Cross-Parameterization and Compatible Remeshing of 3D Models

Vladislav Kraevoy Alla Sheffer
Department of Computer Science
University of British Columbia
X-Parameterization

- X-Parameterization: mapping between surface models (meshes)
- Applications:
 - Properties transfer
 - Morphing
 - Editing – e.g. blending
 - Template fitting
X-Parameterization

• Requirements
 – Bijectivity (one-to-one)
 – Feature correspondence
 – vertex to vertex
 – Low distortion
Compatible Remeshing

- Compatible meshes – meshes with identical connectivity
- Required by many applications of X-parameterization
 - Morphing
 - Editing
- Prerequisite: X-parameterization
Previous work: X-parameterization

- Most use heuristics - can fail
- Base mesh [Lee et al. 1999, Michikawa et al. 2001, Praun et al. 2001, Schreiner et al. 04]
 - Segment meshes into triangular patches (same connectivity)
 - Map patches to base triangles
 - [Praun et al. 01] - given a base mesh robustly construct segmentation
 - [Schreiner et al. 04] – more later
Previous work: Compatible remeshing

- Mutual tessellation [Alexa 2000, Schreiner et al. 04]
 - Intersect meshes in parameter domain

- Regular base mesh refinement [Lee et al. 1999, Praun et al. 2001]
 - Remesh with subdivision connectivity

- Both methods: output meshes much larger (~x10) than input
 - For accurate approximation
Technique Goals

• X-Parameterization
 – Bijective
 – Exact feature vertex correspondence
 – Low distortion (preserve shape)
 – Minimal user input: models + feature vertices

• Compatible remeshing
 – Closely approximate the input models
 – Similar (order of magnitude) number of elements as input

• Efficient & robust
2. Low distortion, bijective X-parameterization

3. Compatible remeshing

1. Common base mesh construction
 - Provably correct for genus 0

Input: models + features
Initial X-Parameterization

• Map each patch to corresponding base triangle
 – Shape preserving parameterization
 [Floater 2003]
 – Guarantee bijectivity

• Given a base mesh previous methods employed similar techniques
• Not good enough…
Distortion & Artifacts

- Badly shaped patches = high distortion
- Artifacts: map polyline patch boundaries to straight lines
- Need additional processing to reduce distortion
X-Parameterization: Smoothing

- Optimize (smooth) base mesh parameterization
 - Move vertices between base mesh triangles
- Unconstrained parameterization [Khodakovsky et al., 2003]
 - Solve (repeatedly) a global linear system - far from trivial...
 - No guarantee of bijectivity
- Our approach
 - Treat base as set of overlapping domains
 - Iteratively optimize mapping within each domain
Overlapping domain structure

- Domain per base triangle
 - Contains base triangle + 3 adjacent
 - Mapped to equilateral triangle in 2D
 - Parameterize all vertices mapped to those triangles onto the domain
Smoothing

- For each base triangle \(b \)
 - Create corresponding overlapping domain
 - Compute new location in equilateral domain for each vertex on \(b \)
 - Based on neighbors
 - Shape preserving [Floater 2003]
 - Map vertices back to base mesh
 - Find base triangle & compute coordinates

- Repeat
- Adjacency assumption
Smoothing Framework

- Drastically reduce distortion
 - Improves patch shape + relaxes boundaries
- Preserve bijectivity
- Generic framework – can replace the shape preserving objective function by any other
Results

Normal transfer
40K/40K faces
59 sec

Texture transfer
80K/7K faces
56 sec

Motion transfer
joint result with [Sumner & Popovic 04]
Compatible Remeshing

• Previous:
 – overlay or subdivision
 – increase mesh size by order of magnitude

• Idea:
 – Use connectivity of one model ("source") as basis
 – Map to second model ("target") using X-parameterization
 – Improve target approximation
 • local modifications
Mesh Improvement

- X-parameterization between target \& approximation
 - Use intrinsic map between source and target approximation

- Use for
 - Computing approximation error
 - Error = distance between target vertex \& its map
 - Conservative
 - Local modifications
Compatible Remeshing

- Operations:
 - Smoothing
 - Refinement
- Smoothing
 - Use overlapping domains framework
 - Error based relocation formula
- Refine edges based on error
- Iterate

40K/40K faces – 49K faces
Results

Morphing
28K/8K - ZK

Blending

3K + 4K = 3.5K

3K + 3.5K = 4.5K
Summary

- Robust method for constrained X-parameterization
 - Input: two (or more) models + corresponding feature vertices
 - Automatic construction of base mesh
 - Provably correct for genus=0
 - For genus > 0 works most of the time

- New framework for low-distortion parameterization on base mesh
 - Independent of patch structure
 - Can be applied with different objective functions
 - Efficient
Summary

• New compatible remeshing scheme
 – Closely approximate input
 – Small output mesh
 • ~20% more triangles

• Future
 – Using smoothing framework for unconstrained parameterization
<table>
<thead>
<tr>
<th></th>
<th>Our method</th>
<th>[Schreiner et al. 04]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Construction</td>
<td></td>
<td>More robust for genus > 0 (add extra feature vertices)</td>
</tr>
<tr>
<td>Smoothing</td>
<td>2 min 64K (overlapping domains)</td>
<td>2 hours 64K (overlay smoothing)</td>
</tr>
<tr>
<td>Constraints</td>
<td>Exact constraints</td>
<td>Relax constraints to reduce distortion</td>
</tr>
<tr>
<td>Remeshing</td>
<td>output: ~x1.2 triangles as source input (parameterization based scheme)</td>
<td>output: ~x8 triangles as inputs (typical) (mutual tessellation)</td>
</tr>
</tbody>
</table>
Movie !!!

Cross-Parameterization and Compatible Remeshing of 3D Models