Introduction

Approach

Previous Work

Layout Requin Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Grouse: Feature-Based, Steerable Graph Hierarchy Exploration

Daniel Archambault¹ Tamara Munzner¹ David Auber²

¹Department of Computer Science, Imager Laboratory University of British Columbia, Canada

> ²Departement des Informatiques, LaBRI Université de Bordeaux I, France

Subgraph Lavout

1 Introduction

Problem Overview Approach

2 Previous Work

Layout Required Beforehand Steerable Exploration

3 Algorithm

Subgraph Layout Validation

Outline

Layout Has High Computational Cost

Grouse

Problem Overview Approach

Previous Work

- Layout Requin Beforehand Steerable Exploration
- Algorithm
- Subgraph Layout Validation
- Conclusion

Generating full layout has high computational cost

Layout Has High Computational Cost

Grouse

Problem Overview Approach

Previous Work

- Layout Requin Beforehand Steerable Exploration
- Algorithm
- Subgraph Layout Validation
- Conclusion

- · Generating full layout has high computational cost
 - most approaches have quadratic running times

Layout Has High Computational Cost

Grouse

Problem Overview Approach

Previous Work

Layout Requin Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

- Generating full layout has high computational cost
 - most approaches have quadratic running times

< ロ > < 同 > < 回 > < 回 >

Delays exploration

Overwhelming Visual Complexity

Introduction

Problem Overview Approach

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

(a) TopoLayout

• All nodes and edges drawn: occlusion

Problem Overview

Subgraph Lavout

Overwhelming Visual Complexity

- All nodes and edges drawn: occlusion
- Group subgraphs into a metanode to simplify drawing

Problem Overview

Subgraph Lavout

Multilevel Hierarchy for Abstraction

- A multilevel hierarchy: recursive grouping of metanodes
 - · leaves (squares) are nodes of the input graph
 - metanodes (circles) are internal nodes of the hierarchy

Problem Overview

Subgraph Lavout

Multilevel Hierarchy for Abstraction: Cut

- A cut defines which nodes are visible or hidden
 - nodes on and above the cut are visible in the graph view

Introduction

Problem Overviev

Approach

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Graph Without Layout +

Contribution: Steerable, Feature-Based Exploration

Input

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへ⊙

Introduction

Problem Overviev

Approach

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Contribution: Steerable, Feature-Based Exploration

- Input
- Advantages
 - exploration can begin immediately
 - uses a feature-based hierarchy

Introduction

Problem Overviev

Approach

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Feature-Based Approaches

Layout highlights features of interest in graph

- Grouse uses topology for feature-based hierarchy
 - based on TopoLayout (Archambault et al., 2007)

Video

Introduction

Problem Overview

Approach

Previous Work

Layout Required Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

ntroduction Problem Overview

Previous Work

Layout Required Beforehand

Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Previous Work: Hierarchy Exploration

Simplify graph by abstracting subgraphs away

(a) Gansner et al. 2004

(b) van Ham and van Wijk 2004

< ロ > < 同 > < 回 > < 回 >

- Advantages and disadvantages
 - reduces graph complexity
 - interaction helps understanding
 - · require precomputed layout of entire graph
 - hierarchy not feature-based

Previous Work, Steerable Exploration: DA-TU

Previous Work

Layout Require Beforehand

Steerable Exploration

Algorithm

Subgraph Layo Validation

Conclusion

(a) DA-TU, Huang and Eades, 2000

- Explore hierarchy by expanding/contracting metanodes
- Modify hierarchy by selection
- Force directed layout of entire visible graph
 - does not scale to large visible graphs
 - · is not feature-based

Introduction

Problem Overview Approach

Previous Work

Layout Require Beforehand

Steerable Exploration

Algorithm

Subgraph Layo Validation

Conclusion

Previous Work, Steerable Exploration: ASK-GraphView

(a) Abello and van Ham, 2006

- Some automated feature-based hierarchy creation
 - · modify hierarchy to limit size of subgraph in metanode
- No feature-based layout
- · Subgraphs scaled to fit inside metanode

Algorithm: Grouse Approach

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Graph Without Layout +

Input

Output

- leaf node is input size
- metanode size estimate is subgraph size
- layout on demand and update metanode sizes

Algorithm: Grouse Interface Overview

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

Subgraph Layo Validation

Conclusion

- closing a metanode
 - close metanode ↔ save layout and replace by node
- opening a metanode
- combination of open metanode events
 - open all metanodes along a path
 - open all paths below a metanode

Algorithm

Subgraph Lavout

Definitions: Open Metanode

• Open metanode

- circles containing their subgraph in graph view
- white in cut diagram

Introduction

Problem Overview Approach

Previous Work

Layout Requir Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Definitions: Cut Metanode

• Cut metanode

- hexagon in the graph view
- · grey in cut diagram and graph view sketch

Algorithm

Subgraph Lavout

Definitions: Hidden Metanode

- Graph View (b) Sketch
- (c) Graph View

Hidden metanode

- not visible in graph view
- black in cut diagram
- accessible from list view of hierarchy

э

Introduction

Approach

Previous Work

Layout Requir Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Open Metanode Event

Animate transition from cut into open metanode

Problem Overview

Approach

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

- Subgraph Layout Validation
- Conclusion

Cascade Relayout

- Relayout along the path in the hierarchy to the root
 - only nodes on path require relayout
 - other nodes may move, but unchanged internally
- Complexity depends on
 - · layout algorithm for each node on the path
 - number of nodes on path through hierarchy
 - worst case: O(d) relayouts
 - d maximum hierarchy depth
 - near-balanced hierarchies O(log N) @> < ই> ই তৎব

Introduction

Problem Overview Approach

Previous Work

Layout Requi Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

• (a) Node B is clicked on to be opened

Introduction

Problem Overview Approach

Previous Work

Layout Requir Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

- (a) Node B is clicked on to be opened
- (b) Subgraph below B is laid out for first time (D and E) and size of B updated

Introduction

Problem Overview Approach

Previous Work

Layout Requir Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

- (a) Node B is clicked on to be opened
- (b) Subgraph below B is laid out for first time (D and E) and size of B updated
- (c) Subgraph below A is laid out (parent of B). C is not laid out.

Introduction

Problem Overview Approach

Previous Work

Layout Requir Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

- (a) Node B is clicked on to be opened
- (b) Subgraph below B is laid out for first time (D and E) and size of B updated
- (c) Subgraph below A is laid out (parent of B). C is not laid out.
- (d) Final drawing

Introduction

Approach

Previous Work

Layout Require Beforehand Steerable Exploration

Algorithm

Subgraph Layout Validation

Conclusion

Layout Algorithms

- Appropriate algorithms used for each topological feature
 - topology unknown: GEM force-directed
- Algorithms applied to minimize node movement when nothing changes
- · Save edge and node traversal order
 - for most algorithms this is sufficient
- · GEM uses old placement as a starting point
 - future work use dynamic graph drawing approach (Frishman and Tal 2007)

Introduction

Problem Overview Approach

Previous Work

- Layout Requir Beforehand Steerable Exploration
- Algorithm
- Subgraph Layout Validation
- Conclusion

Results: Scale vs. Relayout

- · Can see more levels of the hierarchy at once
- Larger features given more appropriate space

Results: Force-Directed vs. Feature-Based

- Subgraph Lavout Validation

(b) Feature-Based

< ロ > < 同 > < 回 > < 回 >

- Different layout algorithms highlight features of interest
- Simpler representation for cliques
 - glyph spoked wheel attached at triangle centre
 - represents $O(N^2)$ edges

Introduction

Problem Overview Approach

Previous Work

Layout Requir Beforehand Steerable

Subgraph Layout Validation

Conclusion

Conclusion and Future Work

- Future work
 - attribute data driven features
 - · hierarchy modification
- Contributions
 - first steerable, feature-based exploration of graph and associated hierarchy

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- relayout technique
 - · more hierarchy levels visible at once
 - features closer to their true size

э