
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Composite Rectilinear Deformation

for Stretch and Squish Navigation

James Slack and Tamara Munzner, Member, IEEE

Abstract—We present the first scalable algorithm that supports the composition of successive rectilinear deformations. Earlier
systems that provided stretch and squish navigation could only handle small datasets. More recent work featuring rubber sheet
navigation for large datasets has focused on rendering and on application-specific issues. However, no algorithm has yet been
presented for carrying out such navigation methods; our paper addresses this problem. For maximum flexibility with large datasets,
a stretch and squish navigation algorithm should allow for millions of potentially deformable regions. However, typical usage only
changes the extents of a small subset k of these n regions at a time. The challenge is to avoid computations that are linear in n,
because a single deformation can affect the absolute screen-space location of every deformable region. We provide an O(k logn)
algorithm that supports any application that can lay out a dataset on a generic grid, and show an implementation that allows navigation
of trees and gene sequences with millions of items in sub-millisecond time.

Index Terms—Focus+Context, information visualization, real time rendering, navigation.

F

1 INTRODUCTION

Navigating through a visual representation of information by stretch-
ing or squishing regions of interest is an intuitive navigation metaphor
that provides the experience of manipulating a flexible sheet, rather
than changing the viewpoint of a rigid layout of items in a dataset.
Within a stretchable region, such a metaphor preserves the relative
spatial positions of items even though their absolute spatial positions
change. One stretch and squish technique is called rubber sheet navi-
gation [10], where the display acts as a metaphoric sheet with its bor-
ders nailed down, such that stretching one region requires shrinking in
other regions of the sheet. Figures 1, 2, and 3 show examples of this
navigation technique in action.

An important property of rubber sheet navigation techniques is that
each successive deformation is a composition operation applied to the
previous transformation state, which means that previous navigation
actions continue to affect the current view. This composition provides
a lightweight visual history, as shown in Figure 1. In this example, the
effect of moving a horizontal boundary in Figure 1b is still visible after
squishing a collection of rows in Figure 1c. Likewise, the horizontal
column squishing shown in Figure 1d modifies, but does not erase, the
results of the previous two vertical deformations.

Although the visual metaphor provided to the user is intuitive, the
underlying infrastructure required to support this navigation is com-
plex. The standard graphics pipeline supports a mapping from world
to screen coordinates with a single projective transformation that en-
codes both the viewing and projection parameters of a camera. Stretch
and squish navigation cannot be implemented with a single monolithic
transformation that affects the entire scene. Instead, we discretize a
scene into small, individually deformable regions.

In the standard graphics pipeline with unconstrained camera mo-
tion, many objects can be outside the view frustum. These objects are
culled, so that only the visible objects in the scene are rendered; the
number of objects drawn is normally far fewer than the total number
of objects in the scene. Although rubber sheet navigation can be con-
sidered as a camera constraint guaranteeing that all objects are within
the viewport, for sufficiently large datasets the number of visible ob-

• James Slack is with the Department of Computer Science at the University

of British Columbia, E-mail: jslack@cs.ubc.ca.

• Tamara Munzner is with the Department of Computer Science at the

University of British Columbia, E-mail: tmm@cs.ubc.ca.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6

November 2006.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org.

Fig. 1. Rubber sheet navigation actions performed on a rectilinear grid
stretch regions of interest while shrinking the context. a) A uniform grid,
in which dataset objects can be laid out, shows no screen-space priority
to objects in any particular region. b) By stretching one region of objects
vertically to focus on a subset of interest, regions not currently in focus
are shrunk in the periphery as to not push any regions out of view. c)

Previous navigations are not discarded when users change the focus
with new deformations. The navigation history is composed of several
deformations that result in a lightweight visual history. d) Horizontal
navigations are independent of the vertical navigations.

jects is still far less than the total number in the scene. Although all
objects are within the view frustum, most are of sub-pixel size. The
PRISAD infrastructure [12] supports a sophisticated culling approach
for scalable rendering that aggregates sub-pixel features to keep land-
marks visible. PRISAD uses a hierarchical data structure that stores
relative positions for region boundaries to quickly compute an abso-
lute location for them. It calculates these absolute boundary locations
only for the visible regions when rendering. The number of objects
drawn is bounded by the display size, and is much smaller than the
total number of objects in the scene.

Consequently, updating the navigation state should not require up-
dating the position of every object in the scene, even if the deformation
would change the absolute position of all objects, because only a sub-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 2. User selected deformation regions, composed from several navigations, preserve the visual history of regions of interest. a) We select
rectangular collective regions by dragging a cursor, which defines a current area of interest. b) We drag a selected region to reveal interesting
dataset details, which squishes regions of context in the periphery. c-f) Our subsequent navigations do not undo previous navigations, since
navigations persist to provide a visual history of our exploration.

set of them are drawn. The PRISAD paper [12] does not describe
the navigation algorithm underlying the rendering infrastructure. The
navigation solutions described in previous work [9] are linear in n, the
total number of regions, and have only been demonstrated on an n in
the hundreds.

We refer to the smallest deformable regions as atomic regions. Col-
lective regions are collections of atomic regions. For maximum flexi-
bility, the number of atomic regions should be large, on the order of the
number of items being displayed. However, a typical navigation ac-
tion would only directly change some small number of region bound-
aries at once, or else the visual complexity of the transition would
be overwhelming. To be specific, we consider a single deformation
to be the problem of explicitly resizing the boundaries of k collective
regions, out of a much larger number n atomic regions, and these mul-
tiple boundaries can be moved simultaneously. For example, resizing
the bounds of a single collective rectangular area would require k = 2
deformations in each direction.

Here we present the first scalable algorithm for stretch and squish
navigation through the composition of successive rectilinear deforma-
tions. The input to our algorithm is new absolute positions for the
boundaries of k collective regions to resize. The output of our algo-
rithm is new positions for a limited number q of the n region bound-
aries, where q is bounded by k logn. We have implemented our al-
gorithm in the PRISAD infrastructure [12], which shows that it pro-
vides real-time control of scenes containing millions of potentially de-
formable regions.

We discuss usage scenarios in Section 2, and related work in Sec-
tion 3. We describe the hierarchical data structures used in our ap-
proach in Section 4, and present the features of our stretch and squish
navigation in Section 5. Details of our algorithm are in Section 6, with
results in Section 7. We conclude in Section 8.

2 USAGE SCENARIOS

Typical usage patterns of stretch and squish navigation increases the
amount of room devoted to some items of interest. When we increase
the room for these items, we need to decrease the available space, and
perhaps the level of detail, for other items. Our system supports se-
lection directly in screen space, and indirectly through filtering dataset

Fig. 3. Left: We can define several discontinuous regions of interest
from search results, multiple region selection, or other grouping criteria.
Right: We can stretch these multiple regions concurrently, to simultane-
ously inspect topologically distant features.

items of interest based on their attributes, such as search results or
category membership. Figures 2a, 2c, and 2e show direct, user se-
lected successive screen-space collective regions of interest formed
through user actions of dragging out a rectangle with the cursor. Fig-
ures 2b, 2d, and 2f show how a user has directly resized their chosen
regions of interest by dragging the selected collective region in upward
or downward directions. In Figure 3 left, we show several collective
regions selected, based on items that match a filtering criteria. Then, in
Figure 3 right, we stretch all of these non-contiguous regions concur-
rently. Note that these regions are initially not the same size vertically,
and our algorithm for concurrent region resizing can preserve the rel-
ative sizes of these regions. Furthermore, the sizes of regions between
stretching regions shrink with identical rates to preserve navigation
history throughout the dataset.

We provide a lightweight visual history through the composition of
successive multiple deformations, as shown in Figure 2. Much of the
previous work on showing history visually in visualization systems has
been heavyweight, with a completely separate visual representation
of history that is displayed in a second view. For example, Jankun-
Kelly et al. [6] propose a graph of nodes representing previous system
states, where each node shows a thumbnail image with a snapshot of
the main view at that state. Switching from the main visualization dis-

SLACK et al.: COMPOSITE RECTILINEAR DEFORMATION FOR STRETCH AND SQUISH NAVIGATION

play to the secondary history view, which shows a completely different
scene, may impose a cognitive load. We argue that many tasks do not
require seeing this full-fledged graphical history of the visualization
process itself. Stretch and squish navigation provides lighter-weight
visual cues showing navigation history integrated into the context of
the main view. We conjecture that for many tasks, these implicit cues
are sufficient in preserving user orientation without an explicit repre-
sentation of past history.

3 RELATED WORK

Several early deformable-region navigation systems provide stretch
and squish navigation for small datasets. For example, Document
Lens [8] allows users to pick which single region should be stretched,
with all other regions squished. In this simple navigation model, navi-
gation history is not preserved visually.

Keahey et al. [7] and Carpendale et al. [3] propose navigation
with deformable sheets using multiple foci or lenses. Nesting these
lenses corresponds to composing deformations. However, these sys-
tems were designed for flexibility, supporting a variety of deformation
types, rather than scalability. In contrast, we limit our system to recti-
linear deformations, but our technique is highly scalable.

Rubber sheet navigation, which also supports composing successive
deformations, was originally proposed by Sarkar et al. [9, 10]. Their
navigation algorithm is linear in the number of reshapable regions,
and requires each region to be at least one pixel wide. This technique
is thus limited to hundreds of potentially deformable regions at best,
whereas we handle millions. In addition to the rectilinear deformations
that we support, they also allow polygonal stretching, where straight
lines become piecewise-linear curves. Creating a scalable navigation
algorithm to support the polygonal approach would be interesting fu-
ture work.

Some visualization systems are designed for scalability, for exam-
ple the MillionVis system [5] that handles one million items. However,
their system does not support general navigation through deformation,
only a specific set of transitions between layouts. Similarly, Tulip [1]
handles large datasets, but does not support stretch and squish naviga-
tion.

Several recent publications deal with the problems of rendering
with Accordion Drawing, but do not describe the underlying naviga-
tion algorithm [2, 12, 13]. Similarly, Slack et al. present SequenceJux-
taposer [14], a dataset-specific system that uses Accordion Drawing to
compare gene sequences, but also do not describe a navigation algo-
rithm [14]. In this work, we describe the features of our algorithm for
efficient rubber sheet navigation. The split line data structure was orig-
inally introduced to accelerate rendering, whereas here we propose its
use for navigation.

The paper on TreeJuxtaposer [4], which first introduces Accordion
Drawing, does describe the need for a hierarchical data structure to
support the deformation of regions, but provides only a hint of how
to actually perform navigation tasks. The paper does not provide an
algorithm, and we observed, through empirical investigation of the
open-source implementation, that the implemented algorithm becomes
numerically unstable with simultaneous deformations of multiple re-
gions. Our new approach is generic rather than being tied to tree
datasets, and supports robust deformations of multiple regions of in-
terest. The navigation algorithm presented herein also forms part of
Slack’s unpublished Master’s thesis [11].

4 SPLIT LINES

We base our navigation algorithm on deforming collective regions, as
we illustrated in Section 2. We support deformation of rectilinear re-
gions that are bounded by lines that stretch across the entire viewing
area. Although the absolute positions of the lines change, deforma-
tions do not change the adjacency order of the lines. A rectangular
deformable region is the intersection of four bounding lines: two hori-
zontal and two vertical. The horizontal and vertical sets of lines are in-
dependently controllable, and we store these sets separately, as shown
in Figure 4. If a user only moves a single line to a new position, then
the absolute spatial position of every other line in its set could change

for a global effect. However, if we provide new positions for several
lines as a simultaneous constraint, and set the new positions to match
the old positions for some chosen anchor lines, we may constrain nav-
igation to have a local effect.

coyote

mammals

birds

grouse

felines

lynx

duck

ocicat

A B C

1

2

3

4

coyote

mammals

birds grouse

felines

lynx

duck

ocicat

A B C

1
2

3

4

Fig. 4. The ordered list of horizontal lines is stored separately from the
vertical lines. Left: A tree dataset with the number of deformable re-
gions chosen such that each node can be resized independently. Right:

Deformations change absolute spatial position of the lines, but not their
adjacency ordering.

We define the absolute position of a split line to be a location be-
tween 0 and 1, the minimum and maximum bounds of the scene. A
system that stores only absolute positions requires O(n) updates to en-
sure each line is repositioned correctly for a proper visual history, since
a single deformation action could change the absolute position of ev-
ery line in the set. Since our navigation system supports architectures
where only the p visible regions will need to be drawn, where p << n,
our navigation system does not update and store the absolute positions
of all n lines after each deformation. Our approach uses binary trees to
manage the relative spatial ordering between regions, and we call the
tree nodes split lines. They store the split ratio, a ratio between 0 and
1, of the size of the left child region and the size of the whole parent
region.

xmin 0.135 0.27 0.378 0.45 0.582 0.78 0.924 xmax

x 0.50

x 0.61

x 0.62

x 0.453

x 0.44

x 0.65

x 0.76

Fig. 5. The absolute positions of the sets of ordered split lines can be
recovered from the split line hierarchies, which store split ratios between
0 and 1 at every node. The minimum and maximum split lines xmin and
xmax cannot move, and are the boundaries of the visualization space.

A

B

C

D

E

F

Fig. 6. In the split line hierarchy, each region is bounded by two ancestor
split lines, and all descendants of a parent are spatially contained with
its region. For example, the region defined as B is bounded by the
minimum split line on the left and split line D, the parent region of B, on
the right.

When two child regions are the same size, the split ratio stored by
the parent is 0.5. We can compute the absolute position of any split
line using these split ratios by traversing the path between the root and
the line in the hierarchy. Figure 5 shows the relationship between these

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

ratios, such as x5 = 0.6, and the absolute position of a split line, such
as 0.78 for the position of x5. To compute the absolute positions for
x4, for example, we use the split ratios and absolute positions of its
ancestors in the hierarchy as follows:

xA
4 = (xA

5 − xA
3)× xR

4 + xA
3

= (0.78−0.45)×0.4+0.45

= 0.582

where an A superscript denotes an absolute position of a split line, and
an R denotes a split ratio value for that split line. This computation
is top-down, starting from the root, so the required absolute positions
of the ancestors can be used in the calculations for their descendants.
Thus, in a balanced split line hierarchy with n nodes, we can compute
the absolute position of any split line in O(log n) time.

The area affected by each split line is bounded by two other split
lines, on the left and right1, as shown in Figure 6. All descendants of a
parent are spatially contained within its region. The left child node is
bounded by its parent’s left boundary on its left, and the parent itself
on its right; the right child node is bounded by the parent on its left,
and its parent’s right boundary on its right.

Our infrastructure uses the split line hierarchies for storage and
computation, but imposes very few constraints on end-user behavior.
A user can select to stretch a collective region between any two split
lines without regard to the underlying hierarchical structure, for exam-
ple the region bounded by C and E in Figure 6. The regions bounded
by the k lines that our navigation algorithm takes as input are collective
regions. A single atomic region between two contiguous split lines is
the smallest level of granularity that can be resized with the infras-
tructure. In typical applications, an on-screen rectangle dragged out
by the user would be snapped to the enclosing split lines. In areas of
the screen where the navigation state is zoomed out, this snapping dis-
tance would be smaller than one pixel and thus unnoticeable. In areas
where the view is zoomed far in, the distance between the cursor and
the nearest split line may cover many pixels, making the discretization
of space directly visible to the user.

5 FEATURES

Our approach has three features that assist developers in designing ap-
propriate applications for stretch and squish visualizations with visual
history. We remove the need for users to explicitly place handles to
control deformations, successive deformations compose with previous
ones, and deformations can affect only local regions.

5.1 Removing explicit handle creation requirement

Early rubber sheet navigation systems required the user to explicitly
manage handles to denote the regions that should be deformable [9].
Since the number of handles supported was very limited, in the dozens
or hundreds, users wanting to explore large datasets would need to reg-
ularly delete previously used handles before being able to add more
handles to achieve a new navigation state. Because our approach
scales to millions of deformable regions, adding every handle is an
automatic operation that occurs once at startup time. An application
developer determines the desired granularity of control that applies to
the family of datasets to deform, so the application automatically as-
signs enough split lines to allow immediate resizing of any potentially
interesting dataset features. For example, TreeJuxtaposer allows the
inspection of tree topology down to the level of individual nodes, and
SequenceJuxtaposer has a nucleotide as the smallest resizeable unit.

5.2 Composing successive deformations

Our navigation strategy is to compose deformations rather than simply
replace the old view of a scene with a new one. Fundamentally, this
feature requires storing more information than would be needed with a
replacement strategy. To achieve our desired scalability, we must min-
imize both our storage for navigation state, and our costs for updating

1We use left and right in our explanations for clarity, but our arguments

apply symmetrically to top and bottom cases for the vertical hierarchy.

a deformed scene. Our architecture is general enough that it can also
support the traditional approach of replacing an old view with a new
one, as required for the common panning and zooming interfaces.

5.3 Supporting local-only deformation

Our algorithm supports moving multiple lines simultaneously, which
means that our approach supports local-only, as well as global, defor-
mations. For instance, users may wish to cause a deformation only in a
limited region of the dataset, which preserves their previously selected
regions of interest. Our algorithm allows some regions to be deformed
while others remain unchanged by explicity defining the final abso-
lute location of a split line to be equal to its initial absolute location:
these split lines act as anchors. We may move split lines, subject to be-
ing constrained between these anchors, when any initial and final split
line locations differ. Figure 7 categorizes three regions of interest in
all deformation functions: regions that stretch to allocate more space
for their objects; regions that squish to create space for other regions
of interest; and regions that are invariant in size between deformation
actions.

k

k

k

k

k

k

0 1 2

0 1 2

Fig. 7. Local vs. global deformation. For local-only deformation, the set
of lines to move includes stationary lines that act as anchors. Here, we
want to move three split lines at positions k0, k1, and k2. The two split
lines at k0 and k2 are stationary, to prevent deformations from modifying
the regions to the left of k0, and to the right of k2. Top: In this example,
before deformation, all lines are uniformly distributed through the space.
Bottom: After deformation, the movement of k1 to k′1 caused stretching
in the region between k′0 and k′1, and shrinking in the region between k′1
and k′2.

5.4 Example

Figure 8 shows an example of our approach with sequence data, where
a user wishes to stretch one region but preserve some of their previous
navigation actions. Previous approaches would have required explic-
itly placed anchors and handles for stretching, but our approach allows
this local operation with implicitly placed anchors and handles. Appli-
cations that use our navigation approach give users a consistent model
with sufficient flexibility to visualize single items in a large dataset,
but do not require users to have extensive knowledge of the mechanics
of their interactions. The final navigation state reflects previous navi-
gation actions in addition to the latest one, preserving the relative sizes
of Column2 and Column3. Finally, the size of Column4 is maintained,
with the navigation action affecting only the local regions of Column1
through Column3.

6 ALGORITHMS

We break down our navigation algorithm into five functions, as shown
in Figure 9. A setup function, moveSplitLines, calls the core recur-
sive resize function, which in turn uses the three functions partition,
interpolate, and getRatio. In this section we discuss these functions,
then provide examples of the algorithm in action on small and large
split line hierarchies.

6.1 MoveSplitLines

The moveSplitLines navigation algorithm takes as input K, an ordered
list of split lines that have final absolute positions. The algorithm out-
put is Q, a list of split lines with updated final split ratios. Both K and
Q are subsets of N, the set of all split lines. The primary function of
this algorithm is to initialize the first call to a recursive function, re-
size, which processes the hierarchy of split lines to construct Q. These

SLACK et al.: COMPOSITE RECTILINEAR DEFORMATION FOR STRETCH AND SQUISH NAVIGATION

Column1 Column2 Column3 Column4

Sloth

Hyrax

Rabbit

Sloth

Hyrax

Rabbit

A

C

A

T

T

T

A

A

A

G

C

A

0.3 0.2 0.2 0.3

0.5 0.1 0.1 0.3

A

C

A

T

T

T

A

A

A

G

C

A

Fig. 8. Our navigation technique allows users to explore multiple local-
ized regions of interest using deformations, without destroying previous
navigations. For example, if a user wishes to stretch Column1, initially
30% of the display, to 50% but keep Column4 at 30%, they may do so
by shrinking Column2 and Column3. The user achieves this effect by
pinning the boundary line between Column3 and Column4, and mov-
ing the boundary line between Column1 and Column2 to the right. Our
algorithm to perform this navigation keeps the sizes of Column2 and
Column3 relative to each other, which is important for preserving the
visual history of previous navigations.

|Q| split ratios are used to deform the grid structure to properly align
our initial |K| split lines to their desired final locations. The lines in
K are always a subset of the lines in Q, because moving a split line
in K to a new absolute position requires updating the split ratios of it
and all its ancestors in the split line hierarchy. The upper bound on |Q|
is |K| log |N|, since there are at most this many ancestors for the |K|
initially selected split lines with final absolute locations.

6.2 Resize

The resize function is the main component of our deformation algo-
rithm. This recursive function operates on a split line S, and the set
of split lines, M, that are in the bounds of S that we wish to move.
The resize function is first called by moveSplitLines with the root of
the split line hierarchy, and the full list K of lines to move. Figure 10
shows the core structure: each step calls partition to split M into a left
and right set, uses interpolate to find the new absolute position of one
split line S using the relative distances between its neighbors in M, and
uses getRatio to compute the new split ratio of S. Finally, it recurses
on the left and right partitioned subsets.

The function terminates when M contains only the two bounds of S,
which indicates there are no more lines to move in the subtree under
S in the hierarchy. In this case we know no split line between these
bounds must be processed, since these split lines must keep their initial
split ratios. The maximum number of calls to resize is |Q|+ 2|K|,
and the amount of work done in each recursive step is constant. The
algorithm therefore has an overall time complexity of O(|K| log |N|).

6.3 Partition

The partition function finds the two lines in M which S falls between,
which we call L (left) and R (right), and uses them to split M into two
sets. The size of M decreases with recursive calls to resize. For clarity,
we present the intuition behind partitioning in Figure 9, Algorithm 3,
which is O(|M|). In practice, we use an array indexing technique that
performs a binary search for S in M. This search has a near-constant
cost for each call to resize for the typical case of a small |K|.

Algorithm 1: moveSplitLines

Input: list K of split lines with absolute final positions
Output: list Q of split lines with final split ratios
S← getHierarchyRoot()
M←{S.le f tBound,K,S.rightBound}
Q← /0
resize(S,M,Q)
return Q

Algorithm 2: resize

Input: split line S, set of split lines M with absolute final
positions, set of split lines Q with final split ratios

if |M|= 2 then
return

end
(L,R)← partition(S,M)
if S /∈M then

S. f ← interpolate(secondLast(L),S,second(R))
end
S. f Ratio← getRatio(first(M). f ,S. f , last(M). f)
Q.add(S)
resize(S.leftChild,L,Q)
resize(S.rightChild,R,Q)

Algorithm 3: partition

Input: split line S, list of split lines K
Output: two lists of split lines: L and R
L← /0
R← /0
R.add(S)
foreach m ∈ K do

if m.leftOf(S) then
L.add(m)

end
if m.rightOf(S) then

R.add(m)
end

end
L.add(S)
return (L,R)

Algorithm 4: interpolate

Input: split line L, split line S, split line R
Output: final absolute position of S
InitRel← getRatio(L.i,S.i,R.i)
return InitRel× (R.f - L.f)+L. f

Algorithm 5: getRatio

Input: absolute values le f t, center, and right
Output: split ratio of center between le f t and right

return
center−le f t
right−le f t

Fig. 9. Pseudocode for the five functions used in navigation.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

M

L R

M

M

M M

M

Mi

i

i+1 j-1 j

jk k+1SM S M

partition

interpolate

getRatio

(L,R)

S’

S’

A

R

Fig. 10. The resize function first partitions the set M into two sets L and
R at Mk and Mk+1, the lines in M which surround S. The interpolate

function finds S′A, the new absolute position of S, using Mk and Mk+1.
The new split ratio S′R is then computed with the getRatio function using
Mi and M j, the bounds of S.

6.4 Interpolate

The interpolate function finds the new absolute position of S given its
adjacent split lines L and R in M. It uses the property that the relative
position of S between L and R must match for the initial and final
absolute positions, as shown in Figure 11. This property guarantees
that the spacing in the collective region between these split lines is
preserved. If S is already an element of M, then there is no need to
interpolate because its final absolute position is already known.

L

L

S

R

R

Fig. 11. The interpolate function computes the final position S′ given the
input of S, L, R, L′, and R′. The ratio of the initial absolute positions S−L

R−L

matches that of the final absolute positions S′−L′

R′−L′
in order to preserve

spacing in collective regions. The lines L and R are the neighbors, not
the bounds, of S in the subset M of updated lines.

6.5 GetRatio

The getRatio function computes the ratio between three unique split
lines given their absolute positions. When called from interpolate, it
computes the ratio between S and its neighboring split lines L and R
in M, an intermediate value used to compute the final position of S.
The absolute positions of L and R are known, either because they were
specified in K as input or were computed in a previous recursive call to
resize. When called from resize, getRatio yields the split ratio for S
between its bounds, and this value is stored in the split line hierarchy.
The final positions of these bounds are always in M. At the beginning,
we seed M with the final positions of the minimum and maximum
bounds for the root of the entire split line hierarchy; that is, 0.0 and
1.0. Whenever a split line is added to M, its final position has just
been calculated.

6.6 Examples

We provide two examples of our deformation algorithm. Figure 12
shows a small example with k = 2 and n = 6, where we show the
four recursive calls to resize to compute the new absolute positions
and split ratios of the q = 4 ancestors of A and E. Figure 13 shows a
large example with k = 2 and n = 2047, where the difference between
|Q| <= |K| log |N| and |N| becomes substantial. Again, we consider
only the horizontal case; the vertical case is analogous.

A

B

C

D

E

F

A

B

C

D

E

F

0.0 0.1

A 0.3

0.2 0.3 0.5 0.6

E 0.9

0.7 1.0

0.0 D 0.5 D 0.78

SR 0.78

1.0

0.0 B 0.2 B 0.42

SR 0.54

0.78

0.0 A 0.1 A 0.3

SR 0.71

0.42

0.78E 0.6 E 0.9

SR 0.54

1.0

C F

(C 0.54) (F 0.925)

0.780.420.3 0.9final position:

split ratio: 0.780.540.71 0.54

a)

b)

c)

d)

e)

f)

g)

Fig. 12. Small recursive navigation example. Our deformation function
moves a selected number of split lines to final locations, but does not
require moving each split line individually. a) In this example (k = 2,
q = 4, n = 6), we wish to move 2 split lines: A from 0.1 to 0.3, and E from
0.6 to 0.9. b) Starting with the hierarchy root D, we compute D′ = 0.78

as its final absolute location based on A, A′, D, E, and E ′. D must be
in the same relative position between two moving split lines to preserve
relative distances in the deformation region [A,E]. c) Recursing on the
left to B, we compute 0.42 as its final absolute location based on A and D,
with similar constraints as before. d) A does not require an interpolation
between the minimum boundary and B since we are given 0.3 as its
final absolute position. e) Moving E to 0.9 does require interpolation, as
before. f) The positions of C and F are not computed until required by
the rendering algorithm, since they do not change their split ratios. g)

From the final absolute positions of the q = 4 split lines, we can compute
their split ratios. No split ratio updates are required for any other lines.

Fig. 13. Large recursive navigation example. Here (k = 2,q = 8,n =
2047), so the q << n property holds: most nodes do not require split ratio
updates. To move the k = 2 split lines marked in red to desired locations,
only the q = 8 split lines marked in green that fall on the paths between
the original k and the root need their split ratios updated. We represent
subtrees that are not traversed, where no split ratio updates are needed,
as triangles. Along the bottom, only the final absolute positions of the
q = 8 lines are drawn, not those of the 2039 lines in the untraversed
subtrees.

7 RESULTS

Our navigation algorithm as presented is generic in the sense of not
making any assumptions about the characteristics of the underlying

SLACK et al.: COMPOSITE RECTILINEAR DEFORMATION FOR STRETCH AND SQUISH NAVIGATION

Fig. 14. After a series of deformations, a sequence dataset of 740,000

objects has four stretched-out regions of interest. Navigations in this
dataset are performed in under 1 millisecond, negligible when compared
to the 30 milliseconds or more for rendering time, so navigation is not be
the bottleneck in the interactive system.

dataset that is being stretched and squished. We have implemented
a version of it in the PRISAD infrastructure [12], and have tested it
with applications for tree and gene sequence visual comparison. Fig-
ures 2 and 3 show a series of navigations, both with direct manipu-
lation and with indirect actions, on a tree dataset of several thousand
nodes. Figure 14 shows a series of deformations on a sequence dataset
of 740,000 objects.

We tested our navigation algorithm on a tree of 4 million nodes,
with 2 million split lines on the horizontal axis, and 21 split lines on
the vertical axis. The navigation time was typically less than one mil-
lisecond. In contrast, the time to render, as described in [12], was
approximately 40 milliseconds. Similarly, a gene sequence dataset
of 40 million objects required 6400 by 6400 split lines. Again, the
navigation time was negligible compared to the rendering time. Our
navigation algorithm has fulfilled its design requirement: it is not the
bottleneck of the interactive system.

8 CONCLUSIONS AND FUTURE WORK

We have presented the first scalable navigation algorithm that supports
the composition of successive rectangular deformations, providing a
lightweight visual history. When moving k collective regions out of
n possible atomic regions, its complexity is O(k logn). Our approach
handles the simultaneous resizing of multiple collective regions, and
thus can support restricting a deformation to a local region simply by
specifying anchor lines with the same initial and final positions. While
previous work supported only a small number of deformable regions,
and required users to explicitly add and delete handles to demarcate
movable regions, our approach allows application developers to spec-
ify the desired granularity of control for all possible moveable regions
as an automatic operation at startup time. Our implementation of the
algorithm within the PRISAD framework supports applications for in-
teractive exploration of tree and gene sequence datasets of millions of
items, with the navigation calculations taking under a millisecond.

Our approach is highly scalable, but only supports rectilinear de-
formations. An interesting area of future study would be to handle
fisheye and other radial effects that can be specified in a piecewise-
linear fashion, as described by Carpendale et al. [3]. Localizing these
non-rectilinear distortions between bounding anchor lines might allow
us to capitalize on our current architecture.

ACKNOWLEDGEMENTS

We appreciate the editing help and comments of Ciarán Llachlan Leav-
itt. We also thank Dan Archambault, Aaron Barsky, Stephen Ingram,

Heidi Lam, Peter McLachlan, and Melanie Tory for suggestions on
earlier drafts of this paper.

REFERENCES

[1] D. Auber. Tulip - a huge graph visualization framework. In P. Mutzel

and M. Jünger, editors, Graph Drawing Software, Mathematics and Vi-

sualization series, pages 105–126. Springer-Verlag, 2003.

[2] D. Beermann, T. Munzner, and G. Humphreys. Scalable, robust visual-

ization of very large trees. In Proc. Eurographics/IEEE Symposium on

Visualization (EuroVis 05), pages 37–44, 2005.

[3] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. 3-

dimensional pliable surfaces: for the effective presentation of visual in-

formation. In Proc. ACM Symposium on User Interface and Software

Technology (UIST 95), pages 217–226, 1995.

[4] T. M. et al. TreeJuxtaposer: Scalable tree comparison using Fo-

cus+Context with guaranteed visibility. ACM Trans. on Graphics (Proc.

SIGGRAPH 2003), 22(3):453–462, 2003.

[5] J.-D. Fekete and C. Plaisant. Interactive information visualization of a

million items. In Proc. IEEE Symposium on Information Visualization

(InfoVis 02), pages 117–124, 2002.

[6] T. J. Jankun-Kelly, K.-L. Ma, and M. Gertz. A model for the visualization

exploration process. In Proc. IEEE Visualization (Vis 02), pages 323–330,

2002.

[7] T. A. Keahey and E. L. Robertson. Nonlinear magnification fields. In

Proc. IEEE Symposium on Information Visualization (InfoVis 97), pages

51–58, 1997.

[8] G. G. Robertson and J. D. Mackinlay. The document lens. In Proc. ACM

Symposium on User Interface Software and Technology (UIST 93), pages

101–108, 1993.

[9] M. Sarkar and S. P. Reiss. Manipulating screen space with StretchTools:

Visualizing large structure on small screen. Technical Report CS-92-42,

Department of Computer Science, Brown University, Sept. 1992.

[10] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss. Stretching the

rubber sheet: a metaphor for viewing large layouts on small screens. In

Proc. ACM Symposium on User Interface Software and Technology (UIST

93), pages 81–91. ACM Press, 1993.

[11] J. Slack. A partitioned rendering infrastructure for stable accordion nav-

igation. Master’s thesis, University of British Columbia Department of

Computer Science, 2005.

[12] J. Slack, K. Hildebrand, and T. Munzner. PRISAD: A partitioned render-

ing infrastructure for scalable accordion drawing. In Proc. IEEE Sympo-

sium on Information Visualization (InfoVis 05), pages 41–48, 2005.

[13] J. Slack, K. Hildebrand, and T. Munzner. PRISAD: A partitioned ren-

dering infrastructure for scalable accordion drawing (extended version).

Information Visualization, 5(2):137–151, 2006.

[14] J. Slack, K. Hildebrand, T. Munzner, and K. S. John. SequenceJuxta-

poser: Fluid navigation for large-scale sequence comparison in context.

Proc. German Conference on Bioinformatics, pages 37–42, 2004.

