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ABSTRACT

We present PRISAD, the first generic rendering infrastructure for
information visualization applications that use the accordion draw-
ing technique: rubber-sheet navigation with guaranteed visibility
for marked areas of interest. Our new rendering algorithms are
based on the partitioning of screen-space, which allows us to handle
dense dataset regions correctly. The algorithms in previous work
led to incorrect visual representations because of overculling, and to
inefficiencies due to overdrawing multiple items in the same region.
Our pixel-based drawing infrastructure guarantees correctness by
eliminating overculling, and improves rendering performance with
tight bounds on overdrawing.

PRITree and PRISeq are applications built on PRISAD, with
the feature sets of TreeJuxtaposer and SequenceJuxtaposer, respec-
tively. We describe our PRITree and PRISeq dataset traversal al-
gorithms, which are used for efficient rendering, culling, and lay-
out of datasets within the PRISAD framework. We also discuss
PRITree node marking techniques, which offer order-of-magnitude
improvements to both memory and time performance versus previ-
ous range storage and retrieval techniques. Our PRITree implemen-
tation features a five-fold increase in rendering speed for non-trivial
tree structures, and also reduces memory requirements in some real-
world datasets by up to eight times, so we are able to handle trees
of several million nodes. PRISeq renders fifteen times faster and
handles datasets twenty times larger than previous work.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types;

Keywords: Focus+Context, Information Visualization, Real Time
Rendering, Progressive Rendering

1 INTRODUCTION

PRISAD, our Partitioned Rendering Infrastructure for Scalable Ac-
cordion Drawing, is a generic Accordion Drawing (AD) infrastruc-
ture for rendering and navigating large datasets. AD is a visual-
ization technique that features rubber-sheet navigation and guaran-
teed visibility of selected nodes. Rubber-sheet navigation involves
the user-guided action of stretching on-screen regions of interest; a
stretched region has more screen real estate in which to draw more
unoccluded geometric items from the same world-space region.
When a region is stretched, the nailed-down borders of the win-
dow prevent data from being pushed off-screen and AD squishes
data in appropriate regions, as shown in Figure 1.

Guaranteed visibility of data, represented by geometric objects
on screen, is trivial with small datasets. The topological structure
of the tree shown in Figure 1, and colors for each node, are visi-
ble without navigation. However, when the size of the dataset be-
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Figure 1: On the left, we show a tree dataset drawn with uniformly
allocated space for each vertical node width and horizontal node
height. When navigating by stretching a rubber-sheet surface, as in
the right figure, the distortions allocate more screen-space to some
regions of nodes and other regions are squished into less screen-space.

comes large, as in Figure 2, AD must guarantee the visibility of
all marked regions. A brute-force drawing algorithm, which would
render every node in the dataset, does not offer sufficient rendering
performance for animating such large datasets, especially with our
guaranteed visibility requirements.

As data is never pushed off-screen with AD navigation, we can
always map data from its infinite-precision world-space position to
our finite-precision dataset representation in screen space. AD nav-
igation leads to compressing regions of many data items to subtend
a single screen-space region, yielding high depth complexity. To
achieve scalable rendering performance for large datasets, we must
efficiently reduce the amount of drawing in dense screen-space re-
gions where drawing a subset of geometric data objects is sufficient
to represent the entire region. Culling the correct data in dense
regions is particularly difficult when we must guarantee the visibil-
ity of important features at all times; we must ensure both marked
node visibility, and a proper representation of the dataset in every
distorted region of screen space.

This paper presents our generic PRISAD infrastructure, and two
applications built on it. PRITree implements the feature set of Tree-
Juxtaposer for visually comparing hierarchies [4], and PRISeq has
the functionality of SequenceJuxtaposer for visualizing multiple
aligned genomic sequences [13]. Our contributions include:

• PRISAD tightly bounds overdrawing with pixel-based render-
ing constraints, giving much more time-efficient rendering of
dense, complex regions.

• PRITree computes and stores marked regions of trees in struc-
tures capable of determining marking characteristics quickly,
eliminating the need for caching marking properties for each
node.

• PRITree traversal algorithms for drawing and picking exploit
the dataset topology, instead of adding a memory-expensive
external data structure.

• PRISeq traversal algorithms efficiently aggregate columns to
accurately reflect relative nucleotide proportionality.

In the next section, we give an overview of related work. In Sec-
tion 3, we discuss our generic approach to scalable accordion draw-
ing. We present PRITree in Section 4 and evaluate its performance
in Section 5. PRISeq is covered in Section 6. We describe possi-
ble future work and conclusions in Section 7. Appendix A contains
supplementary details of our PRITree rendering techniques.



Figure 2: Top: For densely drawn regions of a dataset, we can mark
several regions of interest with guaranteed visibility, and we always
draw all marked regions that are smaller than a pixel. Bottom: In
the identically marked tree without guaranteed visibility, these small
regions may not be drawn.

2 RELATED WORK

The TreeJuxtaposer [4] application introduced AD navigation with
tree topologies and performed structural comparisons among a
small set of tree datasets. TreeJuxtaposer includes fast tree compar-
ison algorithms, which provide the primary bidirectional mapping
between common tree structures. The mapping allows users to vi-
sually determine structure, and the application uses the mapping
results to highlight regions of structural difference. Since Tree-
Juxtaposer scales to tree datasets with many more nodes than the
number of available on-screen pixels, highlighted regions would
not necessarily be visible without adhering to our requirements for
guaranteed visibility.

The AD infrastructure used by TreeJuxtaposer is optimized for
rectilinear trees and is not capable of displaying datasets from other
application domains. Also, the scalability of TreeJuxtaposer limits
the maximum size of single tree datasets to 550,000 tree nodes, or
comparisons of two 150,000 node trees [4]. DOITrees [8], for ex-
ample, have been used to explore the directory structure of the Open
Directory Project website [10], which contains more than 600,000
nodes. The rendering performance of large datasets becomes an

issue with non-trivial topological structures; the TreeJuxtaposer re-
sults that benchmark performance with only balanced binary trees
do not capture performance results with real-world datasets with
high-degree nodes. We compare the performance of TreeJuxtaposer
with PRITree in Section 5.

The TJC-Q and TJC applications [3] allow AD browsing of sin-
gle trees, but do not support comparisons between multiple trees.
PRISAD builds on the lightweight, grid-based AD infrastructure
first proposed for these applications. Both perform culling when
all leaves of a subtree subtend the same pixel, and are tuned for
balanced binary datasets. Like TreeJuxtaposer, both share the limi-
tations of being designed to handle only trees. The TJC application
avoids the memory cost of quadtrees by supporting picking through
the use of cutting-edge graphics hardware, and is capable of render-
ing a tree of 15 million nodes in one-third of a second. TJC-Q can
run on commodity hardware, as can PRITree, and handles trees of
5 million nodes using lightweight quadtrees.

SequenceJuxtaposer [13] is an AD application for the visualiza-
tion of genomic sequences of up to 1.7 million nucleotides, using
a quadtree-based AD infrastructure built on the algorithms used by
TreeJuxtaposer. In contrast, standard Web-based genome browsers
such as the Ensembl [9] and UCSC [5] systems show sequence data
with jump cut transitions between different scales. In Section 6.2,
we compare PRISeq, shown in Figure 3, with SequenceJuxtaposer.

Figure 3: PRISeq is a genome sequence visualization application built
on PRISAD with the feature set of SequenceJuxtaposer [13].

Slack discusses PRISAD and PRITree in detail in his thesis [12].
Few other information visualization systems can handle extremely
large datasets. Fekete presents a system that can handle treemaps of
one million nodes [7]. While AD could in theory be implemented
within an existing toolkit such as the InfoVis Toolkit [6], its fo-
cus on generality rather than scalable accordion drawing precludes
achieving the performance we describe here. The Tulip system
for graph drawing [1] is quite general and its data structures were
carefully designed for scalability. However, it would be very dif-
ficult to adapt Tulip for general accordion drawing, especially due
to our guaranteed visibility requirements for rendering. The Jazz
and Piccolo zoomable user interface toolkits [2] also provide sup-
port for multi-scale navigation through arbitrarily large 2D surfaces,
but not guaranteed visibility of landmarks or rubber-sheet naviga-
tion. NicheWorks [14], a graph visualization application that lays
out nodes radially, is capable of displaying graphs of up to 50,000
nodes with real time manipulation, and its performance decreases
linearly with dataset size. In contrast, PRISAD provides constant
rendering performance for datasets.



3 PRISAD

Applications capable of interacting with PRISAD benefit from
generic accordion drawing support for operations such as navi-
gating, culling, and marking. We introduce our contribution of
a generic infrastructure in Figure 4, by showing key components
that PRISAD-enabled applications must provide to interact with
PRISAD. We require the following algorithms for all PRISAD ap-
plications, and we discuss these algorithms for PRITree in Sec-
tion 4:

• calculating the size of underlying PRISAD structures
• assigning dataset components to the PRISAD structures
• initiating a rendering action with two partitioning parameters
• ordering the drawing of geometric objects through seeding
• selecting or aggregating geometric objects for culling
• drawing individual geometric objects

Once an application meets these constraints, the PRISAD compo-
nents are responsible for handling the following actions:

• initializing a generic 2D grid structure
• mapping geometric objects to world-space structures
• partitioning a binary tree data structure into adjacent ranges
• controlling drawing performance for progressive rendering
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Figure 4: Initialization of a dataset in PRISAD applications requires a
world-space discretization phase, which must generate several generic
components from application-specific dataset structures. The render-
ing phase separates partitioning from drawing, which simplifies ap-
plication drawing effort for faster pixel-based rendering performance.
The blue column represents the communication required between
separated generic and specific components. S, SX , and SY refer to
split line hierarchies, which we introduce in Section 3.1.

The initialization of PRISAD applications divide screen space
into regions with a split line hierarchy, described in Section 3.1.
These applications use a three-stage rendering pipeline, described
in Section 3.2, which relies on application-specific components but
provides several common AD algorithms for handling the flow of
rendering between application and infrastructure.

3.1 Split Line Hierarchy

A split line is the dividing line of the 2D grid structure of an AD
rendering surface; split lines partition screen space and are used
to map world-space regions onto screen regions. TreeJuxtaposer
uses a two-dimensional quadtree to support AD functionality, and
the memory required for that additional data structure is the pri-
mary limitation of its scalability. We use less memory by decou-
pling the horizontal and vertical split line hierarchies, as proposed
by TJC [3].
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Figure 5: A split line hierarchy is a binary tree structure that provides
a linear ordering and a hierarchical subdivision of areas. For instance,
the region for split line B is bounded by its parent region D, and B
separates its bounded descendants A and C.

Figure 5 shows that a split line hierarchy provides a linear order-
ing of the lines, and a recursive subdivision of regions. The initial-
ization of a split line hierarchy for both horizontal and vertical com-
ponents of our grid surface begins after the application determines
the required grid size. Each split line may be moved independently
in its region, and we use a relative offset for the position of a split
line in its bounded region. Moving a split line affects the absolute,
screen-space position of both the moving split line and all of its
split line hierarchy descendants. All AD implementations achieve
O(log n) performance for computing the absolute positions of split
lines using similar hierarchies, when any position is required by the
rendering algorithm. However, since we cache absolute positions of
nodes, and only require absolute positions for O(p) split lines, for
p pixels on screen, the amortized per-frame cost of world-to-screen
computation is also O(p).

After initialization of our split line hierarchies, the application
determines world-space positions for each node in both hierarchies.
Furthermore, an application-specific object is attached to each split
line in the hierarchy. In the case of trees, a leaf is assigned to each
split line of the vertical hierarchy, whereas sequences store an ag-
gregated column of aligned nucleotides in the horizontal hierarchy.
We use this generic mapping step, as shown in Figure 4, to cre-
ate a bidirectional mapping between split lines and their associated
geometric objects that supports constant-time lookup.

3.2 Rendering pipeline

The rendering pipeline of PRISAD defines a generic structure for
all applications that use our infrastructure. Our pipeline has three
stages:

1. partitioning a split line hierarchy into small regions
2. seeding the partitioned split line regions and marked groups
3. drawing each seeded region as a geometric object

All previous AD infrastructures, which are tightly coupled to
application-specific algorithms, perform partitioning during draw-
ing. The use of embedded, drawing-time partitioning restricts those
drawing methods to application-specific dataset domains. Since we
separate partitioning from drawing, our application-specific draw-
ing algorithms are simple, are bounded by the number of partitions,
and do not require computation of screen-space positions to guar-
antee coverage of specific pixels. The next section describes parti-
tioning in more detail.

3.2.1 Partitioning

In PRISAD a partition of the dataset into roughly equal sized
screen-space regions must be recomputed every time navigation
occurs. After partitioning, these screen-space regions are either
smaller than one pixel, or contain only one geometric object to
draw. Each region is bounded by split lines, so partitioning returns
a list of split line ranges.

SX and SY are the horizontal and vertical split lines hierarchies
that constitute our AD grid in PRISAD. An application developer



must determine which of the two hierarchies to partition for the
rendering phase; we refer to the hierarchy used to render a scene as
S. With PRITree, we observe that the dense structure of topologi-
cal leaves in the vertical direction is ideal for culling, whereas the
horizontal direction lacks uniform, traversable structure; thus, we
partition SY so that the primary rendering direction is horizontal.

In contrast, for PRISeq the primary rendering direction is verti-
cal, so we partition SX . Vertical nucleotide columns are expected to
be similar, because the rows of multiple gene sequences are aligned.
We exploit this property to save time and space by run-length en-
coding. Rendering a single tall rectangle for a strip of identical
nucleotides is faster than drawing many squares of the same color,
and keeping a list of the rows where nucleotide changes occur is
concise because of these similarities. For example, the left image
in Figure 12 illustrates how we can draw the entire k+2 column for
all sequences using a single vertical rectangle, and store only one
row in the list.

An application developer must also determine the optimal value
of the partitioning stopping criteria, τ , which we compute to be one-
quarter pixel for PRITree and one pixel for PRISeq. The PRISeq
case is straightforward, because the geometric object is a filled rect-
angle adjacent to its neighbors. The derivation of this optimal one-
quarter pixel τ value for PRITree is given in Appendix A; the gen-
eral discussion of choosing the best τ for all PRISAD applications
is beyond the scope of this paper.
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Figure 6: The partitioning phase of the rendering pipeline subdivides
a split line hierarchy according to the sub-pixel stopping criteria τ ,
in this case subdividing horizontally. Widths of each horizontal par-
titioned stripe, α , β , and χ , are narrower than τ , and partitioning
does not follow the topology of the dataset.

Once PRISAD is given both a split line hierarchy S and a sub-
pixel stopping criterion τ , the partitioning process descends S until
the minimum set of split line regions smaller than τ is found. The
descent terminates when the process determines the first split line
region smaller than τ , and we add that region to the partitioned
queue, P. If the hierarchy cannot find a split line region smaller
than τ for a descent, then the smallest possible region is added to P.
When the partitioning process is complete, P will represent the en-
tire hierarchy of S, where split line regions are grouped into either
single geometric dataset items or ranges of items. For example, in
Figure 6, A and B are single items in split line ranges α and β , and
split line region χ stopped descent when it was smaller than τ , with
the range of items [C, E]. We use the results of this partitioning to
initialize the application specific seeding algorithm.

3.2.2 Seeding

Progressive rendering of large datasets requires a seeding stage,
where applications can impose an ordering for drawing. For exam-
ple, to ensure visibility of landmarks during animated transitions
of datasets too large to completely render in one frame, we render
the marked regions of PRITree first. The region that we enqueue
for seeding is the partitioned split line hierarchy, described in Sec-
tion 3.2.1. If we can draw the entire scene sufficiently fast such that

progressive rendering is unnecessary, the seeding stage can pass the
drawing order computed during the partitioning stage directly to the
drawing stage, as shown by the dotted line in Figure 4.

4 PRITREE

PRITree is our tree-based PRISAD application, which we use in
this paper to benchmark performance differences between AD im-
plemented in PRISAD applications, versus TreeJuxtaposer [4], the
original AD application for visualization of trees. PRITree and
TreeJuxtaposer are functionally equivalent, so we claim the per-
formance advantages of PRITree manifest with our improvements
in both AD infrastructure and tree-specific components.

PRITree requires new algorithms for translating tree structures
for use in our generic infrastructure, as shown in Figure 6. To use
our PRISAD infrastructure, PRITree performs laying out and grid-
ding operations to align tree nodes to the smallest possible grid
structure. In PRISAD, gridding is the positioning of a world-space
object in a discrete, screen-space region, which is formed by the
construction of a grid between horizontal and vertical split line hi-
erarchies.

After the width and height of a tree are determined from parsing
the tree dataset, PRITree sends the two grid dimensions to PRISAD,
which returns a pair of split line hierarchies, SX and SY . PRITree is
then responsible for positioning each node in its rectilinear world-
space layout position into the PRISAD grid by assigning a bound-
ing rectangle in SX and SY . Even though no rectangles overlap in
PRITree, preventing the overlapping of geometric objects is not a
generic restriction of PRISAD. When a leaf node is positioned in
our gridding process, PRITree sends that leaf and its position in SY
back to PRISAD for mapping. This mapping allows for constant-
time bidirectional lookup for leaves near a given screen-space po-
sition and for an on-screen position given a leaf object from the
topology.

We discuss traversing the topological tree in Section 4.1, and
creation and traversal of data structures for guaranteed visibility in
Section 4.2.

4.1 Tree Traversal

Tree traversal is the process of following a path from a starting node
to an ancestor, or descendant, node. As discussed in Section 3.2.1,
the partitioning process creates several adjoining ranges of leaves
that represent the entire set of leaves in the tree. Each adjoining
range subtends less screen space than the constant τ , which we de-
rive as one quarter the size of a pixel in Appendix A. For each
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Figure 7: Left: Each partitioned range of leaves renders one path to
the root from some leaf in its range; we only draw tree edges marked
in red. The top two partitions contain single leaves, A and B, so they
are the only choices. When deciding between C, D, and E, we must
choose either D or E or else b will not be rendered, which would be
an incorrect rendering gap. Right: Our selection traversal processes
paths from the green leaf range to all subtrees with leaves in that
range larger than τ . The black edges represent traversal paths and
red edges stop the traversal from processing subtrees larger than τ .



partitioned range, we draw a leaf path, as shown by the red tree
edges in the left image of Figure 7. Each path follows the shortest
route from a selected leaf in the range to either the root or a pre-
viously drawn path. The selection of the leaf for each range is the
most important run-time decision for our drawing algorithm, since
poor leaf choice leads to an incomplete scene rendering. We now
describe how our leaf selection process works, using the right im-
age of Figure 7.

Our selection traversal starts at the first leaf node in the range Ls.
We ascend to the ancestors of Ls until we find the first internal node
larger than τ , which is A; the size of A is the sum of the sizes of
leaves under A. It follows that the size of B, the child under A on
the path to Ls, is not as large as τ , so we know that we can draw
the subtree under B as line of a single pixel. We will draw the leaf
path from the starting node Ls if no other subtree that is larger than
τ can be drawn by drawing a path from Ls to B.

We locate the next leaf to ascend, Li+1, by finding the node ad-
jacent to Li, the maximum leaf under A. Our algorithm continues
by ascending from Li+1 because this leaf is still in the range [Ls,
Lk]. Similar to finding B, the ascent finds C to be the uppermost
node not as large as τ . However, the pixel-high path from Li+1 to
C would be shorter than the path from Ls to B, so we keep Ls as the
representative rather than switching to Li+1. Finally, the maximum
leaf under the parent of C is outside the range [Ls, Lk], so our al-
gorithm terminates, choosing to draw the path from Ls; in fact, any
leaf in [Ls, Li] is a good choice.

By incorporating τ as our ascent termination criteria as well as
our partitioned leaf range maximum size, we limit the number of
necessary ascents to, at most, two per leaf range. This limit is the
direct result of paths ascending to either side of a leaf range, be-
cause a subtree larger than τ must exit the leaf range on at least one
of the two possible sides of the range. This hard limit on the num-
ber of ascents per leaf range tightly bounds the amount of traversal
necessary to render an entire scene. We defer further discussion on
leaf choice to the Appendix A.2 derivation of the optimal value for
τ .

4.2 Marked Groups

In PRISAD, marked groups are sets of geometric items that should
be drawn in a specified color. These groups might contain com-
puted differences, or user selections. Each tree node has a unique
key in our topological structure. Keys are assigned by a pre-order
traversal, so every complete subtree of the topology is a single, con-
tinuous range of keys, with the root node key smaller than all other
keys. For each marked group we store the ranges in a binary tree
structure, which allows us to search the list of all marks for any
node in O(log r) time, for r marked ranges. This look-up is much
more efficient than the O(rn) cost of TreeJuxtaposer, where n is
the number nodes of the dataset. Although TreeJuxtaposer cached
the last computed group after each marking action, Figure 11 shows
that the cost of color look-up before caching is very slow in a worst-
case marking situation.

To provide visual landmarks during animated transitions, our
progressive rendering algorithm draws marked groups before draw-
ing the rest of the scene. TreeJuxtaposer also renders marked
groups before unmarked objects, but there is no guarantee of finish-
ing in one frame if the marked regions contain large ranges. Unlike
TreeJuxtaposer, PRITree progressive rendering only draws a single
leaf path from any leaf in the marked range to the root, for each
marked range. This sparse marking, as shown in Figure 8, draws
enough of each range to quickly portray a useful skeleton of marks
at low cost. The time to render a skeletal path is O(h) for a subtree
of height h, versus O(n) for a subtree containing n nodes. With this
improvement, we also render skeletal paths for all marked groups
in the first frame.

Figure 8: Left: A fully rendered tree scene with several colored marks.
Right: The skeleton view of the same tree, with each marked group
represented as a path from node to root.

5 EVALUATING PRITREE

In this section, we evaluate the performance of PRITree (PT) us-
ing TreeJuxtaposer (TJ) performance for identical actions as our
benchmark. All performance tests were performed using a 3.0 GHz
Pentium IV processor, Java 1.4.2 04-b05 HotSpot runtime environ-
ment with a maximum heap of 1.8 gigabytes, GL4Java v1.4 graph-
ics libraries, and an nVidia Quadro FX 3000 video chipset, running
twm in XFree86 version 4.3.99.902. The window size was set to
640 by 480 pixels, and timing results were output by millisecond-
accurate Java system functions, and averaged from several manu-
ally prompted redrawings of each tested dataset.

First, we compare the performance of both applications with
respect to rendering a series of synthetic and large, real-world
datasets. Our analysis of both total scene rendering time and mem-
ory consumption shows that we do not lose performance by switch-
ing from application-specific algorithms to the generic infrastruc-
ture of PRISAD; on the contrary, we achieve a speed-up. We then
investigate the worst-case marking performance on the comparison
of large datasets.

The space of all possible trees is vast and hard to classify. We use
two sequences of synthetic data that bound the degree of nodes: bal-
anced binary trees, and star trees: the bushiest possible trees where
all nodes but one are leaves, attached to a single root node. For
real-world datasets we chose two pairs of large comparable trees:
the InfoVis 2003 contest classification trees (IVC) [11], each with
over 190,000 nodes; and two Open Directory Project categoriza-
tion trees (ODP) [10], from March and June 2004, each with over
480,000 nodes.

5.1 Results

The top of Figure 9 shows that both TJ and PT achieve near-
constant rendering performance, except for the linear cost of star
tree rendering with TJ. TJ performs poorly with bushy trees, since
when the root node is larger than one pixel, TJ will draw all of its
children. The star tree is the worst possible case for bushiness, but
the IVC comparison in TJ is considerably more expensive than the
binary tree curve for the same reason. In PT, ODP requires four
times longer to render than a similarly sized binary tree, because
the pair of ODP trees has over 30,000 nodes marked as different.
Therefore, PT must render many more nodes to provide guaranteed
visibility of many marks. Since there are relatively few local differ-
ences, marked group look-up and rendering is not a huge cost for
IVC, when compared to ODP.

The bottom of Figure 9 is a detail view showing the faster,
sub-second rendering times for the rest of the datasets. PT
quickly reaches a constant-time plateau with star trees, showing
that PRISAD has succeeded in setting strict limits in the number



of leaves to draw through partitioning: the number of leaves ren-
dered is at most four times the number of vertical pixels on screen.
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Figure 9: Top: Performance time for PRITree (PT) and TreeJuxta-
poser (TJ) with several datasets. Bottom: detail of lower left corner.

The performance of binary trees in PT also becomes sub-linear
after a threshold number of nodes. Again, when we render datasets
with four times the number of leaves as vertical pixels, we only
render that many more nodes for every doubling in size of our bal-
anced binary trees. This progression of drawing a constant number
of leaves more for every doubling in dataset size is exactly the graph
of O(log n), for trees with n nodes.

We note the inconsistency in the graph for binary trees in TJ: the
rendering time for a binary tree of 262,143 nodes is faster than a
tree of less than half its size, illustrating the overculling problem in
TJ where large binary trees are incorrectly rendered with gaps.

Figure 9 also shows that the rendering time for IVC with PT
is more than five times faster than TJ. IVC includes many high-
degree internal nodes, and the slow performance of TJ during the
contest comparison is primarily related to the overdrawing of dense
regions, With PT, we again see the contest comparison closer to
the binary tree curve, simply because it has much more internal
structure than the star tree.

In Figure 10, we see that the binary and star trees series both
consume linear amounts of memory, but with different constants.
The PT memory performance comparison reveals that PT is easily
capable of loading trees four times larger than TJ. For the contest
comparison, PT is more than three times as efficient as TJ.

Finally, in Figure 11, we see that the performance of PRITree is
orders of magnitude faster than TreeJuxtaposer immediately after
marking. The first scene drawn after marking with TreeJuxtaposer
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Figure 10: Memory performance for PRITree (PT) and TreeJuxta-
poser (TJ) with several datasets.

Action / Application TreeJuxtaposer PRITree
First Scene Unmarked 115 0.27
Subsequent Scenes Unmarked 1.5 0.27
First Scene Marked 130 2.5
Subsequent Scenes Marked 1.5 0.55

Figure 11: The marking time performance, in seconds, for a classifi-
cation tree from the InfoVis 2003 contest [11].

must recompute colors for each node in the topology, which re-
quires linear traversal through a list of all marked nodes. PRITree
does not cache marks for nodes, which gives slower post-marking
performance, but only a small one-time cost for computing the col-
ors for all nodes. By not caching the marks in PRITree, we decrease
our memory footprint, leading to better scalability.

6 PRISEQ

PRISeq, our genomic sequence-based PRISAD application, uses a
layout identical to the layout proposed by SequenceJuxtaposer [13].
We position pre-aligned genomic sequences in the vertical direc-
tion, while we display the sequence data of nucleotides, which con-
sists of A, C, G, and T , from left to right.

As discussed in Section 3.2.1, the PRISeq partitioning exploits
the probability of vertical coherence in a column of nucleotides. To
constrain the drawing time so it depends on the number of pixels
and not on the dimensions of the dataset, we must, for the grid-
based layout of PRISeq, cull in both directions. While the PRITree
drawing strategy hinges on culling by careful selection along a leaf
path, the PRISeq culling strategy is to aggregate information about
the entire region encompassed by a split line to draw a representa-
tive object for it. These representatives are computed at most once,
by caching the results of lazy evaluation.

6.1 Aggregating Columns

We aggregate across multiple columns according to the split line
hierarchy. Recall that split lines encompass regions of space, with
lines higher in the hierarchy subtending larger regions, and that
the partitioning respects this hierarchical structure. SequenceJux-
taposer selects a nucleotide in a region at random for every frame,
giving a misleading visual indicator of nucleotide density and caus-
ing flicker during transitions due to the lack of frame-to-frame
coherence. Our representative object reflects the density of nu-
cleotides in the region in question; specifically, we find the most



frequently occurring nucleotide in the region and use its color.
Representatives are recursively computed and cached, so finding
a higher-level split line automatically populates the cache with its
descendants. We break ties with random selection from the candi-
date colors, but the true nucleotide counts are propagated upwards
so that the selection does not bias its ancestors, and so that the se-
lection persists across frames due to the caching. Figure 12 shows
a small example. After the representative objects are computed for
each row of an aggregate column, the run-length encoding strategy
described in Section 3.2.1 is used to minimize rendering time and
save storage space.

SeqA A A C C

k k+1 k+2 k+3

SeqB A C C C

SeqC G G C G

SeqA A C

SeqB A C

SeqC G G

[k, k+1] [k+2, k+3]

SeqA C

SeqB C

SeqC G

[k, k+3]

Figure 12: PRISeq recursively aggregates information for columns en-
compassed by split lines to determine which nucleotide color should
be used for the representative object. Left: No aggregation is per-
formed at the highest magnification since every nucleotide is visible.
Rendering column k+2 requires drawing only a single vertical rectan-
gle since C is in every sequence for that column. Center: For column
range [k, k +1], SeqB has a tie, so A is randomly chosen but the true
counts are propagated upwards. Right: When aggregating all four
columns, C is found to occur most frequently for SeqB.

Aggregating a single region encompassed by a split line has a
one time cost of O(r), where r is the number of nucleotides in the
range. We could precompute the aggregation for the entire split line
hierarchy, but we instead save time and space by lazy evaluation
that fills a cache. The runtime cost for drawing a frame where all
aggregated columns are found in the cache is O(h∗v) where h is the
number of horizontal pixels and v is the number of vertical pixels,
because there are at most h columns, drawing a column requires at
most O(v) work, and cache lookup time is constant. The number of
sequences or nucleotides may far exceed the number of vertical or
horizontal pixels, but our aggregation method for PRISeq renders
only O(p) geometric objects in O(p) time, where p is the number
of on-screen pixels and p = h∗ v.

6.2 Performance

The result of using the PRISAD framework is order-of-magnitude
improvements in both time and space for PRISeq (PS) compared
to SequenceJuxtaposer (SJ). PS can handle datasets of 6400 se-
quences of 6400 nucleotides each, for a total of 40 million nu-
cleotides, which is a twenty-fold improvement over the 1.7 mil-
lion nucleotide limit of SJ. Rendering a dataset of 44 species with
17,000 nucleotides, for a total of 740,000 nucleotides, takes 7 sec-
onds with SJ [13]. PS can render the same dataset in less than one
half-second.

7 FUTURE WORK AND CONCLUSIONS

Many users have requested editing functionality for trees, which
would require modifying PRISAD to support dynamic rather than
static data. Adding internal logging capabilities to PRISAD would
also benefit users who wish to undo actions, replay their activi-
ties, or load a previously saved navigation state. Finally, we would
like to combine PRITree and PRISeq to allow biologists to explore
the interplay between genomic data and hypothesized evolutionary
trees.

We have presented PRISAD, a partitioned rendering infrastruc-
ture for scalable accordion drawing. Our infrastructure is the

first to provide a generic interface to the accordion drawing fea-
tures of rubber-sheet navigation and guaranteed visibility of marked
nodes. Additionally, PRISAD tightly bounds overdrawing with
pixel-based rendering constraints; all partitioning terminates at a
known pixel-based value and the application-specific algorithms
are prohibited from further partitioning. These constraints yield
bounded rendering time performance for several tree sizes and
topologies evaluated in comparison to TreeJuxtaposer performance.
PRITree and PRISeq are applications built on PRISAD that dupli-
cate the feature sets of TreeJuxtaposer and SequenceJuxtaposer, re-
spectively. A detailed comparison of PRITree and TreeJuxtaposer,
using the IVC dataset, shows an improvement of three to four times
more efficient memory usage, and five times faster rendering. Our
new data structures and algorithms for marking groups in PRITree
yield an order of magnitude speed increase. PRISeq provides order-
of-magnitude improvements for both rendering speed and mem-
ory usage. PRITree and PRISeq are open source and available for
source or binary download at http://olduvai.sf.net.
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APPENDIX A PRITREE TRAVERSAL DETAILS

A.1 Leaf overculling

The primary focus of previous tree rendering applications, such as
TreeJuxtaposer and TJC, is to minimize the number of branches
drawn for a subtree beneath a node, rather than minimizing the
global number of nodes drawn. Attempts by these applications to
prevent overdrawing fail for some complex topologies, as demon-
strated by the evaluation of TreeJuxtaposer in Section 5. Overdraw-
ing between topologically partitioned components is the major in-
efficiency of top-down partitioning and rendering. Top-down ap-
proaches do not consider overlaps of adjacent topologies, which in
some datasets renders ten times the number of leaves than there are
vertical screen pixels.

Our PRITree rendering begins by drawing tree scenes starting
from the set of all leaf nodes, and then proceeding bottom-up, or
toward the root node. The leaf nodes are partitioned in a separate
process from the drawing algorithm, which simplifies the entire ren-
dering algorithm. We can partition and draw simple paths from the
leaves to the root provided that it is still possible to correctly ren-
der the entire scene, which means no visible differences from the
brute-force drawing of every node. In this section, we show that the
maximum size for partitioning leaf ranges, to prevent overculling at
the leaves and without exact pixel arithmetic, is half the width of a
pixel.
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Figure 13: If τ is too large, then rendering gaps are visible throughout
the tree topology. The adjacent leaf ranges Lk and Lk+1 render a
single leaf, which may be in pixels adjacent to pixel row Rm, rather
than in row Rn itself which would be left blank.

If τ , the maximum partition size of leaf ranges, is set to one
pixel, then we may underdraw nodes at the leaf level, which then
propagates rendering errors to nodes higher in the topology. When
both adjacent leaf ranges draw outside of a shared pixel, as shown
in Figure 13, gaps may appear in many places throughout the topol-
ogy. One solution to this problem would be to perform exact pixel
arithmetic to ensure each dense leaf region is subdivided until every
leaf range is contained within some pixel.

Our solution, which does not use exact pixel arithmetic, guaran-
tees rendering in every pixel for leaf ranges by using τ of smaller
than one-half pixel. As shown in Figure 14, a smaller τ guaran-
tees rendering into each pixel in the set of all leaves. However, this
is only a solution for complete rendering of dense regions of leaf
nodes; the complexities of bottom-up rendering are discussed next.

A.2 Hierarchical overculling

After AD partitions the split line hierarchy to form a set of consec-
utive, non-overlapping leaf ranges, PRITree rendering draws one
leaf path per leaf range. The leaf path consists of every ancestor,
along the path to the root, of one carefully selected leaf in each
range. Selecting the wrong leaf will result in drawing errors, which
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Figure 14: Restricting τ to less than one-half pixel prevents gaps in
rendering the set of leaves at the expense of overdrawing. Other
gaps in rendering are also prevented by our tree traversal.

we refer to as hierarchical overculling. Unlike leaf overculling, we
may notice these drawing errors in sparsely populated regions of
leaf nodes.

Consider a path of tree nodes, P, drawn from a leaf toward the
root, which is entirely contained in a given pixel row. P may be
culled and not drawn if another path of nodes, Q, from the same
leaf range, may be drawn over the entire length of P. If both P and
Q terminate at a common node, R, in the topology, then the subtree
of nodes under R between P and Q can be culled to the same path
on-screen path; this logic is similar to the subtree culling arguments
used in TJC [3].

The more difficult case occurs when P and Q do not terminate
at the same node. To determine which of P or Q is the better for
rendering, we must traverse, as described in Section 4.1, to find the
longest of these two paths. The termination criteria of the subtree
width for P and Q, which we call ψ , is at least as large as τ in order
to guarantee a strict bound of two ascents per leaf range. However,
if we also apply the restriction that the sum of τ and ψ is less than
one-half pixel, then we may use a similar argument from the previ-
ous section that filled all rendering gaps in the range of all leaves.
Consider the following equations, where p is the with of a pixel:

ψ ≥ τ → ψ − τ ≥ 0 (1)
τ +ψ < p/2 → p/2− τ −ψ > 0 (2)
p/2−2τ > 0 → τ < p/4 (3)

maximize τ → τ = p/4 → ψ > p/4 (4)

where (3) is the addition of our restrictions, (1) and (2). Since we
also want to minimize the number of partitions, we maximize the
size of τ to give us (4). This final solution tells us that with our re-
strictions, we have optimal solutions of τ and ψ , which means that
we render up to four times the number of leaves as there are verti-
cal pixels on-screen and each leaf range tree ascent requires at most
two traversals. The advantage of this result is that we do not have
to perform exact pixel arithmetic on adjacent subtrees, which would
become costly for complicated tree datasets. Instead, we have a ren-
dering result that depends only on the number of on-screen pixels,
which reduces the cost of rendering complex and dense datasets.


