D-Charts: Quasi-Developable Mesh Segmentation

Dan Julius Vladislav Kraevoy Alla Sheffer
Department of Computer Science, University of British Columbia
Motivation

• Mesh segmentation into compact charts that unfold with minimal distortion

• Applications
 – Parameterization for mapping
 • Textures, Bumps, BRDFs, displacement maps, etc.
 • Geometry Images
 – Patterns for sewing, metal forging
 – CAD
 • Reverse engineering
 • Surface reconstruction
Developable surfaces

- Surfaces that unfold onto the plane with zero distortion
- Gaussian curvature is zero at every point

Find a quasi-developable segmentation
Previous work

- Texture atlas generation
 - [Levy et al. ‘02], [Zhou et al. ‘04]
 - [Garland et al. ’01], [Sander et al. ’03]
- Feature based
 - [Katz and Tal ‘03]
 - [Gelfand and Guibas ‘04]
- Patterns:
 - [McCartney et al. ‘99]
 - [Mitani and Suzuki ‘04]
- Developable surfaces
 - [Leopoldseder and Pottmann ‘98]
 - [Pottman et al. ’01]

Planar

Not developable

Not compact

Not segmentation
Lloyd based segmentation

- We use Lloyd segmentation approach
- Introduced by [Cohen-Steiner et al. ‘04] - planar charts
- Various extensions presented at EG ‘05
- Charts represented by proxies:
 - Normal to plane
 - Seed triangle
- Challenges:
 - Developable proxies
 - Bound error
Lloyd based segmentation – Framework

- Lloyd iterations:
 1. Select random triangles to act as seeds
 2. Grow charts around seeds using a greedy approach
 3. Find new proxy for each chart
 4. Repeat from step 2 until convergence

[Cohen Steiner et al. ‘04]
Devlopable surfaces of constant slope

- Developable surfaces – Hard to capture
 - Start with subset, broaden later
- Constant angle between surface normal and axis → Developable chart
- Proxy: <axis, angle> $\langle N_c, \theta_c \rangle$
Fitting error

- Measures how well triangle fits a chart
 \[F(C, t) = (N_C \cdot n_t - \cos \theta_C)^2 \]
- Combine with compactness
 \[C(C, t) = \pi \frac{D(S_c, t)^2}{A_c} \]

\[\text{Cost}(C, t) = A_t F(C, t)^\alpha C(C, t)^\beta \]
Algorithm overview

- Bounded Lloyd iterations
- Hole Filling
- Merging
- Post-Processing & Parameterization
Bounded Lloyd iterations

- Initialization
 - Random / Furthest point seeds
 - Compute initial proxy
- Bounded Growing/Reseeding iterations
- Termination
Bounded Lloyd iterations – Growing

- Use greedy approach
 - Prioritize by $\text{Cost}(C, t)$
- Bound Fitting Error
 - Guarantee (nearly) developable charts
Bound Lloyd iterations – Reseeding

• Find new proxy

\[
\min_{N_C, \theta_c} \frac{1}{A_C} \sum_{t \in C} A_t F(C, t) \text{ s.t. } \|N_C\| = 1
\]

• Find new seed
 – Minimal *Fitting Error*
 – Close to center of chart
Algorithm overview

- Bounded Lloyd iterations
- Hole Filling
Hole filling

- Bound on *Fitting Error*
 \[\text{Unclassified triangles}\]
- Fill holes
 - Large holes \(\rightarrow\) New proxy
 - Small holes \(\rightarrow\) Grow neighbors
Algorithm overview

1. Bounded Lloyd iterations
2. Hole Filling
3. Merging
Merging

- Broaden set of captured developable surfaces
- Reduce number of charts
Algorithm overview

Bounded Lloyd iterations → Hole Filling → Merging

Post-Processing & Parameterization
Post processing

- Straighten boundaries
- Darts/Gussets relax stress
 - Add seams toward high error regions
- Verify disc topology
- Parameterization

[Sander et al. ’02] [Sheffer et al. ’05]
Example results – CAD
Example results – Fandisk

Iso-Charts, [Zhou et al. ’04]
MCGIM, [Sander et al. ’03]
D-Charts

<table>
<thead>
<tr>
<th></th>
<th>Fandisk</th>
<th>Iso-Charts</th>
<th>MCGIM</th>
<th>D-Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Charts</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L_2^{Stretch}</td>
<td>1.021</td>
<td>1.008</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>$L_{\infty}^{\text{Stretch}}$</td>
<td>2.272</td>
<td>2.092</td>
<td>1.017</td>
<td></td>
</tr>
<tr>
<td>L_2^{Shear}</td>
<td>0.018</td>
<td>0.012</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>
Example results – irregular meshes

<table>
<thead>
<tr>
<th>Gargoyle</th>
<th>MCGIM</th>
<th>Iso-Charts</th>
<th>D-Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Charts</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>L_2^{Stretch}</td>
<td>1.009</td>
<td>1.019</td>
<td>1.006</td>
</tr>
<tr>
<td>$L_\infty^{\text{Stretch}}$</td>
<td>2.221</td>
<td>2.153</td>
<td>1.645</td>
</tr>
<tr>
<td>L_2^{Shear}</td>
<td>0.011</td>
<td>0.022</td>
<td>0.008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horse</th>
<th>MCGIM</th>
<th>Iso-Charts</th>
<th>D-Charts</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Charts</td>
<td>15</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>L_2^{Stretch}</td>
<td>1.014</td>
<td>1.035</td>
<td>1.01</td>
</tr>
<tr>
<td>$L_\infty^{\text{Stretch}}$</td>
<td>2.803</td>
<td>2.766</td>
<td>2.315</td>
</tr>
<tr>
<td>L_2^{Shear}</td>
<td>0.014</td>
<td>0.038</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Soft and paper-craft toys
Summary

- Segment mesh into nearly developable charts
- A simple metric of developability for surface charts – *The Fitting Error*
- Use bounded Lloyd iterations
- Use Holes / Merging to correct no. of charts
Thank you

djulius@cs.ubc.ca