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Abstract The background oriented schlieren method (BOS)
allows for accurate flow measurements with a simple ex-
perimental configuration. To estimate per-pixel displace-
ment vectors between two images, BOS systems tradition-
ally borrow window-based algorithms from particle image
velocimetry.

In this paper, we evaluate the performance of more recent
optical flow methods in BOS settings. We also analyze the
impact of different background patterns, suggesting the use
of a pattern with detail at many scales.

Experiments with both synthetic and real datasets show
that the performance of BOS systems can be significantly
improved through a combination of optical flow algorithms
and multiscale background.

Keywords Background Oriented Schlieren Imaging ·
Optical Flow

1 Introduction

Background oriented schlieren imaging (BOS) has in recent
years evolved as an attractive option for fluid imaging (e.g.
Meier, 2002; Jensen et al, 2005). BOS systems are inex-
pensive and easy to set up, and produce quantitative ray
deflection results. As such, they are ideal not only for 2D
imaging, but also for tomographic setups (Raffel et al, 2000;
Venkatakrishnan and Meier, 2004; Goldhahn and Seume,
2007; Atcheson et al, 2008).

BOS systems record per-pixel ray deflections by com-
paring an undistorted view of a background with a distorted
view, in which the background is viewed through a refract-
ing flow. Typically, rectangular neighborhoods of pixels in
the two images are compared using a cross-correlation met-
ric developed for particle imaging velocimetry (Westerweel,
1997). If matching neighborhoods are found, their relative
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position in the two images defines a 2D displacement vec-
tor representing the refraction of light due to the variation of
refractive index in the flow.

This estimation of displacement vectors from an image
pair is very similar to a problem that has received a lot of
attention in the computer vision community for many years.
Computer vision researchers are interested in optical flow,
that is, the apparent motion of objects in 2D images from
one time step to another (see Section 2 for a more detailed
description of the problem). After initial work with cross-
correlation methods similar to those used in PIV and BOS,
more accurate gradient-based and variational methods have
been developed for this problem over the past two decades.

One difference between the typical optical flow setting
and BOS is, however, that optical flow is usually applied to
relatively simple motions, such as camera movement or rigid
motions of individual objects. The resulting displacement
field is typically very smooth with a few discontinuities at
object edges. In contrast, BOS datasets usually do not have
sharp discontinuities, but contain other high frequency vari-
ations, especially when measuring turbulent flow.

In this paper, we therefore analyze the performance
of optical flow methods when applied to datasets that are
more typical of BOS problems. We specifically compare
the standard window matching algorithm to both gradient-
based and variational optical flow methods. Although a
vast number of variations have been proposed on both ap-
proaches over the years, a number of representative methods
can be chosen for each category. The algorithms by Lucas
and Kanade (1981) and Horn and Schunck (1981), as well
as their multi-resolution, multi-scale variants represent the
classic gradient-based approaches. Similarly, the algorithm
by Brox et al (2004) is one of the most popular variational
approaches. In our experiments, we test these algorithms on
both real BOS datasets as well as synthetic ones, the latter
for comparisons with ground truth data.

Another, previously unexplored, avenue for improve-
ment lies with the control we have over the background pat-
tern. While in PIV the pattern is given through the distri-
bution of particles in a flow, for BOS we can choose any
background image. In particular, we can choose a pattern
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that has a dense set of distinguishable features across a wide
range of scales. Specifically, we analyze the performance of
the wavelet noise pattern (Cook and DeRose, 2005), to see
if it can help in estimating a dense set of pixel correspon-
dences between the images, while providing a large degree
of flexibility in the optical setup.

It should be noted that recent research in PIV imaging
has led to algorithms similar to those used in optical flow
research, such as the one by Ruhnau et al (2005), which pro-
poses a multi-scale and multi-resolution variant of the Horn
and Schunck algorithm similar to one of the algorithms we
evaluate. Other recent PIV algorithms make use of domain-
specific assumptions such as incompressibility of flow (Cor-
petti et al, 2006; Ruhnau and Schnörr, 2007). These assump-
tions are not valid for BOS, and hence these more special-
ized algorithms cannot be applied in this setting.

In the following, we first give an introduction to the opti-
cal flow problem, and discuss the individual algorithms used
in our evaluation (Section 2). We then describe a new back-
ground pattern with detail across a wide range of scales (Sec-
tion 3), before we present the experiments on synthetic and
real data (Sections 4 and 5, respectively).

2 Optical Flow

Given two images I(x,y, t0) and I(x,y, t1), the optical
flow (e.g. Davies, 2004) is defined as the 2D vector field
describing the apparent motion of each pixel between im-
ages of a dynamic 3D scene taken at different points in time.
This apparent motion is computed using the assumption of
brightness constancy, that is, the assumption that pixel inten-
sity for corresponding 3D points is the same in both images:
I(x,y, t) = I(x+δx,y+δy, t +δ t). (1)

This problem is very similar to the pixel correspondence
problem solved in BOS methods, although the characteris-
tics of the apparent motion field differ from those of the typ-
ical optical flow field in computer vision. BOS optical flow
generally does not exhibit sharp discontinuities, but can con-
tain high frequency features distributed over a large area,
especially when BOS is used to image turbulent flows. By
comparison, for optical flow in 3D scenes, brightness con-
stancy is violated when the scene contains shadows, specu-
lar highlights, and foreground objects that occlude the back-
ground. Much of the complexity that exists within modern
optical flow algorithms is designed to deal with these cases,
as well as with homogeneous image regions by assuming
smooth flow fields with occasional discontinuities.

Despite these differences, the basic optical flow frame-
work is an appropriate model for the refractions in BOS
imaging. In particular, brightness constancy (Equation 1)
holds for typical flows of interest, as long as the BOS setup is
well engineered. In particular, brightness constancy assumes
– transparent, non-scattering flows with only small density

gradients to minimize internal reflections and dispersion
effects. Refraction angles are usually in the order of a
small fraction of a degree.

– stable lighting from sources such as incandescent or
metal halide lamps. Flickering sources such as fluores-
cent lights are to be avoided.

– approximately diffuse material for the background pat-
tern to eliminate angular variations of radiance levels for
a point on the pattern as observed from different direc-
tions. Due to the small magnitude of deflections, this as-
sumption only places very minor constraints on the ma-
terial used as a background.

– lastly, a small camera aperture, such that refocusing ef-
fects from the volumetric refractions can be neglected.
Note that small apertures are already required in BOS
systems in order to keep both the volume and patterned
background in focus at the same time (see, e.g. Goldhahn
and Seume, 2007).

All these assumptions are consistent with the state of the art
in BOS imaging setups (Venkatakrishnan and Meier, 2004;
Goldhahn and Seume, 2007). In the remainder of this work,
we assume a BOS system optimized for the above consid-
erations. Our work analyzes the best choice of optical flow
algorithm for extracting information about light refraction
from images acquired with such a setup.

In the following, we first review the block-matching al-
gorithms commonly applied to BOS and PIV problems, and
then summarize some gradient-based and variational meth-
ods developed in computer vision.

2.1 Block-Matching Algorithms

PIV processing software typically makes use of spatial cor-
relation in order to detect the motion of small rectangular
windows from frame to frame. As shown by Elsinga et al
(2004), the same software may be used to process BOS data.
For each overlapping window, the method computes the
correlation score for each integer translational movement.
These computations can be executed in the frequency do-
main for efficiency reasons. Integer-precision is insufficient
for many applications, and so a subpixel accurate peak in the
correlation matrix is located by fitting a curve through the
points around the maximum value and then finding its peak.
The computational cost for this algorithm is high, but can be
mitigated with specialized, or parallel computing hardware.

Each output vector (ideally) represents the average mo-
tion of all pixels across the associated window. In order to
maintain stability, these windows are often quite large (8×8
pixels and higher), and the assumption of uniform purely
translational motion across such a large image region is of-
ten not valid. Deforming the windows has been shown to
produce significantly improved results (Scarano, 2002), but
at the cost of much increased complexity and execution time.
Windows should be as small as possible to prevent exces-
sive smoothing due to averaging over the windows. How-
ever, small windows may not contain sufficient image detail
in order to produce a reliable peak in the correlation matrix.
Some errors can be filtered out in post-processing, but one
technique that does generally improve results is to apply the
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algorithm in an iterative fashion, first using large windows,
and then using the resulting vector fields to pre-shift smaller
windows on successive iterations (Scarano and Riethmuller,
1999).

2.2 Gradient-Based Algorithms

Gradient-based methods are based on the first degree Taylor
series expansion of the change at each pixel

I(x+δx,y+δy, t +δ t) = I(x,y, t)

+
∂ I
∂x

δx+
∂ I
∂y

δy+
∂ I
∂ t

δ t + . . . , (2)

where the higher order terms are ignored. Taking Equation 1
into account and dividing throughout by δ t we get that

∂ I
∂x

δx
δ t

+
∂ I
∂y

δy
δ t

+
∂ I
∂ t

= 0. (3)

The ∂ I/∂x, ∂ I/∂y and ∂ I/∂ t terms are easily computable
image derivatives. For each pixel, we then have one equa-
tion in two unknowns, δx and δy. Additional constraints are
thus required to get a unique solution, and they are usually
provided by neighboring pixels.

2.2.1 Lucas-Kanade

Equation 3 can be solved at a given point by considering all
the pixels (i, j) within a fixed-size window around that point
and constructing the following system of equations (Lucas
and Kanade, 1981):(

∂ I
∂x

δx
δ t

+
∂ I
∂y

δy
δ t

+
∂ I
∂ t

)∣∣∣∣
i, j,t

= 0 (4)

Since the system is now overdetermined, δx and δy are de-
termined using a least-squares optimization, which also im-
proves robustness under noise.

2.2.2 Horn-Schunck

Horn and Schunck (1981) take an alternative approach
to solving the aforementioned underdetermined system,
by adding a regularizing term in order to enforce global
smoothness. The idea is to minimize the function∫

Ω

(
∂ I
∂x

δx+
∂ I
∂y

δy+
∂ I
∂ t

+α

(
|∇δx|2 + |∇δy|2

))
dxdy,(5)

which combines Equation 3 (with δ t = 1 for convenience)
with a weighted smoothness term based on the magnitudes
of the vector field gradients. The direct incorporation of
global information removes the necessity to post-process the
vector field to remove outliers due to incorrect matches.

2.2.3 Multi-resolution and Multi-scale Extensions

In images with high frequency content, gradient informa-
tion is only useful at a very small scale, and displacements
of more than one pixel cannot be measured. The standard
approach to dealing with this problem is to use a multi-
resolution coarse-to-fine algorithm. An image pyramid is
constructed by repeatedly downsampling the image by a fac-
tor of two. The optical flow can then be found on the smallest
image in the pyramid, and is used to unwarp the next small-
est image by computing I(n)(x− δx(x,y, t),y− δy(x,y, t), t)
where δx and δy are upsampled and scaled from the previ-
ous level. Interpolation is used for the fractional pixel loca-
tions. This process is then iterated until reaching the original
image resolution (Anandan, 1989).

Block-matching algorithms use an iterative process,
starting with larger interrogation window sizes, to deal with
large displacements. With a large window overlap, this can
significantly increase the execution time. Image pyramids
serve the same purpose, but allow for using a constant win-
dow size on successively smaller images, with much lower
computational cost (Adelson et al, 1984).

In many cases, the performance of multi-resolution al-
gorithms can be further improved by controlling the spatial
frequency content more finely than with power-of-two im-
age pyramids. This is usually achieved by filtering the indi-
vidual pyramid levels with a low-pass filter to generate dif-
ferent scales. An example of such a multi-scale algorithm is
the work by Ruhnau et al (2005), who apply it to the Horn-
Schunck framework.

The disadvantage of both multi-resolution and multi-
scale methods is that some image detail is lost. In an image
consisting of uniform or normally distributed noise, repeated
downsampling and/or filtering results in an image that con-
verges to a uniform grey. The lack of detail in those images
makes it difficult to compute optical flow. We show in Sec-
tion 3 that this problem can be avoided by making use of a
multi-scale noise pattern.

2.3 Variational Algorithms

Recent work on optical flow has turned towards variational
approaches, which seek to minimize an energy functional
over the image domain. Whereas earlier gradient-based ap-
proaches linearize the optical flow equation in the problem
formulation, Papenberg et al (2006) extend an algorithm pro-
posed by Brox et al (2004), and perform a non-linear op-
timization. They report greatly improved results on stan-
dard optical flow test datasets as a result. Their method, ex-
pressed below in equation form, is based on a generalization
of the brightness constancy assumption to include constancy
of other linear functions Li (i.e., identity, gradient, Lapla-
cian) of the image intensity. The norms of these weighted
data terms Di are minimized across the whole image. The
penalty function Ψ , which asymptotically approaches some
maximum value, is applied to each term to prevent outliers
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from skewing the result, and a smoothness term is included
that is similar to that of the Horn-Schunck method.

Di = ‖Li (I(x+δx,y+δy, t +δ t))−Li (I(x,y, t))‖2
l2 (6)

E =
∫

Ω

(
Ψ(
∑

i

αiDi)+αΨ(|∇δx|2 + |∇δy|2)
)

dxdy (7)

2.4 Algorithm Parameters

The accuracy of optical flow estimation is strongly influ-
enced not only by the choice of algorithm, but also by choice
of parameter values for a given algorithm.

In the case of the block-matching and Lucas-Kanade al-
gorithms, window size (w) is the key parameter that bal-
ances stability with spatial resolution. Larger windows pro-
vide a higher degree of confidence in the vector field, but do
not reveal fine-scale detail. The goal is therefore to make w
as small as possible while maintaining an acceptable degree
of stability.

The Horn-Schunck and Brox algorithms are chiefly con-
trolled by the smoothness parameter α , which damps high
frequency spurious errors, as well as turbulent flow. There-
fore, α should be made as small as possible to prevent over-
smoothing, but beyond a certain (data-dependent) threshold,
the effect of the regularizing smoothness term is diminished
to the point that Equations 5 and 7 again become underde-
termined.

The Brox algorithm contains an additional set of param-
eters αi controlling the respective weights of the data terms
Di. Our implementation of this algorithm contains only the
identity and gradient operators L0 and L1, and since the
gradient information in a noisy image can be very high fre-
quency, we fixed α0 and α1 to values experimentally deter-
mined to produce the best results (0.9 and 0.1, respectively),
and only analyze the impact of the remaining parameter α .

3 Wavelet Noise

All optical flow methods rely on inhomogeneous, high-
frequency image detail for the estimation of displacement.
With PIV, a flow is seeded with particles in an attempt to in-
directly control this image detail. For outdoor experiments,
Kindler et al (2007) have shown that natural scenes are often
suitable for BOS, while for laboratory experiments, random
noise functions are often used as background (Richard and
Raffel, 2001). We argue that whenever direct control of the
background pattern is possible, a multi-scale pattern, such as
that described in this section, can significantly improve the
accuracy of results.

For most random noise patterns, such as uniform or
Gaussian noise, the intensity histogram is affected by
changes in scale due to averaging of noise values over

pixel sensors. In particular, downsampled uniform noise ob-
tains a Gaussian intensity profile, and downsampled Gaus-
sian noise has a smaller variance than the original (see
Figure 2), resulting in a loss of detail and contrast. While
the normalized cross correlation used in optical flow al-
gorithms can partially compensate for this contrast reduc-
tion, quantization and random noise in the camera sensor
result in significantly degraded optical flow estimates even
for small levels of downsampling. Upsampled noise pat-
terns, on the other hand, produce homogeneous color regions
that do not provide enough detail for determining dense op-
tical flow. Therefore, random noise patterns work best if
the resolution of the pattern and that of the camera sensor
are matched. This restriction, which proves cumbersome in
practical setups, can be avoided with multi-scale patterns
such as wavelet noise (Cook and DeRose, 2005), which have
discernible high frequency content at all scales.

A wavelet noise pattern of size 2k×2k is the sum of indi-
vidual band-limited noise functions generated at resolutions
of 2 j×2 j for j ≤ k. Each individual function is constructed
by initializing a 2 j × 2 j image with uniformly distributed
random pixel values. This image is then downsampled by a
factor of two, and upsampled again to its original resolution.
The difference between those two images is then effectively
a high-pass filtered image which, when upsampled to the fi-
nal resolution 2k×2k, contains frequencies in only a narrow
band. Together, these bands form a partition of the entire
frequency space. The top of Figure 1 shows three such noise
functions for different resolutions j. The bottom right of the
figure shows the spectrum of one of these levels, revealing its
band-limited nature. The final wavelet noise pattern is cre-
ated by upsampling all the images to the final resolution of
2k×2k pixels, and summing them (bottom left of Figure 1).

There are two reasons for using a multi-scale noise pat-
tern. Firstly, it allows for hierarchical optical flow algorithms
to safely downsample the images to handle large displace-
ments, without concern for loss of accuracy at those stages.
Secondly, as a practical matter it is tedious to reprint a back-
ground pattern of the appropriate resolution for every exper-
imental configuration. Having a single large multi-scale pat-
tern affords a large degree of flexibility with respect to the
geometric and optical setup, which simplifies experiments.

The problem of loss of detail on non-multi-scale patterns
is illustrated in Figure 2. Viewing a high frequency, high dy-
namic range, normally distributed noise image from afar,
or under minification, results in a flatter grey image with
low dynamic range. Uniformly distributed noise, as well as
many natural high frequency scenes, also exhibit this behav-
ior, whereas the wavelet noise retains contrast and detail un-
der scaling.

4 Synthetic Data Evaluations

In this section we present results from experiments with syn-
thetic datasets. We focus on flows that exhibit typical char-
acteristics of BOS data. Evaluations for data representative
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Fig. 1 Wavelet noise. Top row: Three of the individual noise bands.
Bottom left: the final noise image is the sum of eight such bands,
equally weighted in this case. Bottom right: the frequency spectrum
of the second band is confined to the range between one half and one
quarter of the maximum frequency.
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Fig. 2 Background pattern intensity histograms show the effects of
downsampling for two different types of noise.

of the apparent motion of 3D objects have been performed
elsewhere (e.g. Barron et al, 1994).

Optical flow fields from BOS measurements can exhibit
sources and sinks even if the underlying fluid flow is incom-
pressible. At the same time, BOS optical flow may also con-
tain rotational components, especially when imaging turbu-
lent fluid flows. Both sources/sinks and rotational compo-
nents may be expected to cause problems with the optical
flow estimation, so to analyze the impact of both phenomena
we created two types of datasets, illustrated in Figure 3 us-
ing Line Integral Convolution images (Cabral and Leedom,
1993). The first optical flow dataset was a simple 2D random

Fig. 3 Random noise flowfield (left) and Curl-noise (right). Line-
integral convolution is used to visualize the direction of flow, while
the color-coding illustrates velocities.

noise function that was low-pass filtered to ensure varying
degrees of smoothness. These random fields contain sources
and sinks, but almost no rotational components. To investi-
gate the effect of the latter, we also generated divergence-
free vector fields containing many small vortices using the
curl noise method by Bridson et al (2007).

Fields of each type were generated with varying levels of
turbulence, where we simulate increased turbulence by al-
lowing higher frequency variations in the field. The low tur-
bulence fields represent what would typically be seen with
a laminar flow such as an undisturbed candle plume (Fig-
ure 7), whereas high turbulence represents a flow more com-
plex than that of the interaction depicted in Figure 8. More
turbulent flows are expected to be more problematic for op-
tical flow estimation since they require the use of smaller
window sizes in both the block matching and Lucas-Kanade
algorithms, as well as a lower weights for the regulariza-
tion terms in the Horn-Schunck and Brox algorithms. For
all algorithms, the robustness of the optical flow estimation
is therefore expected to decrease with increasing turbulence.
Note that because the divergence-free flow fields are con-
structed by taking gradients of the random flow fields, they
exhibit higher frequency variations. Error magnitudes be-
tween both types of flow fields can therefore not be com-
pared directly.

Three background patterns were chosen and subse-
quently warped by each vector field. Normally distributed
noise was selected as a baseline in order to evaluate the
newer wavelet noise pattern (Section 3). A sample high den-
sity particle image from a PIV experiment was also used,
in order to determine whether or not the other optical flow
algorithms could be carried over to PIV. In order to avoid
the effects of sampling artifacts, we generated all images
and fields at higher than necessary resolution, and downsam-
pled before computing the displacements. Additive Gaus-
sian noise with a standard deviation of 3 grey levels was
added to all images to model an imperfect image sensor.

For each combination of background pattern and vec-
tor field, we computed the optical flow using each algorithm
and varied the key parameter across an empirically deter-
mined range. For Horn-Schunck we used α values of 0.06,
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0.02 and 0.006. With smaller values the algorithm became
unstable and severe errors appeared in the output. The Brox
smoothness term was set to 6, 5 and 4. Values smaller than
these resulted in very poor results, and larger ones caused the
algorithm to crash in certain cases due to a singular matrix
appearing in the Gauss-Seidel solver. For Lucas-Kanade,
square windows of size 7, 5 and 3 pixels were used and
for block-matching we used the open-source MatPIV tool-
box (Sveen, 2004) with w = 32, 16 and 8 pixels. In the hier-
archical algorithms, image pyramids were restricted to three
levels, and MatPIV used three iterations of successively de-
creasing window sizes, with a window overlap of 7/8 to
maximize spatial resolution.

For the Horn-Schunck algorithm, we experimented both
with the multi-scale, multi-resolution variant of the algo-
rithm, and the multi-resolution-only variant. We consistently
found the former method slightly superior to the latter, albeit
at somewhat higher computational cost. The tables in the
following only report the results from the multi-resolution,
multi-scale algorithm.

For evaluation we cropped all results to remove the dif-
ficult border cases, and computed average angular and end-
point errors. Endpoint error is simply the magnitude of the
difference between the ground truth g = (gu,gv) and com-
puted optical flow f = ( fu, fv) vectors

e = ‖( fu, fv)− (gu,gv)‖2. (8)

4.1 Results

The endpoint error results are shown in Figure 4. We found
that angular errors follow the same trends as endpoint errors,
and have omitted them for the sake of brevity. The left col-
umn of the graphs shows results for random flow, whereas
the right column shows the results for divergence-free flow.
From top to bottom, the rows correspond to wavelet noise,
Gaussian noise, and a PIV background pattern, respectively.
Within each graph, three groups of error bars represent the
endpoint error for low, medium, and high turbulence. Each
group contains the color coded error bars for different al-
gorithms and parameter settings. In all cases, lower num-
bers are better. The results of less than 0.1 pixel error for the
wavelet noise pattern with a high frequency random flow are
encouraging (maximum deflection was around 3 pixels).

The gradient-based algorithms typically performed bet-
ter than the block-matching and variational methods. Horn-
Schunck was able to produce lower absolute errors than
Lucas-Kanade in most cases, but proved to be more sensitive
to parameter variations. The wavelet noise pattern resulted in
generally lower errors than either of the other backgrounds.
In some cases where large errors were produced with the
Gaussian background, the same algorithm and parameters
were able to produce a good result when using the wavelet
background instead. We have observed that even with a con-
servatively chosen parameter, the combination of a gradient-
based optical flow algorithm and the wavelet noise back-

ground pattern is often able to outperform MatPIV at its op-
timal parameter setting.

All algorithms can produce severe errors with the wrong
choice of parameter values. The choice is usually between
excessive smoothing (large windows or high weights for
regularization terms), or low robustness (small windows or
low regularization weights). For block-matching, we have
used windows of at least 8× 8 pixels in size, below which
the results become extremely unstable. Lucas-Kanade is sta-
ble for smaller window sizes such as 5× 5 or, in some
settings, 3× 3, allowing for a better reproduction of high-
frequency detail. The continuous parameters of Brox and
Horn-Schunck are more difficult to select, but with the right
settings Horn-Schunck outperforms all other algorithms.

The PIV background returned results of similar quality
to the Gaussian noise background, albeit with better stabil-
ity. While the PIV image took on an approximately Gaussian
intensity profile after downsampling, its dynamic range re-
mained higher than that of the Gaussian pattern for the same
amount of downsampling.

Timing results cannot be meaningfully compared, as
both the MatPIV and Brox implementation were run in the
interpreted Matlab environment rather than as optimized C
code. Nevertheless, block-based cross-correlation is an in-
herently expensive operation, and algorithms that avoid this
step can be made significantly faster. In the case of Horn-
Schunck, we were able to process 512× 512 images in as
little as 3 seconds on a standard desktop PC.

A peak-locking effect has been observed in PIV experi-
ments (Westerweel, 2000). It arises when vectors are biased
towards integer displacements. There is some evidence that
this is due to the curve fitting procedure used to find the sub-
pixel peak location, and various methods have been devel-
oped to mitigate it (Scarano, 2002). The histograms of dis-
placement values in Figure 5 show that, for BOS, the effect
is apparent under block-matching, whereas a gradient-based
algorithm is largely immune.

4.2 Scale tests

In order to test the efficacy of wavelet noise in allowing
for resizing of the background, we conducted tests using
identical algorithms and flow fields, varying only the back-
ground pattern and scale. Figure 6 shows a comparison of
estimated displacement magnitudes for the Gaussian noise
pattern (top) and the wavelet pattern (bottom), using Lucas-
Kanade with w = 7. We chose this algorithm because it has
the lowest parameter sensitivity. The left column shows the
initial results at the original resolution of 512× 512. Both
fields are similar, but the Gaussian noise resulted in a few
patches of spurious errors, which tend to be localized along
contours of high gradient. On the right, we reduced the im-
age sizes before computing the optical flow. Notice that the
quality of the field produced with the Gaussian noise back-
ground decreased noticeably, whereas that produced with
the wavelet noise pattern was largely unaffected.
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Fig. 4 Endpoint errors for the synthetic tests. Three values, in
parentheses, were chosen for the key parameter of each algo-
rithm. Missing data indicates a test that could not be completed
due to instability.

5 Application to Acquired Data

While our synthetic tests show that the combination of
gradient-based optical flow algorithms and a wavelet noise
background is very effective, the question remains as to how
accurately these results reflect true BOS data. To investigate
this question, we conducted a qualitative evaluation on real-
world datasets. Figure 7 shows the estimated horizontal dis-
placements for a laminar candle plume. Figure 8 shows a
more turbulent flow, where the candle plume is disturbed
with a jet of compressed air. Finally, Figure 9 depicts the
results of a flow from a candle lantern.

Peak locking is evident in the images generated with
block-matching. Standard practice would be to low-pass fil-
ter these images, which would, however, sacrifice preci-
sion in turbulent regions. Due to the explicit regularization

term, Horn-Schunck produces smoother results than Lucas-
Kanade. The Brox results are even smoother.

Finding optimal parameters for the different algorithms
can be difficult without the luxury of a ground truth result.
In the presented results, we estimated the best settings based
on our experience with the synthetic data, and then refined
the choice until the resulting image looked visually the best.
Horn-Schunck and in particular Brox can be very sensitive to
the setting of the smoothness parameter. By contrast, Lucas-
Kanade is less sensitive to the window size, which we found
we could always set to either 3×3 or 5×5 pixels.

6 Discussion and Conclusion

Our experiments confirm that BOS results can be im-
proved upon by using more sophisticated algorithms than
simple block matching. In particular, the multi-resolution,
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MatPIV (w = 16,8,8) Lucas-Kanade (w = 5) Horn-Schunck (α = 0.02) Brox (α = 6.0)

Fig. 7 Horizontal components of displacement vectors from a candle plume, imaged against the wavelet noise background.

MatPIV (w = 16,8,8) Lucas-Kanade (w = 5) Horn-Schunck (α = 0.06) Brox (α = 4.0)

Fig. 8 Sum of horizontal and vertical vector components of a candle plume being disturbed by a jet of compressed air, imaged against the
wavelet noise background.

MatPIV (w = 32,16,8) Lucas-Kanade (w = 7) Horn-Schunck (α = 0.06) Brox (α = 5.0)

Fig. 9 Magnitudes of displacement vectors of a candle lantern, imaged against the wavelet noise background.

multi-scale variants of gradient-based algorithms (Lucas and
Kanade (1981) and Horn and Schunck (1981)) provide sig-
nificantly better accuracy than block-matching algorithms,
as shown in our comparisons with ground truth data. More
recent variational algorithms such as Brox et al (2004) tend
to excessively smoothen the higher-frequency content that is
expected in BOS datasets.

In most cases we found that Horn-Schunck produces
slightly lower error than Lucas-Kanade for the respective
best parameter settings. The explicit regularization term in
Horn-Schunck also provides visually superior results with-
out the oversmoothing artifacts of the Brox algorithm. On

the other hand, Horn-Schunck is somewhat sensitive to the
choice of parameter settings, and without ground-truth data,
it may not be obvious how to set the weight of the regular-
ization term for a particular dataset. By comparison, Lucas-
Kanade only has one discrete-valued parameter, the size of
the comparison window, which should be either 3× 3 or
5×5 for best results.

Our experiments also show that a wavelet noise back-
ground does indeed further improve accuracy. Furthermore,
experiments with scaling show that wavelet noise can, as ex-
pected, be used more easily across different scales, which
simplifies the experimental setup for BOS measurements.
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Fig. 5 Histograms of vector horizontal components for the medium
turbulence random flow, using a wavelet noise background.

Whenever one has control over the background in BOS ex-
periments, the use of a wavelet noise background is a simple
measure to increase accuracy.

On the other hand, Lucas-Kanade and Horn-Schunck im-
prove results even without the use of a wavelet noise back-
ground, which suggests that these algorithms could also be
attractive for particle imaging velocimetry with high density
particle fields.
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