SequenceJuxtaposer: Fluid Navigation For Large-Scale Sequence Comparison in Context

James Slack*, Kristian Hildebrand†, Tamara Munzner* and Katherine St.John¥
* University of British Columbia,
† Bauhaus University Weimar,
¥ City University of New York

Overview
- Introduction
- Previous Work
- Interaction Metaphor
- SequenceJuxtaposer
- Conclusion and Future Work

Introduction
- Sequence visualization tool
- Exploration and comparison
- Accordion Drawing
- Stretch and shrink rubber sheet
- Borders tacked down

Introduction Video

Previous Work
- Accordion Drawing
 - TreeJuxtaposer [Munzner 02]
- Sequence Browsers
 - Ensembl [Hubbard 02], UCSC Genome Browser [Kent 02], NCBI [Wheeler 02]
 - MacClade [Maddison 90], VISTA [Mayor 02], phylo-VISTA [Shah 03]
 - Artemis [Rutherford 00], LainView [Duret 96], BARD [Spell 03], PipMaker [Schwartz 00]

Accordion Drawing
- SequenceJuxtaposer guarantees 3 key properties
 - Context
 - Visibility
 - Frame Rate
Guaranteed Context
- Focus+Context
- Combine overview and detail into single view
- More information visible simultaneously
- Avoid getting lost while exploring
- Major information visualization research theme
- Navigation metaphor
- Rubber sheet with borders tacked down

Guaranteed Visibility
- Highlight marks always visible
- Never fall outside of current view window
- Never hidden by something in front
- Never vanish, even if smaller than one pixel
- Requires efficient algorithms
- Explicitly checking all items too slow
- Linear in number of pixels, not number of items
- Details in TreeJuxtaposer paper
 [Munzner et al, Siggraph03]

Guaranteed Frame Rate
- Need realtime update
- Focus+Context interaction must be fluid
- 20-30 frames per second
- Computer graphics challenge
- Progressive rendering

SequenceJuxtaposer
- Fluid comparison of multiple sequences
- Handles DNA and RNA sequence data
- Provides searching, difference calculation

SequenceJuxtaposer Video

Algorithm Complexity
- Sublinear:
 - Runtime algorithms
- Linear:
 - User-initiated actions
- Subquadratic:
 - Preprocessing algorithms
Searching

- Search for motifs
 - Protein/Codon search
 - Regular expressions supported
 - Results marked with guaranteed visibility

Differences

- Explore differences between aligned pairs
 - Slider controls difference threshold in realtime
 - Results marked with guaranteed visibility

Interaction

- Resizing
 - Expand or contract rectangular areas
 - Drag visible rubberband interactively

Interaction

- Animated transitions
 - Grow and shrink groups
 - Allow user to track visual landmarks

Drawing

- Very high information density
- Avoid overdrawing in compressed areas
- Progressive rendering
 - Draw for fixed time, check for user interaction
 - Priority queue to draw items in order of current onscreen size

Drawing Video

Zur Anzeige wird der QuickTime™ Dekompressor "MPEG-4 Video" benötigt.
Results and Performance

- Java prototype using OpenGL, GL4Java
- Memory for AD data structures
 - significant, but linear
 - paper: 1.7 million base pairs
 - current: 20 Mbp

Conclusion

- Accordion Drawing for sequences
- Powerful new information visualization technique
- Guarantees
 - Context for maintaining orientation
 - Visibility of landmarks: searches, differences
 - Frame rate for realtime response to interaction
 - Fluid exploration of big datasets

Future Work

- Performance
 - Memory, speed
- Annotation
- Editing
- Connecting trees and sequences
- Other data types
 - BACs (bacterial artificial chromosomes)

Open Source

- Freely available from
 - SequenceJuxtaposer
 - olduvai.sf.net/sj
 - TreeJuxtaposer
 - olduvai.sf.net/tj

Acknowledgements

- Collaboration
 - David Hillis and lab members, UT-Austin
- Discussions
 - Wayne Maddison, David Haussler, Nina Amenta
- Technical writing
 - Cláran Llachlan Leavitt
- Funding
 - NSF/DEB-0121651/0121682
 - German Academic Exchange Service