ing Internet. In their approach, trees are removed and drawn with
radial clustergrams and the remaining network is drawn using a
variant of stress majorization which encourages position stability
of nodes between frames of the graph animation.

In all of these systems, animation is used to display graph evo-
lution. There exists some evidence that small multiples may be
more accurate than animation for the discovery of trends in evolv-
ing data [22]. We are not aware of any experiment run with users
to see if this idea extends to dynamic graphs, but it may. There-
fore, methods that can be adapted to a small multiples approach for
dynamic graph visualization, such as the approach presented here,
should be considered more closely.

One could view our approach as applying graph hierarchy tech-
niques to the supergraph of Diehl and Görg [9]. However, our tech-
nique operates over a pair of time steps rather all of them.

2.2 Hierarchy-Based Graph Visualization

Various techniques exist for visualizing a graph with a superim-
posed hierarchy including: visualizing the graph and associated hi-
erarchy extruded into the third dimension [10], multi-focal fisheye
approaches where metanodes are expanded and viewed in the con-
text of the entire graph [23], topological fisheyes where abstract
versions of the graph are presented far away from a focus cen-
tre [15], and interactively visualizing hierarchies of small world
clusterings [24]. However, all of these techniques require a full
layout of the difference map to be computed before visualization
of the differences can begin. This full layout is computationally
expensive, since our graph sizes are large.

Techniques also exist to draw portions of the graph hierarchy on
demand as the user explores the graph [1, 8, 2]. They have the
principle advantage that the entire graph does not need to be drawn
beforehand. We build on the work described in GrouseFlocks [2]
to draw and create our graph hierarchies. However, unlike Grouse-
Flocks, in this work, we take into consideration the edges of the

graph in order to illustrate both node and edge difference.

3 VISUALIZATION APPROACH

In our approach, we visualize the difference map directly using a
hierarchy-based graph visualization technique. As input, the algo-
rithm takes two graphs G1 and G2. The nodes of G1 and G2 have
unique labellings L1 and L2 such that if an element of G1 and an
element of G2 have the same label, they correspond to the same
nodes in both graphs. The approach is broken down into two main
stages:

1. Compute the difference map from G1 and G2 using L1 and
L2. The output of this stage is the difference map Gdiff with a
labeling M, indicating the differences between G1 and G2.

2. Using Gdiff and M, decompose the difference into connected
components where all nodes have the same M label and all
edges have the same M label.

The first stage, which is computed as a preprocessing step, is
discussed in section 3.1. After the computation of the difference
map, the visualization of the difference map using hierarchy-based
techniques is discussed in section 3.2. The two-level hierarchy uses
metanodes to indicate areas of difference in a high-level overview.

3.1 Difference Map Computation

The structural differences between the two graphs G1 and G2 are
computed based on a pair of unique labellings, L1 and L2 on the
nodes of the graph. In this first part of the algorithm, we construct
a new graph Gdiff and an output labeling of the nodes and edges,
M, that encodes the similarities and differences between G1 and
G2. Many dynamic graph drawing algorithms compute all or parts
of this graph. The algorithm is not a contribution, but rather it is
described for completeness.

The first part of the algorithm inserts all the nodes of N1 into
Gdiff and labels them as only belonging to G1. The nodes are also
inserted into a hash table by label. In the second part of the algo-
rithm, the nodes of N2 are traversed. The algorithm checks to see
if the label exists in the hash table. If it does, the node is in both
graphs and is labeled as such. If not, the node is inserted into Gdiff

and is labeled as only belonging to G2.

Edge differences are determined by discovering if the two adja-
cent nodes in one graph are adjacent in the other. These differences
are computed by scanning the edge lists of G1 and G2 separately.
For each edge of G1, the algorithm inserts the edge into Gdiff and
labels it as being in G1 only. The edge is also inserted into a hash
table. Once completed, the algorithm scans all the edges of G2. If
either of the nodes belong only to G2, it is impossible for the edge
to exist in both graphs, because one of its adjacent nodes does not
exist in both graphs. Therefore, we label the edge as coming from
G2 and insert it into the graph Gdiff. If the two nodes are in both
graphs, there are three possibilities. The first is that the edge is in
G1 only, in which case we inserted the edge in the scan of E1 and
labeled it as such. The second case is that the edge is in both graphs.
The algorithm checks the hash table to see if the edge exists, and, if
it does, the edge is labeled as belonging to both graphs. Otherwise,
the edge is added and is labeled as only belonging to G2.

If adjacency is encoded using hash tables, the difference map
can be computed in O(N +E) time where N = |N1|+ |N2| and E =
|E1|+ |E2|.

3.2 Hierarchy-Based Visualization of the Difference
Map

The difference map can be as large as the sum of the sizes of G1

and G2. As either G1 or G2 can be tens of thousands of nodes
and edges [3], visual clutter can be a problem. We, therefore, use



A

B

C

D

E

F

G

H
I

J

K

L

M

N

(a) Original Graph

A

B

C

D

E

F

G

H

I

J

E

E

E
G

K

L

M

N

F

(b) Decomposition by Edges

A

B

C

D

E

F

G

H
I

J

K

L

M

N

(c) Decomposition by Nodes

A

D

E

F

G
{B, C}

{H, I, J}

{K, L, M}

N

(d) Hierarchy Graph

Figure 2: Steps to creating the hierarchy encoding the node and edge differences in the graph. (a) The original difference map with node and
edges existing only in the first graph in black, nodes and edges existing only in the second graph in light grey, and nodes and edges existing in
both graphs in dark grey. (b) Decomposition of the graph by edge difference value. The graph is divided into connected sets of edges of the
same type. Nodes belonging to more than one edge set are duplicated. (c) Each connected set of edges is further clustered by node difference
value. Notice the node N is clustered out of its connected edge set because it appears in both graphs whereas all the other nodes appear only
in the second graph. All the nodes participating in more than one edge cluster are placed in their own cluster. (d) Final drawing of the hierarchy.
Metanodes abstract the graph into clusters where every node has the same difference value and every edge has the same difference value.

graph hierarchies to visualize the structural differences between the
graphs.

Our visualization technique uses the labeling M to simplify Gdiff

into areas of difference between the two graphs. First, it is impor-
tant to note that if a node is present in G1 only, then all adjacent
edges to that node must be in G1 only because the two adjacent
nodes of an edge need to both be present for the edge to exist. The
same is true for nodes present only in G2. Therefore, a Grouse-
Flocks [2] decomposition on the nodes when the nodes appear in
one graph or the other is sufficient. However, for edges whose adja-
cent nodes present in both graphs, the edge could be present only in
G1, only in G2, or in both graphs. To address this case, we needed
to develop a decomposition technique that takes an edge labeling
into account.

Our approach, shown in Figure 2, starts by decomposing the
graph into connected clusters of edges with the same M label. If
a node belongs to multiple clusters of connected edges in the de-
composition, it is duplicated. The clusters of connected edges are
subsequently subdivided into clusters of connected nodes with the
same M label. First, every node that was duplicated at least once,
is placed into its own cluster. Subsequently, each connected set of
edges is divided into connected sets of nodes of the same M label.
For example, the large connected set of light grey edges is subdi-
vided into six clusters in Figure 2. The nodes E, G, and F exist in
their own clusters, because they are in more than one edge cluster.
The node N is in its own cluster, because it exists in both graphs
and is adjacent only to nodes existing in one graph. Finally, the
node D and the nodes H, I, and J are in separate clusters because
they are not connected by at least one edge. The result of this al-
gorithm is a path-preserving hierarchy as all subgraphs contained
in each metanode are connected and edges will be placed between
metanodes if they exist in the difference map.

4 COARSENING DEGREE ONE NODES

GrouseFlocks [2] introduced our definition of a path-preserving hi-
erarchy. The definition in this work required that an edge exists
between two metanodes, m1 and m2, if and only if, at least one
leaf in m1 and one leaf in m2 are connected by an edge. Secondly,
the definition required that the subgraph contained at each metan-
ode is connected. In this paper, we extend this definition of path-
preserving to allow disconnected subgraphs inside a metanode as
long as it respects the following condition:

• The subgraph contained in a metanode of a path-preserving
hierarchy can be disconnected only if every node in the sub-
graph is degree one and is connected to the same node s in the
hierarchy.
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Figure 3: Coarsening technique that merges degree one metanodes
of the hierarchy together. (a) Nodes of the hierarchy are not grouped
together, causing a very bushy tree out on the periphery. (b) Nodes
of the hierarchy are grouped into metanodes according to their M la-
beling. As all nodes in these metanodes are degree one, no path will
ever enter and then exit this metanode in mid-sequence. Therefore,
this hierarchy is path-preserving. The coarsening technique can be
viewed as clustering the beginnings and endings of paths together.

A path can only begin or end at a node of degree one. As a result,
the subgraph contained inside this type of metanode does not need
to be connected, because paths do not pass through the metanode.
We can view this metanode as a collection of path sources or sinks
connected to s in the graph.

In this work, we also restrict the degree one nodes to have the
same value in the labeling M computed in Section 3.1. The ap-
proach scans every node in the hierarchy once and merges all nodes
of degree one that have the same M labeling together into a single
metanode. The resultant difference map is simpler for graphs with
degree one nodes as shown in Figure 3.

5 BETWEENNESS CENTRALITY COARSENING

Coarsening using the algorithm presented in Section 4 may gen-
erate a hierarchy that still contains too many areas of difference.
The resultant graph is often large, difficult to read, and is compu-
tationally expensive to draw. In this case, our approach adapts by
allowing only the major differences in graph structure to be shown.

Betweenness centrality [12] is a measure of how often a node lies
on shortest paths in the graph. These nodes are often structurally
important as they appear on many short, and presumably well used,
communication paths. For a node v it’s betweenness centrality is
computed as follows:

BC(v) = ∑
u6=v 6=w

σ(u,w)(v)



where σ(u,w)(v) is the number of shortest paths that contains the

node v. We do not normalize our betweenness centrality by the
number of paths that exist in the graph. Fast algorithms exist to
compute the betweenness centrality of all elements of a graph of
|N| nodes and |E| edges in O(|N||E|) time [4]. Edge filtering tech-
niques based on betweenness centrality have been used for the vi-
sualization of social networks, most recently in Jia et al. [18], but
not for coarsening a graph hierarchy of graph differences.

Using our approach, the algorithm computes the betweenness
centrality for G1 and G2 independently before the difference map
is computed. When computing the difference map, the absolute
value of the difference in betweenness centrality is recorded for
each node. For nodes present in only one graph, the value is set
to its betweenness centrality in that graph. Low betweenness cen-
trality differences indicate areas of the graph that are stable or of
low structural importance. Thus, this metric attempts to emphasize
important structural changes in the graph.

The algorithm selects nodes of low betweenness centrality dif-
ference and replaces each connected component of the induced sub-
graph by a single metanode. A node n is selected under three con-
ditions:

1. n is a metanode that contains a subgraph that is identical in
both graphs

2. n is not a metanode and has a betweenness centrality differ-
ence below a user specified threshold

3. n is not a metanode and appears in both graphs such that:

• all adjacent edges appear in both graphs

• all adjacent nodes are below the betweenness centrality
threshold

The first condition coarsens away large subgraphs that appear
in both graphs contained in metanodes. The second condition
coarsens away minor structural changes and areas of stable struc-
ture. Nodes with a low difference in betweenness centrality are
considered less important by the metric or only had a minor change
in structural significance. The third condition coarsens away minor
edge changes: sets of edges that appear in both graphs have at least
one node below the threshold. Note that any metanode containing a
subgraph that appears in only one of the graphs is never coarsened
away.

6 RESULTS

In order to test the technique, we ran our algorithm on three se-
quences of test data. For these results, we used a 3.6GHz Pentium
IV with 1GB of RAM running Fedora Core 4. Timing numbers,
along with graph and difference map sizes, are presented in Table 1.

The first dataset is the Threads2 graph sequence used in the
work of Frishman and Tal [14]. A movie1 that shows the evolution
of Threads2 is available from the second author’s website for
comparison. The dataset consists of evolving discussion threads.
Nodes are users discussing a topic and an edge exists between two
nodes if one user replied to the posting of the other. A special node,
A n where n is a number, represents the root of a given topic thread.

The second dataset is two scans of the Opte2 Internet mapping
project. Opte consists of two snapshots of a subset of major Inter-
net servers taken on January 11th and January 15th, 2005, respec-
tively. In this graph, nodes are servers and an edge in the graph
exists if those servers exchange packets.

The third dataset is the Routeviews3 dataset used in the work
of Boitmanis et al. [3]. A movie4 that shows the full sequence of

1
www.ee.technion.ac.il/∼ayellet/Movies/OnlineGD.mov

2www.opte.org
3
www.routeviews.org

4www.inf.uni-konstanz.de/algo/research/asgraph

Routeviews evolving over time is available from the website of
the research group. The datasets consist of two scans of the Internet
at the autonomous system level, one taken in August 2005 and the
other taken August 2006. Autonomous systems are typically groups
of networks under the same administrative authority. In the graph,
there is a node for each autonomous system and an edge between
two nodes if the systems are connected.

To draw the resultant hierarchies, we use GrouseFlocks [2].
GrouseFlocks uses algorithms to draw the graphs based on the topo-
logical features detected in the graph. Therefore, if the metanode
contains a tree, a tree drawing algorithm is used. Threads2 uses
the same set of drawing algorithms specified in the GrouseFlocks
paper. However, Opte and Routeviews use the FM3 [17] al-
gorithm for subgraphs of unknown topological structure. We use
FM3, as this algorithm is fast and produces reasonable results for
large general graphs. Even after the generation of a hierarchy and
coarsening, the resultant graphs are still on the order of thousands
to tens of thousands of nodes.

6.1 Threads2

In Threads2, we are trying to describe the evolution of a set of
discussion threads. The results of our approach are shown in Fig-
ure 4. Tan nodes are nodes that appeared in both graphs over the
time step while purple nodes have just been added. Circular nodes
contain subgraphs of the same difference value. Square nodes are
the original nodes of the dataset. Neither form of coarsening was
used on this small dataset. We notice immediately that there are
no deletions from the dataset during the time steps as only two
colours are used. Therefore, none of the messages were deleted
during these scans. The figures also demonstrate reasonably well
what was added in purple. Pinpointing exactly what changed may
be harder to do with the video of the evolving graph mentioned
above.

In Figure 4(a), we present the difference between time steps 10
and 11 of the dataset with no graph hierarchy. Differences are still
coloured using the colour scheme above. In this small example, it
is relatively easy to see the differences between time steps without
a hierarchy. If the graphs were larger and substantially different,
the task would require a more time consuming visual search to de-
tect the differences. On the other hand, Figure 4(b) highlights these
differences immediately. We can see that the new discussions were
stimulated by the postings of Locutus465 and KaiserCSS. By using
an interactive system, such as GrouseFlocks, we could interactively
open these two metanodes to see which user responded to this dis-
cussion thread.

Figures 4(b) through 4(f) show the evolution of the graph over
five time steps. The diagrams show how the discussion in the news-
group evolves rather easily. In Figure 4(e), the drawing depicts the
emergence of a new discussion topic A 5082. This topic was started
by Gigahertz 19. In the next time step, this discussion is continued
by Mazor. KristopherKubicki joins this disconnected discussion
with the rest of the newsgroup by replying to at least one new post.

6.2 Opte

The Opte difference map encodes the differences between two In-
ternet scans in 2005. The results are presented in Figure 5. Sections
of the network that remained the same appear in tan, and new sec-
tions that were found on January 15 of 2005 appear in purple. Once
again, no parts were deleted as no third colour needed to be used.
Therefore, this network only grew.

In Figure 5(a), a FM3 layout of the entire difference map is pre-
sented. General areas of difference are visible in purple, but it is
hard to gauge the size of the differences and their locations. Fig-
ure 5(b) shows a hierarchy of the differences. The size of the node
is mapped to the size of the subgraph. At the center of the dia-
gram, there is a large component of the network that is identical.



Dataset Graph 1 Graph 2 Difference Map B. Centrality Hierarchy

N E N E N E sec. sec. sec. N E sec.

Threads2 10 - 11 62 72 66 76 66 76 0.01 0.02 0.02 4 4 0.14

Threads2 11 - 12 66 76 69 80 69 80 0.01 0.02 0.02 12 12 0.22

Threads2 12 - 13 69 80 70 83 70 83 0.01 0.02 0.02 10 12 0.20

Threads2 13 - 14 70 83 72 87 72 87 0.01 0.02 0.02 10 11 0.24

Threads2 14 - 15 72 87 75 91 75 91 0.01 0.02 0.02 6 5 0.14

Opte No 35,386 42,387 40,027 47,215 40,027 47,215 3.16 5,389 6,827 2,642 3,132 20

Opte 1 35,386 42,387 40,027 47,215 40,027 47,215 3.16 5,389 6,827 1,970 2,460 18.91

Opte B. 35,386 42,387 40,027 47,215 40,027 47,215 3.16 5,389 6,827 657 788 14.51

Routeviews No 20,432 43,498 23,072 48,891 24,302 58,043 5.61 1,820 2,407 23,656 57,283 104.97

Routeviews 1 20,432 43,498 23,072 48,891 24,302 58,043 5.61 1,820 2,407 19,372 52,999 117.32

Routeviews B. 20,432 43,498 23,072 48,891 24,302 58,043 5.61 1,820 2,407 3,212 6,773 78.4

Table 1: Size of datasets used in the results and timings for the stages of the creation of the difference map and hierarchy. The Graph 1 and Graph

2 columns list the size of the two input graphs in number of nodes and edges. The Difference Map column contains the size of the difference
map in number of nodes and edges and the time required to compute the difference map in seconds. The B. Centrality column lists the time
required to compute the betweenness centrality of each input graph in seconds The Hierarchy column contains the size of the hierarchy graph in
number of nodes and edges and the time required to compute the hierarchy in seconds. No next to the dataset name indicates no coarsening. A
1 indicates degree one coarsening. B. indicates both degree one and betweenness centrality coarsening were executed. Betweenness centrality
thresholds of 600,000 and 2,000,000 were used for Opte and Routeviews, respectively. The numbers next to Threads2 indicate the two
graphs in the sequence used to create the difference map.

This fact is not immediately evident from the previous drawing.
We can begin to see some areas of major growth in the upper right
section of the diagram where a few large purple metanodes reside.
In Figure 5(c) these changes are still visible. The periphery of the
drawing is improved by the degree one clustering, making some of
these areas at the fringe of the diagram more visible. Figure 5(d)
emphasizes the major edge changes, where major is defined as hav-
ing a betweenness centrality difference above 600,000. Clutter is
greatly reduced as most of the nodes that appeared in both graphs
are now in the residing central component. The few edges, between
nodes close to this large brown component, are edges adjacent to
nodes with a major change in betweenness centrality.

6.3 Routeviews

Routeviews tests the limits of our approach. The difference map
generated contains tens of thousands of nodes and contains about
ten thousand more edges than either of the original datasets. This
dataset has both removals and insertions. Once again, areas of the
graph which are the same are illustrated in tan. Areas of growth in
the graph appear in purple and areas of the graph that disappeared
appear in teal. Result images are shown in Figure 6.

Figures 6(a) and 6(b) do not clearly demonstrate the changes in
the the graph structure between these two dates. Other than noticing
that many of the teal nodes and edges have been placed into compo-
nents of the hierarchy, we cannot see much, so we need to resort to
coarsening. Figure 6(c) demonstrates some of the major differences
in the graph structure. A few large areas of the graph that did not
change are drawn in tan. There are some areas that were added and
taken away in purple and teal, respectively. However, even with de-
gree one coarsening, the changes in the graph are not well depicted.
Once we coarsen away areas of the graph that have a betweenness
centrality inferior to 2,000,000, as in Figure 6(d), the drawing does
a more accurate job of depicting major areas of difference. There is
a single large component of stable structure with a few nodes con-
nected to it. A more rapidly changing part of the graph is visible
in the lower left portion of the diagram. However, none of these
drawings are very clear.

7 DISCUSSION

From the timings shown in Table 1, the only step which requires
significant computational time is computing the betweenness cen-
trality on the two input graphs. Currently, we use Brandes’ al-

gorithm [4] to compute the betweenness centrality for each node.
These times can be reduced by estimating the betweenness central-
ity at each node, using a technique, such as Jia et al. [18], to ap-
proximate the value rather than to compute it exactly. Also, metrics
and interfaces for selecting a good betweenness centrality threshold
should be investigated further.

The difference map approach is best suited for a small multi-
ples approach to graph visualization. A small multiples approach
places several images side-by-side in a sequence rather than show-
ing the sequence as an animation. In our work, we would place
the hierarchically-decomposed difference maps in a matrix. This
approach has the advantage that a user can view all the data at
once, but the disadvantage is that all these images require signif-
icant space as seen from the size and quantity of images in this
paper.

The main advantage of our approach is that it targets the core of
dynamic graph visualization: depicting what exactly has changed.
Through difference maps, hierarchy generation, and the coarsening
techniques presented here, our work depicts differences using spa-
tial position and colour. We think that these differences are easier
to notice when depicted in this way, rather than by using animation.
However, a user experiment is required to support this hypothesis.

8 FUTURE WORK AND CONCLUSIONS

We plan to run a user study which will hopefully support the hy-
pothesis that the presented difference maps outperform animation
when the user would like to discover structural changes in graphs.
Such an experiment would also attempt to determine if hierarchy
construction on top of the difference map helps users understand
how a graph evolves over time.

Currently, our approach does not place metanodes which contain
similar graph elements into similar areas of the plane. As spatial
position is an important visual cue, ensuring that similar parts of
the graph are in similar locations would improve our technique.

It may be an interesting area of future work to illustrate changes
in attribute values associated with the nodes and edges of the graph.
As an example, in computer networks, an attribute could encode
the amount of network traffic passing through an edge between two
servers.

In this paper, we have presented a method for visualizing the
structural differences between two graphs. Using a graph hierarchy
allows the approach to scale, as large areas of the graph that are the



(a) No Hierarchy 10 - 11 (b) Steps 10 - 11 (c) Steps 11 - 12

(d) Steps 12 - 13 (e) Steps 13 - 14 (f) Steps 14 - 15

Figure 4: Figure showing the evolution of the graph sequence Threads2. (a) The difference between graphs 10 and 11 in the sequence drawn
without a hierarchy. (b) - (f) Hierarchies demonstrating the differences between a pair of consecutive time steps. Nodes in the graph that appear
in both time steps appear in tan. Nodes that have just been added over the last time step appear in purple. Circular nodes contain connected
subgraphs of the same difference value and square nodes are nodes of the dataset.

same are abstracted away, reducing visual complexity. Our hierar-
chy creation technique takes into account edges as well as nodes to
illustrate both differences. We introduce two path-preserving coars-
ening techniques and modify the definition of path-preserving.
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Figure 6: Figure showing differences between two Routviews snapshots taken on August 1st of 2005 and 2006 respectively. Nodes and edges
that were the same in both graphs are in tan. Nodes added are in purple and nodes removed are in blue. (a) Graph without any hierarchy or
coarsening drawn with FM3. (b) Graph with hierarchy but no coarsening. (c) Graph with hierarchy and degree one coarsening. (d) Graph with
degree one and betweenness centrality coarsening. The brown nodes are the components that have a relatively stable or small betweenness
centrality. Black edges connect these coarsened components to the rest of the graph. A betweenness centrality threshold of 2,000,000 was
used to generate the betweenness centrality coarsened hierarchy.


