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Figure 1: Measurements of the hot air flow above a gas burner. Far left: a camera observes distortions of a high frequency background
caused by a hot air plume. Center left: a quiver plot of the 2D distortions extracted using optical flow algorithms. Center right: a visualization
of the 3D gradient field tomographically reconstructed from 16 cameras. Far right: volume rendering of the final refractive index field after
Poisson integration.

Abstract

Fluid simulation is one of the most active research areas in com-
puter graphics. However, it remains difficult to obtain measure-
ments of real fluid flows for validation of the simulated data.

In this paper, we take a step in the direction of capturing flow data
for such purposes. Specifically, we present the first time-resolved
Schlieren tomography system for capturing full 3D, non-stationary
gas flows on a dense volumetric grid. Schlieren tomography uses
2D ray deflection measurements to reconstruct a time-varying grid
of 3D refractive index values, which directly correspond to physical
properties of the flow. We derive a new solution for this reconstruc-
tion problem that lends itself to efficient algorithms that robustly
work with relatively small numbers of cameras. Our physical sys-
tem is easy to set up, and consists of an array of relatively low
cost rolling-shutter camcorders that are synchronized with a new
approach. We demonstrate our method with real measurements,
and analyze precision with synthetic data for which ground truth
information is available.

CR Categories: I.3.3 [COMPUTER GRAPHICS]: Pic-
ture/Image Generation—Digitizing and scanning; I.4.1 [IMAGE
PROCESSING AND COMPUTER VISION]: Digitization and Im-
age Capture—Imaging geometry.

Keywords: Image Processing, Computational Cameras and Op-
tics, Object Scanning/Acquisition

1 Introduction

Computer graphics researchers have for a long time been interested
in capturing properties and behaviors of real-world objects, both for

direct use of the captured data in rendering, and, maybe even more
importantly, for deepening the understanding of the principles un-
derlying specific phenomena. A significant body of work has been
developed for measuring aspects such as BRDFs (e.g. [Ward 1992;
Marschner et al. 1999; Matusik et al. 2003], and many more), sub-
surface and volumetric scattering (e.g. [Jensen et al. 2001; Goesele
et al. 2004; Hawkins et al. 2005; Narasimhan et al. 2006]), human
performance (e.g. [de Aguiar et al. 2008; Vlasic et al. 2008]), and
cloth (e.g. [White et al. 2007; Scholz et al. 2005]).

However, computer graphics research has so far paid surprisingly
little attention to the capture of fluids. The fluid imaging com-
munity has, of course, considered this problem. However, their
measurements are typically either sparse, or only capture 2D slices
or projections of the flow. Recent work on Schlieren tomography
(see Section 2) has considered dense volumetric reconstructions,
but only for stationary flows (e.g. [Goldhahn and Seume 2007]).

In this paper, we present the first volumetric, time-resolved
Schlieren imaging system. For the first time, our approach allows
for capturing time-varying density differences of a non-stationary
gas flow on a dense grid. From this data, one can infer further infor-
mation such as temperature and pressure distributions. We believe
that such ground truth data for non-trivial scenes will be interest-
ing for the very active fluid simulation community. Our technical
contributions include:

• the first time-resolved system for Schlieren tomography on
non-stationary flows,

• a Background-Oriented Schlieren imaging system using inex-
pensive rolling shutter consumer cameras, including a novel
synchronization method for such a setup,

• a novel visual-hull constrained algorithm for the Schlieren to-
mography problem, including mask estimation from 2D ray
deflection data, visual hull constrained tomographic recon-
struction, and visual hull constrained anisotropic Poisson in-
tegration, and

• the application of this new reconstruction algorithm to the re-
construction of high quality 3D density information from a
modest number of views.



2 Related Work

Scanning of transparent objects has recently been the focus of
a number of research efforts in computer graphics and machine vi-
sion [Ben-Ezra and Nayar 2003; Miyazaki and Ikeuchi 2005; Mor-
ris and Kutulakos 2005; Kutulakos and Steger 2005; Trifonov et al.
2006]. This work is related to our approach, in so far as we focus
on transparent gas flows. However, the existing literature in this
area either eliminates or ignores refraction, or assumes that refrac-
tion happens only at discrete interfaces between different materials.
In gaseous flows, however, the refractive index of the gas varies
smoothly across the volume, causing rays to bend continuously.

As a result, most work on scanning transparent objects deals exclu-
sively with solids. Only recently, certain classes of dynamic trans-
parent objects have been considered, including liquids [Ihrke et al.
2005] and flames [Hasinoff and Kutulakos 2007; Ihrke and Mag-
nor 2004]. In the former case, the refractive index of the object
is required to be constant, while in the latter refraction is ignored
altogether. Ihrke and Magnor’s work is also the first to show vi-
sual hull constrained tomography, although their method needs to
be significantly extended to work with Schlieren data.

Dynamic participating media, such as smoke, have been the
subject of capturing efforts in computer graphics [Hawkins et al.
2005; Fuchs et al. 2006]. Such work could potentially be extended
for capturing the underlying fluid structure. However, it would be
necessary to employ some form of tracking on the scattering prop-
erties over time, since the scattering properties are a characteristic
of particles carried with the fluid, as opposed to a characteristic of
the fluid itself. Such tracking has not been attempted in the graph-
ics literature, although it would be conceptually similar to particle
imaging velocimetry, discussed next. An additional challenge with
this approach would be the temporal shearing introduced by time-
sequential imaging of planes [Hawkins et al. 2005], or the sparse-
ness of the measured data [Fuchs et al. 2006].

Particle Imaging Velocimetry (PIV) is a method developed in
the fluid imaging community. Macroscopic particles are injected
into the flow, and illuminated by a sheet of laser light. The 2D
motion of illuminated particles in the laser plane is then tracked
with optical flow algorithms. A good overview of the PIV method
can be found in the survey by Grant [1997].

The PIV approach can be extended to volumetric imaging by
sweeping the laser plane through the volume (see, e.g. [Van Vliet
et al. 2004]), although it remains very challenging to accurately
capture out-of-plane motion. Similar to the work by Hawkins et
al. [2005], the 3D variant also suffers from temporal shearing,
which may be compensated for by a three-dimensional optical flow
estimate and subsequent warping. Finally, injecting particles to
maintain a uniform distribution within the flow is an extremely
challenging problem in practice.

Schlieren imaging and tomography is a passive imaging tech-
nique for dynamically changing refractive index fields that has been
developed in the fluid imaging community over several decades.1

The original setups from the 1940s require high-quality optical mir-
rors and lenses of a size comparable to the volume under investiga-
tion [Schardin 1942]. Although these kinds of systems are still in
use even today [Settles 2001], they are expensive and difficult to
configure. It is also difficult to perform quantitative rather than
qualitative measurements with them, although it is possible with
careful calibration [Howes 1984].

1The German word “Schlieren” means “streaks” and refers to the optical

distortions caused by inhomogeneous refractive index fields.

These shortcomings have prompted the development of the much
simpler Background Oriented Schlieren (BOS) technique in recent
years [Dalziel et al. 2000; Richard and Raffel 2001; Meier 2002;
Elsinga et al. 2004]. In the BOS setup, a digital camera observes
a high-frequency background through the volume under investiga-
tion. Optical flow algorithms are used to compute a per-pixel de-
flection vector with respect to an undistorted reference background.
Since only a single image is required for each geometry, the method
is suitable for imaging dynamic flows.

If 2D deflection data for multiple viewpoints is available from ei-
ther BOS, one of the original Schlieren setups, or other sources,
then it is possible to use tomographic reconstruction to obtain a
volumetric estimate of the refractive index field [Venkatakrishnan
and Meier 2004; Schwarz 1996]. In practice, however, it is chal-
lenging to come up with an experimental setup that can provide
enough views for standard tomographic reconstruction algorithms.
Therefore, the only actual implementations of this principle have so
far been limited to certain classes of flows that reduce the require-
ments on the number of cameras involved. For example, rotation-
ally symmetric flows can be tomographically reconstructed from
a single view [Faris and Byer 1988; Venkatakrishnan and Meier
2004], while stationary flows can be acquired with a single camera
that moves around the scan volume [Schwarz 1996; Agrawal et al.
1999; Goldhahn and Seume 2007].

One of the key contributions of our work is to develop a visual-
hull constrained tomographic reconstruction pipeline for Schlieren
imaging that produces high quality reconstructions from as little as
16 views. As a result, we can for the first time build an acquisition
system that allows us to capture full time-resolved, non-stationary
flows from BOS measurements.

3 Overview

Our method for capturing gas flow builds and improves upon the
Background Oriented Schlieren (BOS) method outlined above. In
the following we provide a brief overview of the image formation
process for BOS, as well as the 2D imaging and 3D reconstruction
stages, before delving into the details of our method in the following
sections.

Image formation in optically inhomogeneous media is governed
by continuous refraction. The propagation of light in inhomoge-
neous media is described by the ray equation of geometric optics:

d

ds

(
n

dx

ds

)
= ∇n. (1)

Here, n describes an inhomogeneous refractive index field, x is
the position of a ‘particle’ traversing the light ray, and ds is the
differential path length along the ray. Equation 1 has been em-
ployed in computer graphics to render atmospheric effects [Stam
and Languénou 1996; Gutierrez et al. 2006] or complex refractive
objects [Ihrke et al. 2007]. The ray equation can be re-formulated
as a system of coupled first-order ODEs [Ihrke et al. 2007]:

n
dx

ds
= d,

dd

ds
= ∇n, (2)

where the vector d describes the local ray direction scaled by the
local refractive index. In gas flows, where n ≈ 1, it is common to
approximate d by a unit vector [Goldhahn and Seume 2007].

Equation 2 can be integrated to obtain an equation that relates the
gradient of the refractive index field to three-dimensional ray de-
flections:



dout =
∫

c
∇n ds+din. (3)

Here, c describes the ray path and vectors din and dout denote the
incoming and outgoing ray directions with respect to the optically
inhomogeneous region (see Figure 2). Equation 3 forms the basis
of both 2D BOS measurements and the 3D reconstruction.

Figure 2: Principle of the deflection sensor: A plane with a high-
frequency dot pattern is placed behind the scene of interest and
an image is recorded without the object (dashed red line). Then
the inhomogeneous refractive index field is inserted between the
camera and the background plane. Another image is taken and
the deflection of the light rays in the image plane is computed using
optical flow.

2D deflection sensing (Section 4) involves a BOS imaging
setup, using digital video cameras to observe a high-frequency
background through the flow under investigation. Per-pixel deflec-
tions are caused by refraction due to spatial variations in the volume
densities inside the flow (Equation 3, Figure 2). These deflections
are captured with an optical flow algorithm. The resulting (2D) de-
flection vectors δ can be directly used to visualize 2D projections
of the flow.

Figure 2 shows an (exaggerated) diagram of such a setup. In this
case, the volume, indicated by the shaded region, consists of air
that has a lower density than its surroundings (e.g. a plume of hot
air). As a result, camera rays are bent away from the center of the
volume, intersecting a background plane in point x′ rather than x
for an undistorted ray. The corresponding 2D displacement δ is
measured by the BOS approach.

3D tomographic reconstruction (Section 5) is based on a set
of deflection images taken from different viewpoints. Equation 3
shows that the individual deflection vectors measured by 2D BOS
imaging represent line integrals over the gradient of the refractive
indices within the volume under investigation. As such, the re-
fractive index gradients can, in principle, be recovered through to-
mographic reconstruction methods similar to those used in medical
imaging [Kak and Slaney 2001]. However, the limited number of
cameras in a practical BOS setup results in a significantly sparser
sampling of the ray space than in the medical setting. We account
for this sparseness by developing a new reconstruction algorithm
that is robust under such circumstances. Another advantage of our
reconstruction algorithm is that, unlike methods such as the Radon
transform [Kak and Slaney 2001], it can work with general camera
positions and orientations.

Once the refractive index gradients have been reconstructed, they
can be integrated into a volumetric representation of refractive in-
dices using a Poisson solver. Finally, these refractive indices di-
rectly correspond to volume densities, which are an inherent prop-
erty of the flow itself. From these volume density measurements,
additional information such as pressure and temperature distribu-
tions can be extracted under certain assumptions.

4 Background Oriented Schlieren Imaging

In this section we describe the measurement setup, its calibration
and synchronization, and the estimation of the BOS deflection vec-
tors.

Capture setup. Our measurement setup, depicted in Figure 3,
consists of 16 high definition (1440×1080, interlaced) Sony HDR-
SR7 camcorders. The cameras surround a measurement volume of
roughly 30×15×15 cm in a 180◦ arc. Behind the scan volume we
place high frequency noise patterns that are illuminated with both
sunlight and 800 W halogen stage lights. Strong lighting is required
to keep exposure times as short as possible so as to minimize motion
blur. Overhead fluorescent lights would flicker out of sync with the
cameras, with the resulting spatially-varying illumination changes
in the images producing optical flow artifacts.

In order to maximize the detectable light ray deflection, the back-
ground should be positioned as far as possible behind the measure-
ment volume. The cameras should use a long focal length, and
must be focused on the background plane for the optical flow to
work reliably. This means that the flow volume itself will be out
of focus unless the camera aperture can be held small, or the cam-
eras are moved back from the volume as well. Since we require a
large aperture for reasons of light sensitivity, we compromised by
positioning the measurement volume in the center of a 5 m diameter
ring formed by the cameras and backgrounds, as shown in Figure 3.
The extrinsic and intrinsic parameters of all cameras are calibrated
with standard techniques [Zhang 1999].

Figure 3: Photographs of our acquisition setup.

In previous work [Atcheson et al. 2008], we showed that Wavelet
Noise [Cook and DeRose 2005] makes for an ideal high-frequency
background for BOS imaging, since it contains information on
a wide range of spectral bands. As such, a camera recording a
Wavelet Noise pattern will observe dense, locally distinct features
everywhere in the image, independent of the magnification fac-
tor. This decoupling of camera and pattern resolution drastically
reduces the effort for setting up a BOS system.

Alternatively, dynamic environment matting techniques [Chuang
et al. 2000] could be employed to measure the deflection vectors.
Note, however, that the accuracy would be very limited due to quan-
tization and compression noise introduced by the cameras.



Computing BOS deflections. In most existing BOS systems
deflection vectors from a distorted background to a “clean” ref-
erence image are computed using a simple cross-correlation win-
dow matching [Kindler et al. 2007]. We recently demonstrated that
gradient-based optical flow methods such as Lucas-Kanade [1981]
or Horn-Schunck [1981] produce significantly better results, es-
pecially when combined with Wavelet Noise background pat-
terns [Atcheson et al. 2008]. In that work, we also found that vari-
ational optical flow approaches such as Brox et al. [2004], do not
perform as well as the simpler gradient based methods due to over-
smoothing. We believe this behavior is due to the different statistics
of BOS datasets, which are continuous but may have high frequency
areas, as compared to typical optical flow scenes, which are often
smooth with isolated discontinuities.

In our experiments for the present work, we chose Lucas-Kanade
optical flow to determine the BOS deflection vectors. Although our
earlier experiments show that Horn-Schunck produces slightly bet-
ter results with ideal parameters settings, we found Lucas-Kanade
less sensitive to parameter selection, which is a highly desirable
property when processing thousands of frames recorded by multi-
ple cameras. For each camera we obtain a 2D displacement vector
field, as illustrated in Figure 4. The input video frames are com-
pared to a reference background to produce a 2D optical flow field,
which is then smoothed and filtered to remove outliers.

After computing optical flow, we downsample the resulting 2D de-
flection fields to 480× 270. This reduced resolution is sufficient
for the tomographic reconstruction that follows, and the downsam-
pling eases the memory requirements that result from the use of an
array of 16 cameras. However, we found it important to perform the
downsampling after the optical flow estimation, instead of estimat-
ing the optical flow on downsampled original images. The latter
approach resulted in significantly poorer optical flow estimates in
our experiments.

Figure 4: Top row: input camera image (left); visualizations of
the recovered 2D deflection vectors as color coding (center) and
a quiver plot (right). Bottom row: Poisson integrated deflection
vectors (left) are thresholded (center), and after smoothing and di-
lation produce a binary mask (right) for generating a conservative
visual hull of the plume.

Visual hull generation. The tomographic reconstruction algo-
rithm described in Section 5 requires as input the visual hull of
the 3D flow based on the observed 2D optical flow. To generate
this visual hull, we need to create a conservative binary mask of the
flow for each camera and each frame in the sequence. Note that we
cannot simply segment the gas flow from the static background by
thresholding the length of the 2D optical flow vectors, since the 2D

deflections can be zero even if the 3D gradient is not. Equation 3
shows that this happens when the camera ray is parallel to the gra-
dient of the refractive index. Figure 4 indicates that this happens in
practice for rays passing near the center of the plume.

Note, however, that the optical flows observed by a BOS system
follow a specific pattern, where the direction of the optical flow
depends on the relative position with respect to a plume of higher
or lower density. Consider the case of a hot air plume above a
candle or similar source. Since hot air has lower density and thus
lower refractive index, light will tend to be refracted away from the
center of the plume, i.e. primarily to the left on the left side of the
plume, and to the right on the right side of the plume (see color
coding in Figure 4). Therefore, we can segment the plume from the
background by first Poisson integrating the optical flow field, and
then thresholding the resulting scalar field. The threshold value is
chosen automatically to include a given percentage of pixels across
the entire sequence, which ensures approximate consistency across
all cameras. Finally, a spatio-temporal dilation is applied to the
masks to remove any remaining temporal artifacts and make the
mask a conservative estimate compared to the true visual hull. The
bottom row of Figure 4 shows the integrated deflection vectors, the
thresholding, as well as the final mask after cleanup.

Camera synchronization. A fundamental obstacle to using in-
expensive consumer camcorders for camera arrays is that such cam-
eras do not support synchronization with a common trigger signal.
Moreover, our cameras, like many consumer devices, use a rolling
shutter, in which the exposure periods for the individual scanlines
start at different times, such that each scanline has completed ex-
posure just in time for reading out the scanline. As observed by
Wilburn et al. [2004], this process results in a shearing that needs
to be compensated for.

It turns out that the rolling shutter problem and the camera syn-
chronization can be solved in a single resampling step. Since the
rolling shutter causes a shear in the spatio-temporal volume, we can
compensate for it by extracting slices of constant time from this
sheared volume. In order to compensate for frame-to-frame mo-
tion, we compute a linear warp function between successive cap-
tured frames using optical flow. We then extract a synthetic time
slice from the spatio-temporal volume by applying this warp with
a different weight for each scanline. The weights correspond to the
different time offsets at which the scanlines in the original images
have been exposed. Moreover, if the subframe time offset between
multiple cameras is known, the synthetic times for the extracted
slices can be chosen such that the resulting images from all cam-
eras correspond to the same virtual point in time (see Figure 5).

In order to find the subframe time offset between all 16 cameras, we
can use a single synchronization event that is visible in all cameras.
In our case, we use a stroboscope that emits a single flash of light.
In each camera, this flash shows up as a sharply delineated block
of bright scanlines (see Figure 5). The boundaries of this block of
scanlines provide the required synchronization information.

Unlike Wilburn et al. [2004], our approach does not require scan-
lines from multiple cameras to create instantaneous frames. In-
stead, we are able to operate on individual cameras, while at the
same time dealing with inter-camera synchronization. As men-
tioned above, we can extract synthetic exposure images after linear
warping (Figure 5). Unfortunately, warping the raw video directly
is undesirable, since resampling would destroy the high frequency
information required to reliably estimate the optical flow. However,
the optical flow fields are much smoother than the background noise
patterns, so we warp between these instead.



Figure 5: Rolling shutter cameras use individually chosen ex-
posure intervals for each scanline, resulting in a spatio-temporal
shear of the frames in the video sequence for each camera. This
shear can be compensated for by temporal warping, where the
weights for each camera and scanline are derived from a common
synchronization event in one of the frames from each camera. In
our case, the synchronization event is a stroboscope flash that il-
luminates a sharply delineated block of scanlines in this reference
frame.

5 Tomographic Reconstruction

According to Equation 3, the deflection vectors acquired with the
BOS technique from the last section contain information about the
three-dimensional refractive index gradient within a gas flow. If
BOS deflection vectors are available from multiple view points si-
multaneously, it is possible to set up a tomographic reconstruction
problem to recover the three-dimensional gradient information. In-
tegrating the recovered gradients results in a three-dimensional re-
fractive index distribution.

In the following, we derive the necessary equations, discuss dis-
cretization issues and the choice of numerical techniques for their
solution.

Gradient Field Tomography is based on Equation 3, relating
three-dimensional ray deflections to three-dimensional refractive
index gradients via line integrals. With the BOS setup it is possible
to measure two-dimensional projections of the three-dimensional
ray deflections.

We discretize the unknown vector-valued function ∇n using a set of
normalized basis functions φi with unknown coefficient vectors ni,

∇̂n =




∑i nx
i φi

∑i n
y
i φi

∑i nz
i φi


 = ∑

i

niφi,

thus rewriting Equation 3 as follows:

∫

c
∇̂n ds =

∫

c
∑
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niφi ds = ∑
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∫

c
φi ds = dout −din. (4)

Here ni = (nx
i ,n

y
i ,n

z
i ) is a three component coefficient vector, inde-

pendently parameterizing the three gradient components. The dis-
cretization results in a separate system of linear equations for each
of the gradient components:

Sn(x,y,z) = dout
(x,y,z) −din

(x,y,z). (5)

Note that matrix S is the same for each of the gradient components:
we have to solve for different right hand sides only. The entries of

matrix S consist of line integrals over the basis functions:

S =




∫
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∫
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φnb

ds∫
c2
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c2
φnb
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∫
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φnb
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 , (6)

where nb is the number of basis functions, and np is the number
of deflection measurements from all camera views simultaneously.
We approximate the integrals in the entries of the linear system
by ray-casting and sampling the basis functions. The curved rays
c1 . . .cnp

are approximated by straight rays. This paraxial approx-
imation is consistent with standard practices in Schlieren tomogra-
phy (e.g. [Goldhahn and Seume 2007]), and is justified by the very
small ray deflections in gas flows. Simulations of our setup showed
a mean deviation from a straight path of less than 1/10 of a voxel

in a 1283 discretization of typical flow data (i.e. less than about 0.1
mm).

The small ray deflections also allow us to make another approxima-

tion. We compute an estimate d̂out of the deflection vector dout as
the vector from a point on the original (undeflected) camera ray to
the point on the background seen by the deflected ray (see Figure 2).
This assumes a single discrete refraction event near the center of the
reconstruction volume, as opposed to a continuous bending of the
ray throughout the volume. This approximation is justified by both
the small magnitude of the deflections inside the scan volume, as
well as the small diameter of that volume compared to its distance
from the background. In Section 6 we show that the reconstruction
results obtained using this approximation are in good agreement
with those produced with the true deflection vector.

The choice of basis functions is important for the tractability of
the problem. We employ radially symmetric linear basis functions
φ̂i = max(0,1− r) with one voxel overlap in each dimension. Here,
r is the radius from the center of the basis function. The normal-
ized functions are of the form φi = φ̂i/∑ j φ̂ j . Using these functions
preserves the sparseness of the linear system while still allowing
for data interpolation in the three-dimensional solution space. We
arrange the basis functions on a regular grid, excluding basis func-
tions with a support completely outside of the visual hull [Lauren-
tini 1994]. Visual hull restricted tomography was introduced in the
context of flame reconstruction [Ihrke and Magnor 2004] and is
useful in obtaining high quality tomographic reconstructions from
a sparse set of input views. The visual hull serves as an effective
regularization on the shape of the reconstructed volume and sup-
presses projection artifacts.

Integration of the Gradient Field is analogous to computing a
surface from (potentially noisy) normals. We use a discretized ver-
sion of the definition of the Laplacian operator

∆n = ∇ · ∇̂n (7)

to compute n. The left hand side of Equation 7 is discretized, while

the right hand side is computed using the recovered ∇̂n. The result-
ing Poisson equation is solved for n.

The basic Poisson integration scheme assumes a consistent set of
gradient vectors, i.e. ∇×∇n = 0. However, due to measurement
errors, the reconstructed vector field does not, in general, meet this
condition. As a result, the standard Poisson formulation often re-
sults in overshoots by attempting to fit inconsistent gradient vectors
in a least-squares sense. Agrawal et al. [2006] present a technique
for integrating inconsistent gradient fields in two dimensions. Their
method is based on anisotropic diffusion and can be formulated as

∇ · (D∇n) = ∇ · (D∇̂n). (8)



Here D is a diffusion tensor that weighs gradient information from
different directions. For standard Poisson integration D = 1. In our
work we use an edge-preserving, anisotropic diffusion tensor sim-
ilar to [Weickert 1996; Agrawal et al. 2006], extending it to three
dimensions. This involves the more complex analysis of face, edge
and corner situations in three dimensions compared to the 2D case
where only corners and straight edges have to be dealt with. In-
tuitively, D prefers gradient information taken from similar isosur-
faces of the integrated function and weighs down gradient informa-
tion orthogonal to it. The exact definition of D and its computation
can be found in the Appendix.

We discretize Equation 8 using a combination of first-order forward
and backward differences, which results in a numerical approxima-
tion similar to central-differences. The anisotropic Poisson equa-
tion is again discretized within the visual hull only. This measure
saves computation time and avoids blurring of the result into the
surrounding empty volume. We use Dirichlet boundary conditions
outside the visual hull with n = nair = 1.00029.

The resulting linear system is large, sparse, and positive definite.
It can be solved most efficiently with multi-grid solvers. However,
since we have to perform the integration only once per frame we
use a less efficient but easier to implement Jacobi-preconditioned
Conjugate Gradient method [Barrett et al. 1994].

6 Results

We evaluated our Schlieren imaging and tomographic reconstruc-
tion system both quantitatively with synthetic data, and qualita-
tively through measurements.

Synthetic data allows us to judge the precision of the proposed
approach by comparisons with ground truth information. To this
end, we process known density fields to analyze the robustness of
the individual stages (2D optical flow, 3D tomography, and Poisson
solver), as well as the sensitivity to parameters such as the number
of cameras. We ran our analysis on both fluid data that was gen-
erated with a fluid simulator, as well as data captured in our setup,
which was subsequently used as ground truth in a simulation. The
specific numbers presented here are from a particular, but represen-
tative, fuel injection data set [DFG, SFB 382], shown in Figure 6.
For all simulation results, we report errors both as relative RMS er-

rors, as well as peak signal-to-noise ratio (PSNR= 20 · log10
1

RMS ).

First, we evaluated the impact of the Poisson solver, and its interac-
tion with the discretization of the normal field. In many gradient-
based algorithms, the Poisson solver operates on a gradient field
that has been numerically computed. In such a setting, it is pos-
sible to carefully select the discretization of the Poisson solver to
match that of the normal estimation, such that the result is exact
up to floating point precision. However, for the measured gradient
fields in our setting, the discretization of the normal field is implicit
in the measurement setup and tomographic reconstruction, and thus
the discretization in the Poisson solver will introduce a larger nu-
merical error. To estimate this error, we started from the ground
truth volume data, computed the gradient field with an “unknown”
discretization, and used the anisotropic Poisson solver to compute
an estimate of the original volume. We obtain a PSNR of 42.15
dB (RMS error of 0.78%) on the fuel injection data set, and similar
numbers on other data. These numbers provide a baseline for the
quality that can be achieved with perfect optical flow estimation,
an unlimited number of views, and perfect tomographic reconstruc-
tion. A comparison between the ground truth data and the Poisson
reconstruction is shown in Figure 6.

Figure 6: Top row: 3D rendering of the ground-truth synthetic fuel
injection dataset, and an iso-line rendering from a cross-section
around the turbulent part. Bottom row: the same cross-section for
various simulation results. The first three images from left to right
represent tomographic reconstructions from optical flow data with
8, 16, and 32 cameras. The rightmost image shows a Poisson inte-
gration from ground truth 3D gradients.

Simulation errors for tomographic reconstruction

Half ring setup

Direction estimate 8 Cameras 16 Cameras 32 Cameras

PSNR RMS PSNR RMS PSNR RMS

Ground truth (dout ) 40.55 0.94% 41.29 0.86% 41.39 0.85%

Approximate (d̂out ) 40.43 0.97% 40.73 0.91% 40.76 0.91%

Optical flow 39.29 1.09% 39.84 1.02% 39.88 1.01%

Full ring setup

Direction estimate 7 Cameras 15 Cameras 31 Cameras

PSNR RMS PSNR RMS PSNR RMS

Approximate (d̂out ) 40.03 1.00% 40.74 0.92% 40.83 0.91%

Table 1: Errors statistics for experiments with synthetic data. See
text for a detailed discussion.

Next, we analyzed the impact of the number of cameras on the to-
mographic reconstruction part. We ray-traced light paths from vir-
tual cameras through the ground truth volume, and recorded the
direction of the ray as it exits the volume. These direction values
dout were then used for the tomographic reconstruction algorithm,
and integrated using the anisotropic Poisson solver. The resulting
errors are shown in the first row of Table 1. The total reconstruc-
tion error for 16 cameras (PSNR: 41.29 dB, RMS: 0.86%) is already
very close to the error bound obtained from the Poisson integration
alone. Additional cameras do not result in significant further reduc-
tions of error. While the numbers depend somewhat on the volume
resolution and the complexity of the flow, we found that 16 cameras
generally provide the best tradeoff between hardware requirements
and precision.

In the previous simulation we assumed that the exact refracted light
direction dout was known. However, the deflection measurements
obtained by BOS correspond to an approximation d̂out of this direc-
tion (see Figure 2), that only matches the true direction if the ray re-
fracts in a single point rather than being continuously deflected over
a finite volume. However, since the scan volume is small compared
to its distance from the background, and since the ray deflections
are small as well, one expects d̂out to be a good enough approxima-
tion. This hypothesis is confirmed by our experiments (row two of
Table 1).

In order to obtain an estimate of full system error, we can again
use ray-tracing through the volume, and intersect the refracted rays



with a virtual Wavelet Noise background. The resulting images are
then processed by the complete pipeline of optical flow, tomogra-
phy, and Poisson integration. Row three in the table shows that the
optical flow algorithm introduces additional error, but the overall er-
ror remains very low, especially when considering the lower bound
provided by the Poisson solver. Figure 6 shows visualizations of
the original ground truth flow, as well as the reconstructions with
different numbers of cameras.

We also studied the impact of the anisotropic Poisson solver, and
found that it improves the PSNR of tomographically reconstructed
datasets by about 1 dB. For such datasets we found that a regular-
ization value α of 0.8 produced the best results. All results in this
paper were computed using this value.

Finally, we analyzed if it would be better to arrange the cameras in
a full ring rather than the half ring we have used so far. The last
row in Table 1 shows the results obtained with 7, 15, and 31 virtual
cameras and approximated deflection vectors d̂out . We chose an
odd number of cameras for the full ring scenario in order to avoid
almost complete redundancy of information when two cameras are
opposite each other. The results in the table show almost no differ-
ence between the half and full ring setup for the same number of
cameras. This justifies the use of the half ring setup, which is easier
to realize physically.

Real measurements were performed in the setup described in
Section 4. Figure 8 shows four time sequences of volume ren-
derings for four different gas flows. The sequences demonstrate
the ability of our system to capture both turbulent and laminar
flows. The turbulent hot air flow above a burner in the top row
clearly shows the advection of small scale detail over time. The
laminar flows, including the hot air plumes above three tea lights
in the bottom row, show the ability of our approach to clearly
separate distinct features, as well as the temporal continuity and
low noise present in our method. For the burner sequence, our
most complex data set, we used approximately 150,000 basis func-
tions and 700,000 pixel measurements per time frame. For the
other sequences the linear system from Equation 5 is usually over-
determined by a factor of 8−25.

In Figure 7 we show a collection of additional results. On the top
left, we see a 2D deflection image obtained by measuring the dis-
turbance that a jet of compressed air causes in the hot air plume
created by a candle. Simulating such a flow would be difficult for
most fluid simulators used in computer graphics, since this flow vi-
olates the incompressibility assumption. The top right of Figure 7
shows a potential use of captured flow data in computer graphics.
In this image, the captured burner flow both distorts the rays of a
synthetic camera, as well as the light rays originating from a syn-
thetic light source. As a result, we see caustics projected onto a
distorted wall. The bottom row of the figure shows the plumes of
the three tea lights overlaid onto an original camera view, as well as
a visualization of the 3D gradients for the turbulent burner flow.

We strongly encourage the reader to view the accompanying video,
where we show additional results and animations for all shown se-
quences. Additionally, we show realistic renderings using the ac-
quired dynamic data sets.

7 Conclusions

In this paper we have presented the first system for capturing non-
stationary gas flows by observing the distortions they cause in cam-
era images. In addition to this system, our contributions include a
new way of synchronizing rolling shutter cameras for this purpose,
as well as a novel algorithm for Schlieren tomography that works

Figure 7: Additional results (see text).

with a modest number of views. Using these methods, it is now pos-
sible to capture complex non-stationary flows with very moderate
hardware requirements.

We have demonstrated some initial uses of such captured flows in
computer graphics. However, in the long run we believe that an
even more interesting outcome of this line of work will be to pro-
vide ground truth information for validating fluid simulators and
the heuristics they rely on. We also believe that it will be possible
to fit fluid simulation parameters to the captured data, to steer fluid
simulation to encompass certain characteristics of measured flow,
and to develop data driven fluid simulation. These are interesting
avenues of research that we would like to explore in the future.
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Appendix

Definition and Computation of the Diffusion Tensor The dif-
fusion tensor is derived from the structure tensor [Weickert 1996]

Jσ = Kσ ∗ (∇̂n∇̂n
T
) of the refractive index field with its compo-

nents smoothed independently. We use a Gaussian filter kernel Kσ

with σ = 0.5. Using an Eigen decomposition Jσ = VΛV−1, with
λ0 ≥ λ1 ≥ λ2, we generate the diffusion tensor by changing the
eigenvalues to

Λ̃ =




α

α +(1−α)e
− max |∇̂n|

k(λ0−λ1)2

α +(1−α)e
− max |∇̂n|

k(λ0−λ2)2


 ,



Figure 8: 3D reconstructions of data measured in our BOS tomography system. The images within each row are one frame (1/60 second)
apart. Top row: a turbulent flow of hot air above a gas burner. The advection of features is clearly visible, as the hot air rises due to buoyancy.
Second row: hot air rising from a candle. The flow starts out almost laminar, but eventually breaks up into more turbulent behavior. Third
row: hot air plume for two tea lights. The almost laminar flow is occasionally disrupted by ambient air movement. Bottom row: very laminar
flow above three tea lights. the individual hot air plumes are clearly visible.

where k = 0.5 · 10−5 and α is a data fidelity parameter. The dif-

fusion tensor D is obtained by computing D = VΛ̃V−1. Choosing
α = 1 results in standard Poisson integration which can be used

if ∇̂n is indeed a gradient field; lower alpha values result in bet-
ter noise removal. By analyzing tests on synthetic data we found
α = 0.8 to be a good choice for the noise levels introduced by opti-
cal flow and tomographic reconstruction, see Section 6.
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