# SIGGRAPH2004

Cross-Parameterization and Compatible Remeshing of 3D Models

Vladislav Kraevoy Alla Sheffer Department of Computer Science University of British Columbia

# **X-Parameterization**



- X-Parameterization: mapping between surface models (meshes)
- Applications:
  - Properties transfer
  - Morphing



Editing – e.g. blendingTemplate fitting

# **X-Parameterization**



#### Requirements

- Bijectivity (one-to-one)
- Feature correspondence
  - vertex to vertex
- Low distortion



# **Compatible Remeshing**



- Compatible meshes meshes with identical connectivity
- Required by many applications of Xparameterization
  - Morphing
  - Editing
  - Prerequisite: X-parameterization



# **Previous work: X-parameterization**

- [Lee et al. 1999, Alexa 2001, Michikawa et al. 2001, Praun et al. 2001, Allen et al. 2003, Schreiner et al. 04]
- Most use heuristics can fail
- Base mesh [Lee et al. 1999, Michikawa et al. 2001, Praun et al. 2001, Schreiner et al. 04]



- Segment meshes into triangular patches (same connectivity)
- Map patches to base triangles
- [Praun et al. 01] given a base mesh robustly construct segmentation
- [Schreiner et al. 04] more later

# Previous work: Compatible remeshing



- Mutual tessellation [Alexa 2000, Schreiner et al. 04]
  - Intersect meshes in parameter domain
- Regular base mesh refinement
  [Lee et al. 1999, Praun et al. 2001]
   Remesh with subdivision connectivity
- Both methods: output meshes much larger (~x10) than input
   For accurate approximation





# **Technique Goals**



#### X-Parameterization

- Bijective
- Exact feature vertex correspondence
- Low distortion (preserve shape)
- Minimal user input: models + feature vertices

#### Compatible remeshing

- Closely approximate the input models
- Similar (order of magnitude) number of elements as input

#### Efficient & robust

# **Algorithm Stages**



SIGGRAPH2004

#### Input: models + features





# 1. Common base mesh construction

Provably correct for genus 0













#### 3. Compatible remeshing





# **Initial X-Parameterization**

- Map each patch to corresponding base triangle
  - Shape preserving parameterization [Floater 2003]
  - Guarantee bijectivity







# **Distortion & Artifacts**



- Badly shaped patches = high distortion
- Artifacts: map polyline patch boundaries to straight lines
- Need additional processing to reduce distortion



# **X-Parameterization: Smoothing**



- Optimize (smooth) base mesh parameterization
  - Move vertices between base mesh triangles
- Unconstrained parameterization [Khodakovsky et al.,2003]
  - Solve (repeatedly) a global linear system far from trivial...
  - No guarantee of bijectivity
- Our approach
  - Treat base as set of overlapping domains
  - Iteratively optimize mapping within each domain

# **Overlapping domain structure**



- Domain per base triangle
  - Contains base triangle + 3 adjacent
  - Mapped to equilateral triangle in 2D
    - Parameterize all vertices mapped to those triangles onto the domain



# Smoothing



#### • For each base triangle *b*

- Create corresponding overlapping domain
- Compute new location in equilateral domain for each vertex on b
  - Based on neighbors
  - Shape preserving [Floater 2003]
- Map vertices back to base mesh
  - Find base triangle & compute coordinates
- Repeat
- Adjacency assumption







#### **Smoothing Framework**







#### Drastically reduce distortion

- Improves patch shape + relaxes boundaries
- Preserve bijectivity
- Generic framework can replace the shape preserving objective function by any other

#### Results





#### Normal transfer 40K/40K faces 59 sec







Texture transfer 80K/7K faces 56 sec





Motion transfer joint result with [Sumner & Popovic 04]

# **Compatible Remeshing**

#### Previous:

- overlay or subdivision
- increase mesh size by order of magnitude

#### ldea:

- Use connectivity of one model ("source") as basis
- Map to second model ("target") using X-parameterization
- Improve target approximation
  - local modifications









# Mesh Improvement



X-parameterization between target & approximation
 Use intrinsic map between source and target approximation











- Use for
  - Computing approximation error
    - Error = distance between target vertex & its map
    - Conservative
  - Local modifications



# **Compatible Remeshing**



- Operations:
  - Smoothing
  - Refinement

#### Smoothing

- Use overlapping domains framework
- Error based relocation formula
- Refine edges based on error
  - Iterate









40K/40K faces – 49K faces



#### Results





Blending



## Summary



#### Robust method for constrained X-parameterization

- Input: two (or more) models + corresponding feature vertices
- Automatic construction of base mesh
  - Provably correct for genus=0
  - For genus > 0 works most of the time
- New framework for low-distortion parameterization on base mesh
  - Independent of patch structure
  - Can be applied with different objective functions
  - Efficient

# Summary



#### New compatible remeshing scheme

- Closely approximate input
- Small output mesh
  - ~20% more triangles

#### Future

 Using smoothing framework for unconstrained parameterization



# Comparison to [Schreiner et al. 04]



|                      | Our method                                                                    | [Schreiner et al. 04]                                                 |
|----------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Base<br>Construction |                                                                               | More robust for genus > 0<br>(add extra feature vertices)             |
| Smoothing            | 2 min 64K<br>(overlapping domains)                                            | 2 hours 64K<br>(overlay smoothing)                                    |
| Constraints          | Exact constraints                                                             | Relax constraints to reduce distortion                                |
| Remeshing            | output: ~x1.2 triangles<br>as source input<br>(parameterization based scheme) | output: ~x8 triangles as<br>inputs (typical)<br>(mutual tessellation) |

#### Movie !!!



#### Cross-Parameterization and Compatible Remeshing of 3D Models

