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Abstract

Most real world objects consist of non-uniform materi-
als; as a result, during deformation the bending and shear-
ing are distributed non-uniformly and depend on the local
stiffness of the material. In the virtual environment there are
three prevalent approaches to model deformation: purely
geometric, physically driven, and skeleton based.

This paper proposes a new approach to model deforma-
tion that incorporates non-uniform materials into the geo-
metric deformation framework. Our approach provides a
simple and intuitive method to control the distribution of
the bending and shearing throughout the model according
to the local material stiffness. Thus, we are able to gen-
erate realistic looking, material-aware deformations at in-
teractive rates. Our method works on all types of models,
including models with continuous stiffness gradation and
non-articulated models such as cloth. The material stiff-
ness across the surface can be specified by the user with
an intuitive paint-like interface or it can be learned from a
sequence of sample deformations.

1 Introduction

Mesh deformation is an important task in the modeling
and the animation of digital models for computer graphics.
Since most real world objects are made up of non-uniform
materials, their behavior during deformation varies across
the surface depending on the local material properties. Ide-
ally, a mesh deformation tool should satisfy the following
key requirements: physical plausibility of the results, ease
of control, efficiency, and high degree of automation. Exist-
ing deformation approaches typically satisfy only a sub-set
of these requirements. For example, physics based methods
provide accurate model behavior, but they are often not in-
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Figure 1. Material-aware deformation. The
stiffness of the tentacle is set to be propor-
tional to its girth (left) resulting in a spiral like
shape (right and bottom).

tuitive to control and are usually relatively slow. Skeleton
deformations are simple to control and can be implemented
efficiently, but their range is typically limited to only a sub-
set of models. Purely geometric deformation techniques are
general, efficient and intuitive to control; however they usu-
ally ignore the properties of the underlying materials, and
thus make it difficult to generate physically plausible defor-
mations.

In this paper we introduce material-aware mesh defor-
mation, a novel technique that uses material properties to
guide geometric deformations. We use these properties to
characterize the stiffness of the surface, and hence to pro-
vide continuous fine control of the surface behavior dur-
ing deformation, while maintaining the efficiency, simplic-
ity and control specific to geometric methods. The stiff-
nesses with respect to bending and shearing are represented
as scalar fields over the surface. We use these scalar fields
within the geometric deformation framework to distribute
the deformation according to the local material properties
to yield realistic-looking results (Figure 1). Often materi-



als may exhibit anisotropic stiffness, for instance articulated
models often have joints with only one degree of freedom.
We support such anisotropic behavior by allowing three dif-
ferent scalar fields for the three orthogonal axes of rotation.
We are the first, to our knowledge, to support this feature.

To control the deformation, users can specify the ma-
terial properties using an intuitive paint-like interface. By
simply marking a horse’s head as stiff (Figure 2(c)), we di-
rect the deformation to the neck of the horse and achieve
more realistic results than in Figure 2(b) where the defor-
mation is distributed uniformly. Although some existing
geometric methods are capable of achieving similar results,
typically they require more user effort to guide the defor-
mation.

In many situations, physically or anatomically correct
deformation samples of a given model may be available. In
such cases our method can automatically learn the material
properties from the sample set, thereby allowing users to
create new deformations which are consistent with the sam-
ple set. Each of the deformed sample poses contains im-
plicit knowledge of a subset of the material properties. By
combining the information from all samples, we are able
to reconstruct the scalar fields across the surface. For ad-
ditional control, we also allow users to refine the acquired
fields in specific areas of interest where the desired behavior
differs from that of the sample poses.

Our main contribution is the introduction of a compact
representation for the local stiffness of a surface, and the
integration of this material stiffness into the geometric de-
formation framework. Our method is linear, it is simple to
use and control, and it creates realistic looking deformations
as discussed in the results section.

The rest of this paper is organized as follows: Section 2
reviews previous work on deformation techniques. Sec-
tions 3 and 4 describe our deformation algorithm. Section 5
explains how we extend the method to support anisotropic
behavior. Section 6 describes how material properties may
be learned by example. Section 7 presents some example
results. Finally, Section 8 summarizes our work.

2 Previous work

Researchers have addressed the problems of mesh edit-
ing and deformation for over twenty years, creating an im-
pressive body of literature and generating several distinct
approaches to the problem. One of the first, yet still ac-
tively researched mesh deformation frameworks is that of
space warping deformations [6, 22, 5, 8]. Since space de-
formation techniques transform the underlying space, rather
than the vertices themselves, it is not possible to incorporate
model specific properties such as materials into these tech-
niques.

Another common approach is to use physical simulation

(a) (b) (c)

Figure 2. Turning a horse’s head: (a) original
model; (b) deformation using uniform mate-
rial; (c) material-aware deformation using two
degrees of stiffness.

methods [30, 29, 15, 21]. These methods naturally incor-
porate the material properties and provide physically accu-
rate behavior; however, they are often computationally in-
tensive, and since their control parameters are typically de-
rived from physical equations, they lack intuitive means of
controlling the results.

For articulated models, it is common to use a skele-
ton in order to simplify the task of defining the deforma-
tion [9, 4, 31]. Most skeleton based deformation methods
do not generalize to non-articulated models and often pro-
vide only binary gradation of stiffness, thus limiting the
type of deformations created. In contrast, our method is
not restricted to a particular type of models and supports
continuous control over the stiffness of the mesh providing
finer control of the deformation.

Geometric deformation techniques [1, 26, 19, 23, 32, 14,
34, 20, 33, 17, 7] that operate directly on the meshes have
become increasingly popular in recent years. These meth-
ods are both efficient and intuitive to control. However,
existing geometric techniques do not capture the material
properties of the models . Our method uses a geometric de-
formation approach but introduces material awareness, into
the framework to provide greater physical plausibility. The
geometric deformation methods most related to our work
are those of Yu et al. [32], Zayer et al. [33] and Igarashi
and Moskovitc [14]. Yu et al. [32] perform 3D mesh defor-
mation by means of gradient manipulation. First, the posi-
tions of some anchor vertices are manually modified by the
user. Next, the resulting local triangle transformations are
propagated to the rest of the mesh according to geodesic dis-
tances. Finally, the new vertex positions are computed using
the Poisson equation. Zayer et al. [33] show that propaga-
tion of the transformations according to geodesic distances
is sub-optimal and suggest using harmonic fields as an al-
ternative. Neither method considers material properties in
their formulation. Igarashi and Moskovitc [14] deform 2D



Figure 3. Algorithm flow.

meshes using a formulation based on an earlier morphing
technique [3]. They manipulate the triangles independently
and then compute common vertex positions. They show
early research results for using material stiffness to control
the deformation. A direct extension of their method to 3D
would require a volumetric mesh, thus they acknowledge
that such an extension may be difficult.

It is often tedious and difficult to define the exact phys-
ical properties of an object. One alternative, presented by
two recent techniques [16, 28], is to create realistic-looking
deformations by mimicking existing physically correct ex-
ample deformations. James and Twigg [16] automatically
deduce the skeleton of an articulated model from a sam-
ple set of deformed models. Using the estimated skele-
ton and estimated blending weights they are able to create
new deformations consistent with the sample set. Sumner et
al. [28] use the set of sample models to create feature vec-
tors that span the space of meaningful deformations. Using
our method, we are able to use a set of sample poses as a
source for automatically learning the stiffness of the mesh.
The learned stiffness is used to create new poses consistent
with the samples. In our setting the material properties
are derived explicitly, therefore it is very easy for artists to
modify and refine those if desired.

3 Method overview

We present a two-step method for 3D mesh deformation
that takes into account the intrinsic material properties of
the model. To generate the deformation users select a small
set of triangles, called anchor triangles (Figure 3(a)) and

apply the desired transformations using a click and drag
motion. We support anchor transformations that include
any combination of rotations and uniform scales. We then
calculate transformations for the remaining triangles of the
mesh based on the anchor transformations. The calcula-
tion takes into account the material properties of the model
which are described as follows.

Material properties — To describe the impact of the
material on the deformation we define the stiffness of the
material with respect to bending and shearing. These stiff-
nesses are described by separate scalar fields defined across
the mesh. Since materials often bend differently with re-
spect to different directions, we also allow users to define
anisotropic bending stiffness fields. The user can define
these scalar fields using a paintbrush-like tool (Figure 3(b)).

We also introduce a data-driven approach for defining
the stiffnesses by automatically learning them from a set
of example deformations (Figure 3(c)). By examining the
shearing of each individual triangle and the difference in
the transformations undergone by adjacent triangles within
the entire sample set, we are able to identify degrees of stiff-
ness and flexibility across the mesh, and thus reconstruct the
stiffness fields (Figure 3(d)).

Next, we explain how these stiffness scalar fields, to-
gether with the user defined transformations at anchor tri-
angles, are used in our algorithm.

Transformation extrapolation — The first step of
the algorithm is to propagate automatically the transforma-
tions from the anchors to the remaining triangles in the
mesh. Finding optimal transformations for each triangle
is non-trivial since these must comply with a number of
constraints. First, the transformations must be continuous
across the surface to yield a smooth looking deformation.
Next, the transformations must also be as-rigid-as-possible
in order to maintain the details of the original surface [32].
Finally, in our setting we add one new constraint — the
transformations must be consistent with the material prop-
erties. This final requirement is the one that ensures our
deformations behave as desired.

We suggest that each triangle transformation be a
weighted sum, or blend, of anchor transformations. Thus,
our challenge is to find appropriate weights for blending that
comply with the previous requirements. We formulate this
as a linear optimization problem where the variables are the
blending weights. The stiffness fields are introduced into
the formulation to ensure that the deformation is distributed
correctly throughout the model. Since the solution depends
only on the selection of anchors, we need to solve the result-
ing system only once. To perform the actual blending we
use the transformation algebra defined by Alexa [2]. For a
discussions on the optimality of this method, see Appendix
A

Vertex repositioning — It is easy to see that apply-



ing the resulting transformations to each of the triangles in
the mesh independently will break the mesh connectivity,
since adjacent triangles are not necessarily assigned iden-
tical transformations (Figure 3(e)). Therefore we apply a
second step in which we calculate optimal vertex positions
such that each triangle is transformed as closely as possi-
ble, in the least squares sense, to the previously calculated
transformations (Figure 3(f)). We incorporate the shearing
stiffness field into the formulation to ensure that most of the
resulting shearing is concentrated in the flexible areas of the
mesh.

Figure 3 summarizes our algorithm, and the following
three sections describe it in detail: Section 4 explains how
transformations are propagated and then optimal vertex po-
sitions are found, Section 5 explains how the method is ex-
tended to support anisotropic stiffnesses, and Section 6 ex-
plains how the material stiffnesses are estimated from sam-
ple deformations.

4 Method details

We begin this section by describing exactly how our ma-
terial properties are defined (Section 4.1). Next, we de-
fine the gradient transformations and explain how these are
propagated from anchor triangles (Section 4.2). Finally,
we explain how optimal vertex positions are found (Sec-
tion 4.3).

4.1 Material properties

We formulate our material properties in terms of ma-
terial resistance to bending and shearing. This resistance
is described by bending and shearing stiffness scalar fields
defined across the mesh. This approach allows a high de-
gree of control with smooth variations of stiffness across
the mesh.

• The bending stiffness is associated with the mesh
edges, reflecting the bending flexibility of each edge.
Thus the bending scalar field is defined by a set of val-
ues ϕi j defined on the mesh edges (i, j). This field
is used to propagate the anchor transformations across
the mesh (Equation 1).

• The shearing stiffness is associated with the mesh faces
reflecting the resistance to shearing of each individual
face. The shearing stiffnesses ψi defined for the mesh
faces are used to find optimal vertex positions (Equa-
tion 3).

The bending stiffness often depends on the rotation axis.
For example, articulated models often have joints with a
limited number of axes of rotation. Therefore, we support

Figure 4. Twisting, bending, and stretching a
bar using two anchor triangles: (a), (c) uni-
form material; (b), (d), (e) non-uniform mate-
rial.

anisotropic stiffness by specifying separate bending stiff-
ness fields for three orthogonal axes of rotation.

We support both user-driven and data-driven methods for
defining the material properties. In the user-driven setting
we provide a simple paintbrush like tool to define the dif-
ferent degrees of stiffness. The users can paint two separate
fields for bending and shearing. To simplify the interface,
since often the two are linked, we allow the user to specify
only one field and derive the other one from it. For instance,
if the user specifies the shearing stiffness ψi, we obtain the
bending stiffness by simply setting ϕi j = (ψi + ψ j)/2. We
use this simplified interface in most of our examples. Fig-
ure 4 demonstrates painting areas with different degrees of
stiffness on a 3D bar and the resulting deformations.

For the data-driven approach, we estimate the material
properties from a sample set of deformations automati-
cally. Additionally, our formulation naturally supports user-
intervention after the data-driven material estimation step.
This property is important in a production setting where an-
imators require simple user controls to fine-tune automati-
cally generated results.

4.2 Transformation extrapolation

After the material properties and anchor transformations
are defined we are ready to create the deformation. The en-
tire mesh deformation can be expressed as a set of affine
transformations (Ax+b) of local coordinate frames defined
per triangle. The deformation gradient of each transforma-
tion is the matrix A, which encapsulates the triangle trans-
formation up to the translational component. Since the three
vertices of a triangle do not determine a local frame, we
augment the three vertex positions with a fourth point found
by offsetting one of the vertices by the triangle normal [27].
Labeling the vertices of a given triangle as v1, v2 and v3 and
the additional vertex as v4, the three vectors that define the
local coordinate frame are (v4− v1,v4− v2,v4− v3).

After the user specifies the transformations for each of
the anchor triangles the first step of our algorithm propa-
gates the deformation gradients defined at the anchor trian-



gles to the remaining triangles of the mesh. We achieve this
by using a weighted blending of anchor transformations.
As previously noted, our challenge is to find appropriate
weights for this blending, subject to the material properties.
In our setting, this implies that triangles in areas which are
more resistant to bending should be assigned more similar
transformations. In the isotropic setting, we formulate this
as a linear optimization problem:

min
ωi∈Rk

∑
(i, j)∈E

ϕi j ‖ ωi−ω j ‖2
2, (1)

where the unknowns are ωi ∈ Rk the blending weights for
face i. Each ωi is a vector (ω1

i ,ω2
i , . . . ,ωk

i ) where ωa
i de-

notes the relative influence of anchor transformation a. k is
the number of anchor triangles, E is the set of edges (ex-
cluding edges shared by two anchor triangles and boundary
edges) and ϕi j are the bending stiffness values associated
with each edge. The anisotropic setting is slightly different,
and is explained in Section 5.

When ϕi j is large, ωi and ω j will have similar values;
thus, the resulting transformations of the two adjacent tri-
angles i and j will also be similar, and the mesh may be
considered as locally stiff. Similarly, the converse argument
can be made for small ϕi j.

Note that in this formulation, the weights ωi depend only
on the connectivity of the mesh and on the selection of an-
chor triangles. Therefore, the weights need to be computed
only once per selection of anchors. Also, note that, since
our anchor coefficients have exactly one non-zero entry, our
weights are barycentric coordinates with respect to the an-
chors. As a result our method does not suffer from propaga-
tion problems noted by Zayer [33] encountered when using
weights based on geodesic distances [32]. This formula-
tion resembles that of [33], however in our formulation we
added non-uniform stiffness support.

In order to perform the actual blending we use the
commutative transformation matrix algebra defined by
Alexa [2]. By defining two new operations denoted by ⊕
and �, the blended transformations Ti with weights ω i are
computed as:

Ti =
k⊕

a=1

ω
a
i �Ta. (2)

Details on these operators are found in Appendix A. Fig-
ure 3(e) illustrates the propagated transformations between
two anchors on the camel’s leg.

4.3 Vertex repositioning

Since the transformations obtained for adjacent triangles
are typically not identical, applying each of the transforma-
tions as-is would result in ambiguous positions for the two

shared vertices. Therefore, we need a second stage to com-
pute the optimal position for each vertex.

Optimal vertex positions are found such that the gradient
transformation of each triangle remains as close as possi-
ble, in the least squares sense, to the previously calculated
transformation [27]. Since the process results in triangle
shearing, we introduce the shearing stiffness into the for-
mulation, to direct the distortion according to the flexibility
of the mesh.

Sumner and Popovic [27] show that the transformation
gradients can be expressed in terms of the vertex positions
before and after the deformation:

A = ṼV−1,

where
Ṽ = (ṽ4− ṽ1, ṽ4− ṽ2, ṽ4− ṽ3) ,

V = (v4− v1,v4− v2,v4− v3) ,

and ṽi is the position of vertex vi after applying the deforma-
tion transformation. Next, the system is reformulated such
that the unknowns are the new vertex positions ṽ.

The optimal solution is obtained when the resulting tri-
angle transformations are as close as possible to the previ-
ously computed Ti’s. Since the Ti’s are blends of the origi-
nal anchor transformations, they contain no shearing. Thus,
the closer the final and the original transformations are, the
smaller the triangle shearing. To account for the shearing
stiffness we incorporated ψi into the formulation:

min
ṽ

n−k

∑
i

ψi‖ṼiV−1
i −Ti‖2

F , (3)

where Vi and Ṽi are the local frames before and after ap-
plying the deformation and Ti are the previously calculated
transformations. We reformulate this as a linear optimiza-
tion problem:

min
ṽ
‖Ψ(Aṽ− t)‖2

2, (4)

where A is a sparse matrix constructed using the pre-
deformation local frames V , t is a vector composed of all
the elements in Ti and Ψ is a diagonal matrix composed of
ψi.

Large ψi will result in transformations which are very
close to the originally computed Ti, and thus exhibit less
shearing. Small ψi will allow for more shearing to take
place. Figure 4(e) shows an example of stretching a bar
with non-uniform shearing stiffness. As expected, most of
the shearing occurs in the flexible region.

The solution of the system in Equation 4 provides a new
position for each of the vertices up to a global translation of
the model. To anchor the model in place, we fix the position
of a single vertex by removing the corresponding variable
and pre-multiplying its known position with the appropri-
ate elements of A into the vector T [28]. In fact, multiple



Figure 5. Bending and twisting a bar with
different material properties and a single
transformation applied at the two end faces.
(a) Uniform material. (b) Center region is
isotropically more stiff. (c) Anisotropic stiff-
ness - allowing the center region to bend
around the z axis, and the side regions to
twist around the x axis.

vertices may be set at fixed positions to apply boundary con-
straints such as regions of influence.

5 Anisotropic materials

The formulation presented above uses a single scalar
bending stiffness field. This formulation assumes that bend-
ing flexibility is a non-directional property, which need not
be true in practice. For example, a knee joint is only flexible
in one direction and rigid in the other two. In this section
we extend our method to allow different bending stiffnesses
for different axes of rotation.

Instead of using one bending stiffness value per edge,
we define three different values corresponding to rotations
around three orthogonal axes x, y and z. To apply those
stiffnesses when blending anchor transformations, we first
need to decompose the anchor transformations into a scal-
ing transformation and rotation transformations around the
three axes x, y and z.

Using the polar decomposition Ta = SaQa such that Qa
is a rotation transformation [25], we identify the rotational
component of each anchor transformation. Using the trans-
formation matrix algebra described by Alexa [2], three ma-
trices Rθ

x , Rθ
y , Rθ

z denoting rotations by an angle θ ∈ [0,π]
around three orthogonal axes x, y, and z form a basis of the
sub-space of rotations. Thus, for any given rotation matrix
Q we can find a commutative decomposition such that

Q = cx�Rθ
x ⊕ cy�Rθ

y ⊕ cz�Rθ
z .

The coefficient cx is found by simply computing the in-
ner product

cx =< log(Q), log(Rθ
x ) >,

where the inner product of transformation matrices is the
sum of products of the corresponding matrix entries
< A,B >= ∑ai jbi j. cy and cz are found in a similar manner.

By defining Xa = ca
x�Rθ

x , Ya = ca
y�Rθ

y and Za = ca
z �Rθ

z
we get a unique decomposition of each anchor transforma-
tion Ta into a scaling matrix Sa and three rotation matrices
Xa, Ya and Za around the three orthogonal axes of rotation
x, y and z.

To compute the new blending weights and transforma-
tions we solve Equation 1 separately for each axis of ro-
tation using the appropriate bending stiffness to get three
weight vectors ωx

i , ω
y
i and ω

z
i per triangle. In the isotropic

case, we used ωi as weights for blending the anchor trans-
formations. In the anisotropic setting we find the local tri-
angle transformations Ti by combining the per-axis trans-
formations. We rewrite Equation 2 as

Ti =

(
k⊕

a=1

ω̃
a
i �Sa

)(
k⊕

a=1

ω
ax
i �Xa⊕ω

ay
i �Ya⊕ω

az
i �Za

)

where Ti are the propagated transformations,ωax
i ,ωay

i
and ω

az
i are the blending weights, ω̃a

i is their average, and
Sa,Xa,Ya and Za are decompositions of the anchor triangle
transformations Ta such that Ta = Sa (Xa⊕Ya⊕Za).

Since we only define anisotropic stiffnesses for bending
the rest of the algorithm continues as previously described.
Figure 5 shows the impact of using anisotropic stiffness
fields when bending and twisting a 3D bar. First, we used
a single material with uniform stiffness and applied two ro-
tations around the x and z axes at one end of the bar while
anchoring the other end. This resulted in a uniform defor-
mation (Figure 5(a)). Next, we changed the model’s ma-
terial, specifying the center region as isotropically stiff and
the sides as isotropically flexible. We then applied the same
transformation. The result is shown in Figure 5(b) where
the center region remains rigid. Finally, Figure 5(c) illus-
trates an anisotropic deformation. The center region mate-
rial was defined to be stiff when rotating around the x axis,
and flexible when rotating around the z axis. The side re-
gion materials were defined to deform in the exact opposite
manner. The resulting deformation exhibits twisting (rota-
tion around the x axis) only in the side regions, and bending
(rotation around the z axis) only in the center region.

6 Material learning

In many situations, physically or anatomically correct
deformation samples of a given model may already be avail-
able. In such cases we would like to derive the mate-
rial properties from the sample poses to create new defor-
mations which are consistent with the sample set and are
therefore also correct. The following section describes our



Figure 6. Estimation of material stiffness from sample poses. (a) Sample poses. (b) Estimated
bending and shearing stiffnesses visualized on the edges and faces respectively. (c), (d) New poses
created using the estimated stiffnesses: (c) chasing the tail (4 anchors); (d) handstand (8 anchors).

method of automatically acquiring the material properties
from sample deformations.

Given a reference mesh P0 with m triangles and a set of
deformed meshes with the same connectivity Ps s = 1, . . . , l,
we first compute the deformation gradient for each of the
triangles i = 1, . . . ,m in Ps as follows:

Tsi = ṼsiV−1
0i s = 1, . . . , l, i = 1, . . . ,m,

where V and Ṽ are the local frames in the reference and
deformed meshes.

Next, we decompose each deformation gradient matrix
using the polar decomposition Tsi = SsiQsi such that Qsi is a
rotation transformation, and Ssi is a combination of scaling
and shearing [25, 16, 28]. We use this decomposition to
estimate the bending and shearing stiffness across the mesh.

The amount of bending the model undergoes locally is
best reflected by the change in the dihedral angle around a
mesh edge, and can be estimated by analyzing the rotations
Qi and Q j of two triangles sharing the edge. In each ex-
ample the difference between the two matrices Qi and Q j
of adjacent triangles is roughly equivalent to the amount of
bending around the shared edge. Since each sample only
exhibits bending around a subset of the edges we need to
combine values from multiple samples. The maximum dif-
ference observed for each edge is equivalent to the maxi-
mum bending around the edge among all samples and there-
fore is used to define the bending stiffness. The values are
then scaled to be in [ε,1].

ϕ̃i j = max
s=1...l

||Qsi−Qs j||2F (i, j) ∈ E,

ϕi j = 1−
ϕ̃i j

max
í, j́∈E

ϕ̃í j́ + έ
(i, j) ∈ E.

For each face i, we estimate a shearing stiffness ψi based
on the maximum distortion of the face found in the set of
example deformations. The values are then scaled to be in
[ε,1].

ψ̃i = max
s=1...l

‖Ssi− I‖2
F i = 1 . . .m,

ψi = 1− ψ̃i

max
í=1...m

ψ̃í + έ
i = 1, . . . ,m.

(a) (b)

Figure 7. Refining learned materials. (a)
Bending the front leg of a camel using the es-
timated stiffness and two anchors. (b) Bend-
ing the leg after modifying the stiffness by
marking both the knee and ankle joints as
stiff.



Figure 8. Deformation of articulated models using our technique: (a), (c) original models and painted
stiffnesses; (b), (d) deformation results.

For both scalar fields we found that clamping the bottom
1% of the values before scaling greatly improved the results.

Figure 6 shows an example of estimated bending and
shearing stiffnesses learned from a sample sequence of de-
formations. As shown in the figure we use these as a basis
for creating new poses which were not in the sample set.

Our method is much simpler than those of James and
Twigg [16] and Sumner et al. [28], who also use polar de-
composition as the first step in their methods. However,
some problems can occur when stiffness coefficients of dif-
ferent parts of the body are learned independently from dif-
ferent poses. In these cases there is no information on the
relative stiffness between these parts and hence the relative
scale of the stiffness coefficients may not be correct. Nev-
ertheless, our experimental results appear to correctly cap-
ture the model’s material properties, and to provide realistic
looking deformations. Furthermore, our method exhibits
two nice properties: our learning algorithm is linear in the
number of sample poses, and the learned stiffnesses can be
further refined by the user for finer control.

7 Implementation and results

We now provide some implementational details and dis-
cuss some deformations created by our technique. We used
Graphite [12] as a framework for implementing our defor-
mation method. Material properties are defined using a sim-
ple color map with a paintbrush interface. To deform mod-
els users mark anchor triangles and then transform them by
dragging the mouse. Note that in all our examples except
Figure 4(e) we defined only the rotation and scaling for the
anchor triangles without fixing their final positions. We let
the algorithm find these optimal positions automatically.

We used the UMFPACK4.4 [10] solver to compute the
solutions of equations 1 and 4. In each of the equations the

required matrix inversion depends only on the selection of
anchor triangles, the mesh connectivity, and the undeformed
mesh geometry. We can therefore precompute the inverse
of these matrices, allowing the system to work at interactive
rates.

We support the concept of deforming only regions of in-
terest, confining all the calculations to triangles within that
region. When using such a region of interest, the vertices
on its boundary are constrained to remain in their initial po-
sition. Our results demonstrate that the method may be ap-
plied to a large variety of model types.

Figure 9. Scaling and rotating a camel’s
head. Top: uniform material causes the en-
tire camel to scale and rotate. Bottom: the
stiff head scales uniformly, while the flexible
neck absorbs the distortion.



Figure 10. Deformation comparison for octo-
pus tentacle in figure 1 between uniform stiff-
ness (top) and smooth variation of stiffness
(bottom). In both cases we defined the same
amount of rotation applied at the tip of the
tentacle while the final position of the tip is
calculated automatically.

Figures 2, 3(f), 8 and 9 demonstrate how a simple col-
oring scheme for defining the material properties allows us
easily to deform articulated models. In the hand example
from Figure 8, we simply painted the joints with a flexible
material. We used three anchors per finger, one at the tip
and two at the base, and then deformed each finger inde-
pendently using a region of influence to speed up the com-
putation. The eagle deformation in Figure 8 uses simple
coloring of the head, neck and wings to illustrate that the
head is the most rigid part while the wings are the most
flexible.

Figure 9 demonstrates a combination of scaling and rota-
tion applied to the head of the camel. The deformation was
created using four anchors on the bottom of the feet, and
one anchor on the tip of the nose. The feet anchors were
kept in place and the anchor triangle on the nose was rotated
and scaled to three times the original size. When using uni-
form materials (Figure 9(top)) the scaling is propagated uni-
formly through the model. Using different materials we are
able to better control the propagation. In Figure 9(bottom),
we defined the neck to be more flexible than the head and
the body. With the new materials the head scales to three
times the original size, the body remains undeformed, and
the distortion is mostly concentrated at the neck. Using
standard methods it is not possible to archive such defor-
mation in a single operation. Even defining a region of
influence to include only the head and neck would not be
sufficient, since the head would not deform uniformly.

For many models the stiffness changes smoothly across
the mesh. Tree branches, plant stems, and octopus tenta-
cles are examples of models where the flexibility is propor-
tional to the girth of the model. Figure 10 demonstrates

how our material-aware deformation framework allows us
to define correct bending behavior for an octopus’s tenta-
cle. When using a uniform material the tentacle takes the
unnatural shape of an arc; however, using non-uniform ma-
terials results in the more natural shape of a spiral with the
tip bending more than the base. In both deformations we
applied the same rotation transformation to an anchor trian-
gle at the tip of the tentacle, while the final position of the
tip was computed automatically.

Figure 11 demonstrates the application of our algorithm
to a non-articulated model. In order to deform the piece of
cloth we used a texture map to define the material proper-
ties. The bold letters define very stiff areas, while the rest
of the model varies in degrees of flexibility.

We have also tested our method for estimating the stiff-
ness from sample poses. Figures 3(d), 6 and 7 demon-
strate our results. For sample poses we used models ob-
tained from [27]. For the camel (Figures 3(d) and 7) the
stiffness fields were learned from ten sample poses in 9.5
seconds. For the lion (Figure 6) we used nine sample poses
and the learning process took 2.1 seconds. As expected, in
both cases the estimated stiffness scalar fields are anatomi-
cally correct, showing more flexible regions at the joints and
stiffer regions along the bones. Figures 6(c) and (d) show
examples of new anatomically correct poses created using
the estimated stiffness fields. Figure 7 shows an example of
manually modifying the stiffness fields in order to create a
desired deformation which does not comply with the sam-
ple set. The learned fields allow bending of the leg at the
knee and ankle, resulting in an anatomically feasible pose
(Figure 7 (a)). To handicap the camel, we manually define
these areas as stiff. Applying the same transformation at the
tip of the foot causes the leg to raise without bending at the
knee or ankle (Figure 7 (b)).

Central to our technique is the ability to capture the sur-
face behavior in a pre-processing stage and encode it in the

Figure 11. Material-aware deformation of
cloth. The printed letters are made up of
stiffer material; the rest of the model consists
of flexible material modulated using Perlin
noise to create a natural wrinkled look.



formulation. We successfully capture the material proper-
ties while preserving the simplicity and efficiency common
to geometric deformation techniques. We demonstrated that
our technique can be applied to a wide range of models pro-
ducing complex results with only few anchors.

Table 1 summarizes the deformation statistics of the var-
ious models used in our results, measured on a 3GHz Intel
Pentium IV with 2Gb of RAM.

8 Summary and future work

We presented a new mesh deformation technique that
incorporates material properties into the geometric defor-
mation framework. Using these properties, we provide a
simple mechanism that allows material-aware behavior of
the surface under deformation. Our method combines the
efficiency, generality and control of geometric methods to-
gether with material awareness found in physical and skele-
ton based methods.

Material properties can be user-driven, where the stiff-
nesses are specified with a simple brush-like interface, or
data-driven where stiffnesses are deduced from a set of
given poses. It also can be a combination of the two where
the user can override the learned material stiffnesses.

The formulation is simple and efficient. It requires solv-
ing only two linear systems, and thus works at interactive
rates. The resulting deformations are as-rigid-as-possible,
subject to the material stiffness and the user defined trans-
formations, and therefore maintain the shape details as
demonstrated in our results.

For future research we would like to improve the
anisotropic model. The current anisotropic model uses a
global coordinate frame to decompose local rotations in-
stead of local coordinate frames. Decomposition around lo-
cal coordinate frames would be preferred because the stiff-
ness maps would be invariant to the position and orientation
of an object in space. However, the challenge in doing so is
the consistent construction of blending weights across dif-
ferent coordinate frames.
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A Transformation matrix algebra

Geometric transformations are typically represented as
square matrices. Matrix multiplication is used to compose
and apply the transformations. This representation has two
key shortcomings:

• Rotation transformations cannot be interpolated by in-
terpolating the matrix elements.



• Matrix multiplication is not commutative.

Both of these properties are crucial for us in order to propa-
gate and later decompose anchor triangles.

To deal with these issues a number of interpolation
methods for rotations have been developed over the years.
When dealing with rotations there are three desired prop-
erties: torque-minimization, constant speed, and commuta-
tivity. Currently no interpolation method exhibiting all three
properties exists. SLERP [24] exhibits constant speed and
minimal-torque. LERP, popularized by Casey Muratori, is
commutative and minimal-torque. The exponential map in-
terpolation [13] is commutative and constant speed.

Alexa [2] extended the exponential map interpolation
method into a commutative algebra of (almost) general
transformations that supports matrix blending and interpo-
lation. This algebra is commutative and interpolates trans-
formations with constant speed. Furthermore, it is not lim-
ited to rotations only, thus simplifying the task of dealing
with combinations of rotations and scales.

We have chosen to use the later method since it answers
both our requirements. We now give a brief overview of the
blending operators defined in this algebra.

By defining two new operations denoted by ⊕ and by
� (corresponding to matrix addition and scalar multiplica-
tion), the blending of transformations Ta with weights ωa
becomes

⊕
ωa�Ta.

The two operators are based on matrix exp and log oper-
ators defined as follows:

exp(A) =
∞

∑
k=0

Ak

k!
,

A = log(X)⇔ exp(A) = X .

Alexa [2] shows that this sum is well defined and closed
for 3x3 rotation matrices and non-uniform scales under
some minimal conditions. The blending formula is defined
as follows:

k⊕
a=1

ω
a
i �Ta = exp(

k

∑
a=1

ω
a
i log(Ta)).

More details as well as numerical methods to compute
these operations are found in [2].


