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Smashing Peacocks Further:
Drawing Quasi-Trees from Biconnected Components

Daniel Archambault, Tamara Munzner, Member, IEEE, and David Auber

Abstract— Quasi-trees, namely graphs with tree-like structure, appear in many application domains, including bioinformatics and
computer networks. Our new SPF approach exploits the structure of these graphs with a two-level approach to drawing, where the
graph is decomposed into a tree of biconnected components. The low-level biconnected components are drawn with a force-directed
approach that uses a spanning tree skeleton as a starting point for the layout. The higher-level structure of the graph is a true tree
with meta-nodes of variable size that contain each biconnected component. That tree is drawn with a new area-aware variant of a
tree drawing algorithm that handles high-degree nodes gracefully, at the cost of allowing edge-node overlaps. SPF performs an order
of magnitude faster than the best previous approaches, while producing drawings of commensurate or improved quality.

Index Terms—Graph and Network Visualization, Quasi-Tree

1 INTRODUCTION

Several approaches to graph drawing have used a spanning tree to ac-
celerate or improve the visual quality of general graph layout, in ap-
plications such as: bioinformatics [1]; computer networking [8]; web
site design and software engineering [17]; and co-citation analysis [6].
These methods succeed when the graph is a quasi-tree; that is, a graph
with tree-like structure. Intuitively, for these types of data, using a
spanning tree skeleton for layout is useful, even when the graph is
much more densely connected than a strict hierarchy. Many definitions
for quasi-tree have been proposed, for example a graph with a limit
on the number or graph-theoretic length of non-tree edges. Here, we
define quasi-trees as graphs where the number of biconnected compo-
nents is a constant multiple of the number of vertices. A biconnected
component is a maximal subgraph where the removal of any node or
edge from that subgraph does not disconnect it into two or more com-
ponents. More formally, for a graph G(V,E) with a set of V nodes
and E edges, we consider it a quasi-tree if it has O(|V|) biconnected
components. The biconnected component tree of a graph is a tree
of meta-nodes, representing biconnected components, which conveys
important structural information.

In the telecommunications network domain, the biconnected com-
ponents of a quasi-tree can highlight semantic information in the net-
work such as subnetwork structure. A decomposition of the quasi-tree
into biconnected components highlights strengths and weaknesses in
network design [20]. In Internet tomography, seeing the subnetwork
structure in the context of the global structure of the Internet is im-
portant in several user scenarios, including: visualizing infrastructure
attacks on a corporation, discovering prolonged outages due to natural
disasters or war, and tracing anonymous packets from an attack on a
network back to their source [8].

In bioinformatics, graphs with quasi-tree structure appear in
gene function, protein-protein interaction, and biochemical pathway
data [1]. With the LGL system [1], the authors exploit quasi-tree struc-
ture to produce impressive drawings of protein homology maps. In
these networks, nodes are proteins and there exists an edge between a
pair of nodes if their aligned amino acid sequences have a high sim-
ilarity score. When drawn in a certain way, homology maps cluster
proteins of similar function together, allowing biologists to predict the
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function of unknown proteins. To make these predictions, we need to
see localized protein families in the context of the homology map.

In these applications, both the low-level structure within each bi-
connected component, and the high-level of the how those compo-
nents interconnect in a tree, are important in understanding the graph.
Many of the important low-level features in protein homology maps
involve the biconnected components in the graph. For example, fusion
proteins that connect two functionally related families of proteins of-
ten appear as a node separating two biconnected components [1]. For
Internet tomography, we believe that biconnected components are also
of interest because they distinguish between peering relationships and
downstream clients.

Some previous approaches to drawing quasi-trees are fast and ex-
plicitly exploit quasi-tree structure, but show only a subset of the full
graph, relying on extensive interactive exploration to eventually re-
veal the complete structure [17, 6]. Other general approaches to graph
drawing are fast and show the full graph, but produce drawings of
limited visual quality [12]. The recent LGL system exploits quasi-
tree structure to produce high-quality drawings of the full graph in
the bioinformatics domain [1]. While faster than previous work in
the networking domain [8], layout of large datasets still takes hours to
compute.

The SPF system exploits the quasi-tree structure of the graph by
using a two-level approach to drawing: one algorithm to draw the bi-
connected component of each meta-node, and a second to draw the
higher-level structure of the tree of these meta-nodes. The primary
contribution of this paper is to draw the full graph structure of quasi-
trees much faster than previous work, and to provide equivalent or
better visual quality with drawings that accurately portray the struc-
tural information of interest in application domains. We also improve
the visual quality results of the LGL algorithm while keeping the algo-
rithm running time within the same order of magnitude as the original
version of LGL. Finally, we introduce an area-aware version of the
RINGS tree drawing algorithm [22] to draw our biconnected compo-
nent tree.

2 DEFINITIONS

A spanning tree is a subset of edges in a connected graph that is a tree
incident to all nodes. A minimum spanning tree is a spanning tree of
minimum cost on a graph of weighted edges. For unweighted graphs,
the weights of all edges can be set to one.

A biconnected component decomposition divides a graph into bi-
connected components. After a biconnected component decomposi-
tion, by definition, the biconnected components are linked by edges
and nodes whose removal would disconnect the graph into two or more
components. We define bridge nodes and bridge edges as the nodes
and edges which can be removed to disconnect the graph into two or
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more components. Bridge nodes are also called articulation or cut ver-
tices elsewhere in the literature. Bridge edges correspond to edges
incident to two bridge nodes. If we replace each biconnected compo-
nent with a single meta-node, we create a new higher-level graph with
meta-nodes linked by only the bridge nodes and edges. The topology
of this graph is always a tree, and we refer to it as the biconnected
component tree. We use this more evocative name here, rather than
the synonymous term block-cut point tree found in other areas of the
literature.

3 RELATED WORK

Related work for quasi-trees is divided into three categories: multi-
level graph drawing algorithms, spanning tree visualization, and
domain-specific graph visualization.

3.1 Multi-Level Graph Drawing

Multi-level schemes for graph drawing have been studied extensively
to improve the running time and visual quality of large graph layouts.
In multi-level algorithms, a coarsening operator is recursively applied
to an input graph, forming a hierarchy of coarse graphs which are sim-
ilar in structure, but cheaper to lay out. The coarsest graph of the hier-
archy is laid out first and the locations of its nodes are used as an es-
timate for the next finest level. Coarsening operators suggested in the
literature include: estimates of maximal matching [23], graph filtration
based on shortest path distance in GRIP [10], eigenvector computation
on coarse approximations of the Laplacian matrix in ACE [15], and
solar system models based on local graph connectivity in FM> [12].
These algorithms produce layouts of high visual quality for several
types of undirected graphs, but none of them take into account the
topological features that are integral to quasi-trees.

TopoLayout [3, 2] was the first multi-level algorithm to take topo-
logical features into account. Previous algorithms have exploited topo-
logical features [18, 20], but never in a multi-level context. The coars-
ening operator of TopoLayout recursively detects topological features
such as trees, biconnected components, and highly connected clus-
ters in the graph and draws them with appropriate algorithms. In the
quasi-tree problem, we are only interested in specific types of topol-
ogy, mainly trees and biconnected components. SPF is built inside the
TopoLayout framework, but is directed specifically to the quasi-tree
problem. SPF is similar to the work of Six and Tollis [20], but it uses a
more sophisticated approach to drawing biconnected components than
their method, which uses circular layout.

3.2 Spanning Tree Visualization

Spanning tree methods have appeared previously in the graph drawing
and information visualization literature, but they only draw a subset
of the graph edges and depend heavily on user interaction for under-
standing graph structure. In contrast, SPF attempts to convey the full
complexity of the underlying graph at all times.

The H3 system [17] uses domain-specific knowledge to determine a
spanning tree for the graph. Node positions depend only on the chosen
spanning tree, and the drawing of non-tree edges is toggled based on
user selection.

Boutin and Hascogt [6] characterize tree-like graphs as having non-
tree links only below a threshold graph-theoretic distance. They sup-
port filtering a potentially dense general graph to create a tree-like
graph by eliminating graph edges that do not fit their constraint. An
interactively chosen focus node is used as the spanning tree root.

3.3 Domain-Specific Graph Visualization

Two key domain-specific papers are the primary inspiration for this
work. Cheswick et al. [8] presented drawings of substantial portions
of the Internet. They mapped the hardware structure of the Internet
using traceroute packets from a source machine. Outgoing paths were
tracked to determine the connectivity between servers. In order to
visualize the collected data, the authors employ a force-directed ap-
proach. The first optimization eliminates sufficiently distant nodes
from the repulsive force calculations. The second optimization is the
use of a spanning tree as a skeleton for the force-directed layout. The

nodes of the test servers are laid out in the centre of the drawing. It-
erations of force-directed layout are applied until this graph reaches
equilibrium. Nodes are added to the layout in breadth-first order using
a spanning tree centred at the traceroute packet source. The edges that
connect these nodes to previously placed nodes are added. The result
has been described as a “smashed peacock on a windshield” by Dave
Presotto [8]. Our biconnected component decomposition divides this
dataset into smaller components, inspiring the title of this paper. We
could not directly compare our results with this system because the
code is proprietary.

In bioinformatics, Adai et al. [1] implemented the approach of
Cheswick et al. [8] to draw protein homology maps. In their system,
LGL, the spanning tree used as a skeleton is computed on a graph with
edges weighted by BLAST e-values. The root vertex of this graph is
chosen arbitrarily, is user specified, or is chosen based on graph cen-
trality. As in Cheswick et al., by embedding the graph in a grid, repul-
sive forces between sufficiently distant nodes are culled. Two nodes
share a repulsive force if they are present in the same or adjacent cells.
LGL was tested on several protein homology maps and the layouts
grouped proteins into families of related function. In this work, we
improve some aspects of the LGL drawing algorithm and integrate the
improved algorithm into SPF. Drawings produced by SPF are an order
of magnitude faster than those produced by LGL. They retain much of
the high-level graph structure and better illustrate the low-level graph
structure in the quasi-tree.

4 ALGORITHM

The inputs to SPF are a graph and an unrooted, minimum spanning
tree. For weighted graphs we use Kruskal’s algorithm [21] to com-
pute the spanning tree, and for unweighted graphs we use breadth first
search [5]. For unweighted graphs, all spanning trees are of equal
cost. Spanning trees computed from a breadth-first search are a log-
ical choice to use as they tend to be representative of the underlying
distance structure in the graph [21]. We root the input spanning tree at
its tree centre.
The drawing algorithm runs in three phases:

1. Decompose the graph into biconnected components.
2. Draw each component using an improved version of LGL.

3. Draw the biconnected component tree using an area-aware ver-
sion of the RINGS [22] algorithm.

Our first phase decomposes the input graph into biconnected com-
ponents. In the second phase, the algorithm draws each biconnected
component with our improved version of LGL. The sizes of the nodes
in the biconnected component tree are set to the size of the biconnected
component drawings. The third phase draws the biconnected compo-
nent tree using an area-aware version of the RINGS [22] algorithm
that we have developed.

4.1 Decomposition into Biconnected Components

In SPF, the graph is decomposed into biconnected components using
a standard algorithm from the literature [5]. It works by performing a
depth-first search through the graph. Edges that point back to higher
levels of the depth-first search are called back edges. When a subtree
s of the depth-first search tree has no back edges to any ancestor of s,
it is a separate biconnected component. The algorithm has a running
time of O(|V|+|E|).

The biconnected component tree is constructed as shown in Fig-
ures 1(a) and 1(b). Bridge edges, such as the edge between compo-
nents C3 and Cy, are edges in this tree. Bridge nodes appear as nodes
in the tree. If a bridge node shares two or more edges with a com-
ponent, the bridge node is duplicated and placed into those adjacent
components as shown with C; and C,. This duplication keeps nodes
directly adjacent to the bridge node together when during layout of
the biconnected component, but the duplicated bridge nodes are not
actually drawn.
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Fig. 1. Decomposition of the graph into biconnected components preserves the input spanning tree. Spanning tree edges are shown with directed
red edges, and the roots are shown in white. (a) Identify the bridge nodes and edges, shown in blue, in the decomposition phase. (b) If a bridge
node shares two or more edges with a component, the bridge node is duplicated and placed into those adjacent components. (¢) Break spanning
tree up into individual biconnected components, and find the root for each new component.

LAt

(b) optimized LGL

(a) LGL

Fig. 2. Comparison of the final layout of a ten-ary tree of depth three be-
tween (a) LGL and (b) optimized LGL. Repulsive forces are diminished
in optimized LGL to roughly the size of a node.

The decomposition phase does not take into account the pre-
specified spanning tree. Our choice of spanning tree could only be
limited by the biconnected component decomposition if the chosen
spanning tree did not contain all of the bridge nodes and bridge edges
of the biconnected component tree; the remaining edges in the bicon-
nected components can be present or absent from the spanning tree as
needed.

All bridge edges need to be present in the spanning tree. The bridge
edge is the only edge connecting two biconnected components in the
graph, and, if it were not present, the tree would be disconnected.
Bridge nodes must be present by the definition of a spanning tree, and
the edges between them and their duplicate nodes must be present as
they are bridge edges. Therefore, a biconnected component decompo-
sition does not limit our choice of spanning tree.

4.2 Biconnected Component Drawing with Optimized LGL

Once the graph is divided into biconnected components, we use our
improved version of LGL, optimized LGL, to draw each biconnected
component. The roots are computed from the spanning tree as shown
in Figures 1(b) and 1(c). If the root of the input spanning tree is present
in a biconnected component, it is chosen as the root of the biconnected
component. Otherwise, the node from which the spanning tree entered
this biconnected component on a depth-first search from the root of the
spanning tree is used. The input spanning tree continues through the
biconnected component as specified.

The first optimization to LGL improves running time in some cases
and leaves visual quality unchanged. Recall that LGL uses a grid to

(a) LGL

(b) optimized LGL

Fig. 3. Comparison of the initial placement of nodes between (a) LGL
and (b) optimized LGL, on a ten-ary graph of depth tree. Fan placement
also places nodes closer to each other at the beginning.

cull repulsive forces of sufficiently distant nodes. To compute the re-
pulsive forces, LGL marches through each cell of the grid. Computing
repulsive forces in this manner can be costly in the early stages of the
algorithm when many cells are empty. Instead, we keep a list of nodes
already placed by the spanning tree, determine the position of the node
in the grid, and compute the repulsive forces directly. We then mark
the cell to ensure that the repulsive forces between nodes in a cell are
computed only once. The drawing remains unchanged, because ex-
actly the same set of repulsive forces are computed as when marching
through the grid.

The second optimization improves the visual quality of the final
drawing of the graph, as shown in Figure 2. This optimization consists
of two parts that influence initial placement of the nodes in the layout.
In LGL, nodes are placed into the layout using the input spanning tree

as a skeleton according to S:

§:C(M‘|‘P)+xparem (D

where c is a constant proportional to the number of nodes in the graph,
M is the centre of mass, and P is the vector between the parent and the
grandparent of the placed node in the input spanning tree. Both M and
P are normalized. The value of Xparent 18 the position of the parent in
the spanning tree.

The first part improves placement by reducing the constant ¢ to the
sum of the size of the parent node, the size of child node, and the
average size of the nodes in the graph. Reducing ¢ yields more com-
pact drawings. In Figure 2(a) the nodes are spread far apart and can
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(b)

Fig. 4. Layouts of the Cheswick 2005 dataset biconnected component
tree using: (a) area-aware Walker’s algorithm [7], (b) bubble tree [11],
and (c) our adaptation of area-aware RINGS. With area-aware RINGS,
we gain a significantly more compact drawing at the price of introducing
edge-node overlaps.

hardly be seen while in Figure 2(b) they are easily visible along with
the topology. The second part places nodes on small directed fans in
the direction of the vector § as shown in Figure 3(b) instead of circles
as shown in Figure 3(a). Placing the nodes on fans inhibits them from
being directed back inwards, preserving low-level structure. We can
see the problem near the root node of the tree in Figure 2(a). In con-
trast, the problem is less prevalent in optimized LGL as demonstrated
by Figure 2(b).

4.3 Biconnected Component Tree Drawing with Area-
Aware RINGS

Once each biconnected component has been laid out, we know the
screen-space extents required by each of these meta-nodes. In order
to draw the biconnected component tree, we need a tree drawing al-
gorithm that is area-aware; that is, that can correctly handle nodes of
variable rather than uniform size.

To begin this section, we first motivate the need for area-aware
RINGS. Next, we describe the original RINGS algorithm as presented
by Teoh and Ma [22]. Then, we describe our area-aware adaptation of
RINGS and discuss how to use it to draw our biconnected component
trees.

For large quasi-trees, the degree of nodes inside the biconnected
component tree can be very high. As we can see in Figure 4, the few
previously existing tree layout algorithms that are area-aware perform
poorly in this case. The area-aware version of the Walker [7] layout,
shown in Figure 4(a), lays out the children of the high-degree node
on a horizontal line, and the details of their structure are too small to
be seen without zooming. Similarly, Figure 4(b) shows that Bubble
Tree [11] lays out the high-degree node in the centre of a circle so
large that the children are too small to be seen individually on the
circumference. In contrast, the RINGS algorithm [22] provides a much
more compact drawing at the price of introducing node-edge overlaps
and edge crossings. By adapting it to be area-aware, we achieve the
result shown in Figure 4(c).

In RINGS [22], each child of a root is placed in a circle enclosing its
entire subtree as shown in Figure 5(a). The dark blue node at the centre
of the drawing is the root while the dark grey circles are the children
of the root and their subtrees. The root is placed at the centre of the
drawing, and we sort its children by their number of children; that is,
by their number of grandchildren with respect to the root. The subtrees
are placed onto concentric rings inward towards the root in order from

o X
N2

(a) RINGS

R\

(b) Area-Aware RINGS

Fig. 5. Comparison of subtree placement between (a) the RINGS al-
gorithm and (b) Area-Aware RINGS. The blue node is the root of the
current subtree. The grey circles are subtrees that have filled the white
ring. The yellow circle indicates where the next ring is started.

the child with the most to least children. Each of the subtrees on a
ring is given an equal-sized enclosing circle of radius r. The radii R;
and R; are as shown in Figure 5(a). Let Ngrandplaced be the number of
grandchildren placed in the current ring. Let Ngrandtotal b€ the total
number of grandchildren to place with respect to the root. A new ring
is started on the inner, yellow circle when:

R (1 —sin(Z))?

NGrandPlaced _
R (1+sin(%))?

N GrandTotal

(@)

Given n children and their subtrees, the right hand side of Equa-
tion (2) is the ratio of the circle areas with radii R and R, respectively.
This ratio does not depend on r and only requires that Ry = 2r + R;.
The process is repeated for the remaining subtrees.

From the left hand side of Equation (2), we notice that the size of
the nodes in the tree is not considered, only the number of children.
Therefore, RINGS assumes a uniform node size. Moreover, the node
size should be much smaller than r to ensure that the entire subtree
is fully contained by the enclosing circle, since only grandchildren,
and not the entire subtree, are considered in this ratio. In our work,
this subtree could contain a large number of nodes of substantial size.
Therefore, we cannot choose such an r.

In our area-aware variant of RINGS, instead of counting the number
of grandchildren, we determine the area needed to lay out each subtree
by drawing the tree bottom-up. At a leaf node, we use the bounding
circle of the node. At an interior node, we use the bounding circle
of the subtree of which it is the root. The subtrees are placed into
concentric rings outward from the root in order from the subtree which
requires the least area, to the subtree which requires the most area, as
shown in Figure 5(b). We keep track of the largest enclosing circle
radius in rpax. The radii R; and R, are as shown in Figure 5(b) with
R{ = 2rmax + R2. A new ring is started on the outer, yellow circle
when:

B (1— sin(%))2 3)
~ (I+sin(%))?

where Ag, and Ag, are the areas of the circles with radii Ry and R».
Since we have drawn the tree from the bottom up, we know the ac-
tual areas of these circles and can compute the ratio directly. Where
Equation (2) compares ratios of grandchildren, Equation (3) compares
ratios of the areas needed to draw the nodes and subtrees.

Ag,

Ag,

R,?
R,?
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Fig. 6. Comparison of special cases for small subtree layout. (a) One
subtree in RINGS. (b) One subtree in area-aware RINGS. (¢) Two sub-
trees in RINGS. (d) Two subtrees in area-aware RINGS. When the tri-
angle connecting the three centres of the root and subtrees is obtuse,

the centre of the bounding circle is placed at the centre of the sum of
the two largest diameters as shown in (e).

(b)

Fig. 7. Demonstration of the chain optimization, with nodes set to ran-
dom sizes between one and ten unite. (a) Node drawn in linear chains.
(b) More compact drawing of chain nodes in a spiral.

We further optimize area-aware RINGS when the number of sub-
trees to be placed on a ring is two or fewer as shown in Figure 6. The
root node of a subtree is usually placed at the centre of its bounding
circle, which leads to wasted space as shown in Figure 6(a) and 6(c).
In the case of a root node with a single child subtree, we place the root
and its child subtree tangent to each other as shown in Figure 6(b).
In the two-child subtree case, we place the root and its two subtrees
tangent to each other in a triangle as shown in Figure 6(d). When the
triangle connecting the three centres is acute, the smallest bounding
circle is the outer circle tangent to all three enclosing circles. This cir-
cle is known as the outer Soddy circle [9, 14]. When the triangle is
obtuse, the bounding circle is the circle enclosing two largest circles
as shown in Figure 6(e).

We also improve how area-aware RINGS handles chains. A chain
is defined as a linear sequence of nodes each having exactly one child.
Without this improvement, each node of the chain is the case shown in
Figure 6(b), resulting in the long lines of nodes as seen Figure 7(a). In
our optimization, we treat each node of the chain as though it was a di-
rect child of the node which began the chain. The chain spirals around
the node that began it, drawing it compactly, as shown in Figure 7(b).
Unlike other cases in area-aware RINGS, the nodes of a chain are not
sorted by size.

We use a subtle three-dimensional depth effect to create perceptual
layering when drawing edges. Edges are placed below the nodes, with
edges to the outer rings placed more deeply than edges to the inner
ones. When browsing the layout in Tulip [4], edges can be raised if
a path between two nodes needs to be visible. Edge colour for edges
between biconnected components is lightened.

We also choose an ordering for the biconnected components in a
ring to reduce edge occlusion, since all biconnected components in
the same ring have an enclosing circle of at most rmax. The chosen
ordering of the biconnected components in a ring is based on the po-
sitions of the nodes inside the biconnected component at the root. The

vector between every node inside the root that attaches the biconnected
component on the ring and the centre of the drawing at the root is com-
puted. The average vector is taken as the vector of ideal placement.
Biconnected components in a ring are sorted based on the direction
of their ideal placement vector. The biconnected component with the
most edges to the root is placed in its ideal location on the ring. All
other biconnected components are placed in their sorted order.

5 EMPIRICAL TESTING AND RESULTS

We implemented SPF in the Tulip [4] framework and now compare
it to three other algorithms in terms of performance, qualitative vi-
sual results, and quantitative statistics. We do so using two large
datasets. Protein, the graph shown in Figure 8 with 30,727 nodes
and 1,206,654 edges, is the unweighted version of the protein homol-
ogy graph presented in the LGL paper [1]. Net 05, the graph shown
in Figure 9 with 190,384 nodes and 228,354 edges, is an Internet to-
mography dataset similar to those presented in Cheswick et al. [8],
but generated in 2005 by Cheswick’s Internet Mapping Project!. All
benchmarks were run on a 3.0GHz Pentium IV with 3.0GB of mem-
ory running SuSE Linux with a 2.6.5-7.252 kernel. The accompanying
video? shows interactive exploration of these graphs at multiple levels
of zooming.

Space constraints preclude showing all competing algorithms, so
we compare SPF to its most competitive. FM?3 [12] is a state of the
art multi-level graph drawing algorithm. Other algorithms, including
ACE [15], GRIP [10], and HDE [16], were shown to be less competi-
tive than FM? in previous work [13, 3]. LGL is an algorithm developed
in the bioinformatics domain for visualizing quasi-trees and optimized
LGL is our modified form of LGL. TopoLayout [3] took too long to
cluster Protein, because it used a clustering algorithm whose per-
formance deteriorates as the number of edges becomes large. The
TopoLayout drawing of Net 05 was not compact, because it drew
most of the biconnected component tree using Bubble Tree. Its draw-
ing is similar to Figure 4(b).

5.1 Performance

The FM? algorithm was the fastest algorithm on both datasets. On
Protein, it was an order of magnitude faster than all the drawing
algorithms. FM? was the same order of magnitude as SPF on Net 05,
but three times faster. LGL and optimized LGL were the slowest al-
gorithms on both datasets. They are two times slower than SPF on
Protein. OnNet05, LGL and optimized LGL are an order of mag-
nitude slower than all algorithms. SPF is twice as fast as LGL and
optimized LGL on Protein and an order of magnitude faster than
LGL and optimized LGL on Net 05.

5.2 Qualitative Drawing Comparison

FM? has difficulty depicting both the high-level and low-level struc-
ture in both datasets, as shown in Figures 8(a) and 9(a). The high-level,
tree-like structure is unclear in Protein. On Net 05, the high-level
tree structure is somewhat visible, but details of it are difficult to see,
because it draws the branches along thin lines. It is nearly impossible
to see low-level structure in either dataset.

With the slower LGL and optimized LGL, the drawings are im-
proved. The high-level, tree-like structure is apparent in Protein
throughout the dataset as shown in Figures 8(b) and 8(c). We can
clearly see high-level branches without zooming in, as well as more
of the tree structure in the insets. However, the drawing of Net 05,
shown in Figures 9(b) and 9(c), only displays the high-level tree struc-
ture well at the periphery. Most of the drawing is a featureless core
where the tree-like structure is hidden. In terms of low-level structure,
we are able to see protein families and fusion proteins between fam-
ilies in Protein. In Net 05, the subnetwork structure is only clear
when the nodes lie on the fringes of the drawing, as we see in the insets
of Figures 9(b) and 9(c).

lresearch.lumeta.com/ches/map
2www.cs.ubc.ca/labs/imager/video/2006/spf
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Algorithm Total | Major Total [ Major
Protein Net05
Nodes
FM? 95 95 381 381
LGL 920 809 6,761 5,746
LGL Opt. | 54,255 | 13,021 60,218 1,204
SPF 71,574 | 12,167 4,185 42
Biconnected Components
FM3 2,400 2,376 | 162,620 | 160,993
LGL 2,657 2,603 | 170,073 3,401
LGL Opt. 2,955 2,629 93,570 1,871
SPF 0 0 8 1

Fig. 10. Node-node overlaps. We first give the total number of node-
node overlaps, then only the number of major overlaps; that is, those
where the overlap covers more than half of the node area. Protein has
30,727 nodes and 2,427 biconnected components. Net 05 has 190,384
nodes and 167,460 biconnected components.

SPF improves upon the running time of LGL and optimized LGL
and retains or improves much of the high-level and low-level structure.
Much of the high-level tree structure is retained with SPF. The span-
ning tree skeleton is made visually apparent with area-aware RINGS,
but at a cost of spatial locality and edge crossings in the drawings.

The principal advantage of SPF over previous work is the improved
visualization of low-level structure in the graph, because it is not as
occluded by the higher-level components. In Protein, we see pro-
tein families and the fusion proteins between them as shown in the in-
sets of Figure 8(d). The core of Protein is thinned, revealing more
internal structure than with previous algorithms. Protein families and
fusion proteins are clearly seen in the rings of the drawing. The core of
Net 05 is far smaller than with LGL; however, it still contains about
37,000 nodes and suffers from a great deal of node and edge occlu-
sion. Nevertheless, we can resolve many local network features in the
context of the entire Internet. We clearly resolve subnetwork structure
around servers at the University of British Columbia and the City of
Baltimore as shown in the insets of Figure 9(d).

5.3 Statistical Analysis

In addition to the qualitative analysis of the drawings, we provide
quantitative statistics for each of the four layouts. We compute node-
node overlaps and uniformity of edge lengths, both for the low-level
structure of individual nodes and edges, and for the high-level struc-
ture of the biconnected components.

5.3.1

A node-node overlap is simply the intersection of two nodes in a draw-
ing. For the biconnected components, a node-node overlap occurs
when the two convex hulls of the biconnected components intersect.
A smaller number of node-node overlaps in the biconnected compo-
nents more clearly displays high-level structure and better represents
the low-level structure as the biconnected components do not occlude
each other.

We present the node-node overlap statistics in the top of Figure 10.
We show the total number of overlaps, and the number of major over-
laps where more than half the the area of the smallest node is covered.
Major overlaps are more interesting than total overlaps as they effect
the readability of the drawing more severely.

We see that FM? has few node-node overlaps on either dataset.
However, in this approach, the nodes are spread very far from each
other with respect to the standard node size. LGL and optimized LGL
incur more overlaps, but have the benefit of a more compact draw-
ing. Optimized LGL incurs many more total node-node overlaps as
we have reduced the magnitude of the repulsive force constant. How-
ever, only a small percentage of them are major. With SPF, although
Protein has a large total number of overlaps, the number of ma-
jor overlaps is less than that for optimized LGL. We see a significant
reduction in the number of node-node overlaps on Net 05. The use

Node-Node Overlaps

Algorithm | Overall | Within | Between
Protein
FM3 1.02 0.61 0.94
LGL 0.57 0.32 0.88
LGL Opt. 0.72 0.33 0.78
SPF 2.74 0.32 0.74
Net05
FM3 0.62 0.17 0.48
LGL 1.21 0.19 0.93
LGL Opt. 1.26 0.18 0.98
SPF 1.96 0.24 5.03

Fig. 11. Standard deviation of normalized edge lengths, where lower
numbers mean more uniformity. Overall is the standard deviation over
all edges. Within is the average standard deviation of the edges within
each biconnected component, and Between is the standard deviation of
edges that connect the components in the biconnected component tree.

of area-aware RINGS to draw the very large number of biconnected
components reduces the possibility of low-level node-node overlaps.

In the bottom of Figure 10, we present the overlap figures for the
higher-level biconnected components. FM?3, LGL, and optimized LGL
have thousands of major overlaps. These major overlaps make it diffi-
cult to see the low-level structure of the biconnected components in
their higher level context. In these drawings, many but not all, of
the large overlaps of biconnected components are with the large, bi-
connected core which is spread through the drawing. It is important
to note that optimized LGL is better able to separate the biconnected
components than the original LGL. This result supports our optimiza-
tion of placing nodes on directed fans and reducing the repulsive force
constant, which keeps nodes in biconnected components closer to-
gether. In contrast to these three methods, SPF succeeds in making
these biconnected components more evident. It incurs no overlaps at
all for the smaller Protein dataset, and only one major overlap for
the larger Net 05.

5.3.2 Uniformity of Edge Lengths

Uniform edge lengths keep all elements of the graph drawing at a sim-
ilar scale. For each drawing, we compute the standard deviation of
the edge lengths for each drawing. The raw edge length values are
normalized by the average edge length on each dataset. This normal-
ization sets the mean edge length in each drawing to one, so that the
standard deviations can be directly compared. Standard deviations are
all positive and numbers closer to zero correspond to more uniform
edge lengths. When we consider the graph as a whole, SPF has highly
nonuniform edge lengths. However, considering the uniformity with a
particular level of structure shows its benefits.

The results are presented in Figure 11. The overall standard devi-
ation is presented the left hand column. FM3, LGL, and optimized
LGL perform well on this metric where SPF does not. From visual
inspection of the SPF drawings, we can see that this additional vari-
ance is probably due to the long edges introduced by the area-aware
RINGS algorithm. However, uniform edge lengths across the entire
drawing may not be appropriate for displaying the biconnected struc-
ture of quasi-trees. In the drawings produced by LGL and optimized
LGL, we see this property as the drawings have a uniform but feature-
less core. Noack [19] stated that long edges may be required to display
cluster structures. We propose that a more suitable metric for quasi-
trees is to consider uniformity within a meaningful group; that is, the
edges within a particular biconnected component, and the edges of the
quasi-tree that connect between biconnected components.

Figure 11 shows these separate standard deviations in the centre
and right columns. We see that optimized LGL is commensurate with
LGL on nearly all numbers. SPF is commensurate with all algorithms
in terms of the average standard deviation of edge lengths within bi-
connected components on both datasets. SPF has a slight improvement
for the between edges in Protein, but a very high standard devia-
tion for Net 05. This situation follows directly from the size of their
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(a) FM?: 1.7 Minutes

(c) Optimized LGL: 1.8 Hours

(b) LGL: 1.4 Hours

(d) SPF: 43 Minutes

Fig. 8. Drawing of Protein, a protein homology map obtained from the LGL project. Graph contains 30,727 nodes and 1,206,654 edges. Drawings

produced by (a) FM3, (b) LGL, (c) optimized LGL, and (d) SPF, with drawi

biconnected component trees: small for the former, and large for the
latter. The many concentric rings used by area-aware RINGS for large
biconnected component trees contribute to this increased variance.

6 CONCLUSION AND FUTURE WORK

We have presented SPF, a new drawing algorithm for quasi-trees. The
principal advantage of SPF over previous work is the improved visu-
alization of low-level structure within the biconnected components of
the graph. These components are not as occluded by the higher-level
structure of the tree formed by the interconnections between them.
FM3 is fast, but its visual quality is poor. The slower LGL approach
dramatically improves the visual quality of the protein homology net-
work dataset that it was designed for, but fails to visually distinguish
the high-level structure of the Internet Mapping dataset. SPF does suc-
ceed at showing more structure for both of these datasets, as we argue
both qualitatively in our discussion of the drawings and quantitatively
with the very low number of biconnected component overlaps. More-
over, SPF is much closer to the speed of FM?, ranging from twice as
fast to an order of magnitude faster than LGL.

Our optimizations to LGL were designed to improve SPF itself,
since it is used as one of our layout algorithms. However, consider-
ing optimized LGL as a standalone layout approach is also interesting.
Although it is similar to LGL from visual inspection of the drawings,
and has variable performance depending on the dataset tested, the bi-
connected component overlap statistic suggests that it does help dis-
tinguish more structure.

We adapted the RINGS algorithm to handle nodes of variable size,
and optimized its behavior when handling small subtrees. Such an
area-aware tree layout is useful not only within SPF, but also within

ng times indicated underneath.

other multi-level frameworks.

Reducing occlusion continues to be the driving problem for large-
scale graph drawing, and many improvements remain for future work.
The common approach of reducing edge-edge crossings would bet-
ter show low-level structure, but we would also like to better show
high-level structure by reducing the crossings between edges and the
meta-nodes that constitute biconnected components, for example by
improving the biconnected component tree drawing algorithm.

In this work we focus on the problem of exploiting quasi-tree struc-
ture to make better drawings of graphs that we assert are quasi-trees
using our intuitive definition. A future challenge would be to build a
quasi-tree detector that automatically determines whether a graph is a
quasi-tree, allowing us to include quasi-trees as a topological feature
type in the TopoLayout framework.
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