
Pyramid Coordinates for Morphing and Deformation
Alla Sheffer Vladislav Kraevoy

University of British Columbia University of British Columbia
sheffa@cs.ubc.ca vlady@cs.ubc.ca

Abstract

Many model editing operations, such as morphing, blend-
ing, and shape deformation, require the ability to interac-
tively transform the surface of a model in response to some
control mechanism. For most computer graphics applica-
tions, it is important to preserve the local shape proper-
ties of input models during editing operations. Our work
introduces the first, to our knowledge, mesh editing tech-
nique that explicitly preserves local shape properties. The
method is based on a local shape representation, which
we refer to as pyramid coordinates. The pyramid coor-
dinates capture the local shape of the mesh around each
vertex and help maintain this shape under various editing
operations. They are based on a set of angles and lengths
relating a vertex to its immediate neighbors. This repre-
sentation is invariant under rigid transformations. Using
pyramid coordinates, we introduce a new technique for
mesh deformation and morphing based on a small number
of user-specified control vertices. Our algorithm generate
natural looking deformations and morphing sequences in
seconds with minimal user interaction.

1 Introduction

Mesh editing techniques are at the heart of many geometry
processing applications in computer graphics and geomet-
ric modeling. Good editing tools must be intuitive, easy
to use, robust and efficient. Most importantly, they should
provide natural looking resultant models while requiring
only minimal user interaction. While it is somewhat diffi-
cult to quantify the intuitiveness or natural look of edited
models, the consensus seems to be that the models should
preserve as much as possible their local and global shape
properties (distances, angles, etc.) [1].

This paper focuses on three main types of editing oper-
ations:

• Deformation: Mesh deformation is based on vertex
relocation. Hence, its basic component is the dis-
placement of a single vertex followed by the redef-
inition of the model geometry around this vertex in
response to the displacement. The geometry redef-
inition should preserve the local shape properties in
the displaced region and provide a smooth transition
between it and the rest of the model. Complex defor-
mations can typically be expressed through a combi-

nation of vertex relocations [2]. In addition to model-
ing, deformation techniques are also commonly used
in animation, where forward animation sequences are
constructed by continuous deformation.

• Morphing: Morphing is one of the basic and most
popular computer graphics applications. Morphing
algorithms create a smooth transition in time between
multiple input models. The primary challenge of
all morphing algorithms is to generate intermediate
models that retain the appearance and properties of
the source models.

• Blending: Many operations applied to multiple mod-
els can be viewed as a combination of global or lo-
cal blending. Blending is often viewed as the gen-
eration of a single intermediate model in a morph-
ing sequence. It is somewhat more challenging than
morphing, as the interpolation throughout the model
is non-linear in time. In the case of local blending,
parts of the input models are preserved in their en-
tirety, connected by smooth transition regions.

1.1 Previous Work

Due to recent developments in digital geometry process-
ing, mesh editing has been the subject of increasing atten-
tion in recent years. Much of the research in this area has
focused on subdivision and multiresolution editing tech-
niques (e.g. [3, 4, 5]). These methods are very popular, but
have several drawbacks. The multiresolution tools com-
bine simplification with subdivision surface reconstruction
as prerequisites for the editing, and are thus non-trivial to
implement. The required preprocessing is time consum-
ing. More importantly, the majority of multiresolution
morphing techniques, such as [5], interpolate absolute co-
ordinates leading to visible artifacts in some morphing se-
quences [1].

Global structure information on the models, such as a
skeleton, can facilitate the editing operations. As such,
skeleton extraction is the first step of many model defor-
mation and animation algorithms (e.g. [6]). The skeleton
is then modified according to user specifications. The de-
sired global shape deformation is then obtained by recon-
structing the shape corresponding to the modified skeleton.
Although theoretically existent for any model, skeletons
are generally hard to construct. Boolean editing opera-

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

tions usually require skeletons with identical connectivity.
The construction of such skeletons in 3D remains, to our
knowledge, an open problem.

Morphing or blending algorithms commonly begin by
constructing a common connectivity for the two or more
geometries at hand [1]. Most methods then proceed to
linearly interpolate the geometry to generate intermediate
models . As a consequence, in many cases the resulting
morphing sequences do not preserve the shape properties
of the input models. Instead of gradually transforming into
each other, features such as arms can sometimes disappear
and grow out again. More sophisticated trajectory com-
putation methods in 2D [7, 8] utilize compatible triangu-
lations of the input models. Alexa et al. [8] suggested
a technique for computing trajectories in 3D using com-
patible tetrahedralizations. However, the construction of
compatible tetrahedralizations remains an open problem,
so this approach remains impractical in 3D.

Gregory et al. [9] subdivide the models into patches
and allow the user to define the trajectories of the patch
corner vertices. The trajectories of the remaining vertices
are computed by interpolating the corner trajectories. The
method interpolates absolute coordinates often leading to
unnatural artifacts [1].

The drawbacks of absolute coordinates techniques led
to the introduction of morphing and deformation tech-
niques based on local coordinates [10, 11]. The Laplacian
coordinates [10] of each vertex are defined as a displace-
ment vector between the average of the neighbor vertices
and the actual 3D position of the vertex. These coordinates
are not invariant under rotation and scaling. Alexa [10]
uses Laplacian coordinates to generate smooth transla-
tional local morphs and deformations. However, the tech-
nique introduces visible artifacts (Figures 3 and 6) when
the deformations or trajectories contain rotation or scaling.
Sorkine et al. [11] extend the use of Laplacian coordinates
by linearly approximating local rotation. However, the ex-
amples demonstrated in the paper contain a very small ro-
tational component.

1.2 Contribution

As mentioned above, a major criterion in evaluating an
editing technique is its ability to preserve the global and
local shape properties of the original model. People are
typically more sensitive to local distortion than global dis-
tortion [12]. Hence, for most computer graphics appli-
cations, the preservation of local shape properties during
editing operations is of major significance. Our work in-
troduces the first, to our knowledge, mesh editing tech-
nique that explicitly preserves local shape properties.

Our method is based on a local shape representation,
which we refer to as pyramid coordinates. The pyramid

coordinates capture the local shape (lengths and angles) of
the mesh around each vertex and help maintain this shape
under various editing operations. In contrast to Laplacian
coordinates [10, 11] they are invariant under rigid trans-
formations.

Based on this representation, we introduce algorithms
for mesh deformation, morphing, and blending which pre-
serve the shape properties of the input models. The pro-
posed deformation method is based on a small number of
control vertices or handles defined by the user, combined
with a user-prescribed region of influence. Based on this
minimal interface, our deformation method computes nat-
ural looking deformed models even under severe defor-
mation. Our morphing procedure generates intermediate
models which interpolate the shape properties of the in-
put models. The algorithm supports the introduction of
user defined trajectories for a number of control vertices.
The technique is particularly well suited for local morph-
ing operations where only a part of the model is modified.
As opposed to many other existing methods, it generates a
natural and smooth transition between dynamic and static
parts of the model. The proposed editing algorithms are
robust, efficient, and extremely simple to implement. In
contrast to multiresolution or skeleton based techniques,
they do not require any complex preprocessing. Another
advantage of our editing approach is that although it does
not explicitly prevent model self-intersections, the shape
preservation property drastically reduces the risk of local
self-intersection.

The rest of the paper is organized as follows. Section
2 introduces the pyramid coordinates and explains how
to convert between the pyramid representation and Eu-
clidean 3D coordinates. Sections 3 describes algorithms
for computing morphing trajectories and model blending
using pyramid coordinates. Section 4 explains the model
deformation technique. Section 5 contains examples of
using the different algorithms and compares the results to
previous techniques. Finally, Section 6 summarizes the
paper’s contribution and points areas of future research.

2 Pyramid Coordinates

Pyramid coordinates have been designed to capture the
shape of the mesh around each vertex. Therefore they
measure the set of angles and lengths uniquely relating a
vertex to its immediate neighbors (Figure 1).

2.1 Coordinates

Let v be a mesh vertex in 3D and let v1,v2, ...,vm be its
neighboring vertices. Given the normal n = (nx,ny,nz) at
v, we define the projection plane P as

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

(a) (b) (c)

Figure 1: (a) Pyramid coordinates: (b) tangential compo-
nents in the projection plane P; (c) normal component β .

P = nxx+nyy+nzz+d, d = −
m

∑
i=1

n · vi. (1)

We define v′ and v′i to be the projections of v and vi to P,
respectively. The description of the vertex with respect to
its neighbors consists of:

1. a set of angles αi between the projected edges 〈v′,v′i〉
and

〈
v′,v′i+1

〉
(Figure 1 (b));

2. a set of angles βi between n and the edges 〈v,vi〉
(Figure 1 (c));

3. a set of projected edge lengths li = ‖v′ − v′i‖.

Pyramid coordinates can be viewed as a combination of
tangential (α and l) and normal (β) components. Given a
3D model, the coordinates are uniquely defined. By def-
inition, both lengths and angles are invariant under rigid
transformations. Hence, pyramid coordinates have this de-
sired property.

2.2 Reconstruction

Given the pyramid coordinates, we can reconstruct the 3D
mesh by explicitly solving the non-linear system defined
by a set of equations linking the angles and lengths to the
actual 3D coordinates. However this approach will render
the algorithm impractical. Instead, we developed an
efficient iterative Gauss-Seidel reconstruction procedure,
described below, that takes advantage of the reproduction
property of the mean value coordinates [13] to drastically
simplify the necessary computations. The reproduction
property implies that given the angles αi and the lengths
li computed from v′ and v′i, we can use the mean value
weights

wi =
tan(αi/2)+ tan(αi+1/2)

li
(2)

to obtain the original position of v′ from v′i:

v′ =
1

m
∑

i=1
wi

m

∑
i=1

wiv
′
i.

The reproduction property holds even if some angles αi

are negative, which will happen when v′ is outside the ker-
nel of the polygon formed by v′i. Thus, we obtain a linear
formulation linking the position of a vertex in the projec-
tion plane to those of the neighbors (note that the weights
remain constant throughout the reconstruction procedure).
In case the neighbor vertices are not in the original po-
sitions, using these weights to position v′ minimizes the
angular distortion of the projected mesh [13].

We use this formulation of v′ as a function of v′i, to
obtain the 3D coordinates of the mesh vertices from the
pyramid coordinates:

1. For each vertex v recompute the position of v from
the neighbor vertices:

(a) Compute the current normal n at v.
(b) Compute the projection plane P (Equation 1)

and project the neighbor vertices of v to P.
(c) Set the position of v′ to

v′ =
1

m
∑

i=1
wi

m

∑
i=1

wiv
′
i, (3)

where wi are the mean value weights derived
from αi and li (Equation 2).

(d) To derive the position of v given v′, calculate a
set of offsets hi along n using the angles βi:

hi = ‖v′ − v′i‖cot(βi)+(vi − v′i) ·n. (4)

Finally, compute the new position of v by
offsetting v′ by the average of hi along n as
follows:

v = v′ +n
1
m

m

∑
i=1

hi. (5)

2. Repeat until convergence.

The reconstruction procedure uses edge lengths only in-
side the mean value weights. Those weights are designed
to minimize angular distortion. Therefore, under the ex-
isting formulation, angles are sometimes preserved at the
expense of stretch. To account for stretch, we scale the
weights wi:

wi = wi
‖v′ − v′i‖

li
.

Scaling by the ratio of current edge length (in the projec-
tion plane) to the optimal length, has the effect of pulling
edge lengths closer to the optimal. A similar idea was pro-
posed by Belyaev et al. [14], who used the triangle stretch
for scaling the weights. In addition to better length preser-
vation, the use of a stretch component in the vertex place-
ment computation drastically speeds up the convergence
of the reconstruction procedure, especially for large defor-
mations. When a control vertex is moved to a new loca-
tion, it affects both the shape and the stretch of adjacent

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

triangles. Therefore, taking the stretch into account in-
creases the magnitude of each vertex relocation step in the
iterative procedure above.

The reconstruction formulation is invariant under rigid
transformations and scaling. Therefore, to accurately re-
construct the original model we need to fix three vertices
so as to eliminate the extra degrees of freedom. After fix-
ing the vertices, the controlled reconstruction procedure
described below is applied.

2.3 Controlled Reconstruction

Our mechanism for model editing is based on prescribing
different positions to a set of control vertices Vc. Given
user prescribed positions for Vc the positions of the
remaining vertices are computed by iterating over the
following scheme:

1. For each vertex v, if v is not in Vc, update the position
of v using the pyramid coordinates as described in
Section 2.2.

2. For each control vertex v in Vc, compute the height
offsets hi (Equation 4) and update the positions of
the neighbor vertices:

vi = v′i +n
1
m

m

∑
i=1

hi.

This sets the distance between v and the projection
plane P to the average of the hi values.

3. Repeat until convergence.

The neighbor position update for control vertices in step
2 preserves the normal distance between each control ver-
tex and its neighbors (Figure 1(c)). The tangential dis-
placement of the control vertices is typically small, since
it is reflected in the neighbor vertex placement. However,
the normal distance has very minor influence on the neigh-
bor placement and so we preserve it explicitly as described
in step 2 above.

Two reconstruction examples are shown in Figure 2.
Both reconstruct the triceratops model (Figure 2(a)) from
the same initial guess. However the first model has 3 fixed
control vertices, while the second has 6. For both mod-
els the initial positions (and normals) of the vertices were
set to a projection of the original model to the unit sphere
(Figure 2(b)). Figures 2(c) and (d) show the reconstructed
models after 1000 iterations. The L2 distances between the
vertices of the original mesh and the reconstructed models
are 3.6% and 1.6%, respectively (as a percentage of the
bounding box diagonal). The geometric Laplacian norm
[12] which measures local fidelity is 0.03% and 0.02%,
respectively.

The controlled reconstruction procedure can be used for
both morphing and deformation as described below.

(a) (b)

(c) (d)

Figure 2: Geometry reconstruction (after 1000 iterations,
14 sec): (a) original model; (b) input model; (c) 3 control
vertices; (d) 6 control vertices.

3 Morphing

A typical morphing algorithm consists of three main
stages: computing a bijective mapping between the mod-
els; remeshing the models with a common connectivity;
and computing the trajectory for each vertex in the mesh
between its source and target positions. There are nu-
merous algorithms for performing the mapping and the
remeshing, as reviewed by Alexa [1]. This paper focuses
on the final stage of the procedure, the trajectory compu-
tation. Our method generates intermediate models based
on interpolated pyramid coordinates. It can also take into
account user-prescribed trajectories of a number of control
vertices. The prescribed trajectory of a control vertex is a
curve in space-time defined over [0,1].

For simplicity, the description of the morphing algo-
rithm is limited to two inputs. The extension to a larger
number of inputs is straightforward. We refer to the
input source and target meshes as S and T , respectively.
The preprocessing stage of the algorithm computes the
pyramid coordinates of S and T : projected face angles αS

and αT , normal-edge angles β S and β T , and projected
edge lengths lS and lT . For each time-frame, the algorithm
computes the pyramid coordinates given the frame’s time
t (in [0,1]) by linearly interpolating between source and
target values:

α = αS(1− t)+αT t, (6)

β = β S(1− t)+β T t,

l = lS(1− t)+ lT t.

The control vertex positions are now set as defined by
the trajectories. The remaining vertex positions are com-
puted by the controlled reconstruction procedure using the

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

pyramid coordinates (Section 2.3). The initial guess for
the placement is the vertex positions from the previous
time-frame. Those positions are typically close to the ex-
pected positions in the current time step. Therefore, the re-
construction procedure converges very fast for each time-
frame.

In global model blends a new model is a weighted aver-
age of the inputs. To blend two models, we apply the same
procedure as for generating one time-frame in a morphing
sequence, with different values of t per vertex, if neces-
sary.

3.1 Local Blending and Morphing

For local morphs and blends, special care must be
taken to generate a smooth transition between the
blended/morphed regions and the rest of the model.

Blending: The input to the local blending procedure
consists of two mesh models S and T (with the same
connectivity), and a blend function B defined over the
mesh vertices. B(v) is 0 if the geometry at v should come
from S, and 1 otherwise. To generate a seamless shape
transition, we first smooth B using standard Laplacian
smoothing. Now, the value of B at each vertex is used
to assign the vertex coordinates. Instead of simply
blending the 3D vertex coordinates, as in standard linear
blending, we use the blending function to set the pyramid
coordinates. For each vertex v and a neighbor vertex vi,
we set:

αi = αS
i (1−B(vi))+αT

i B(vi),
βi = β S

i (1−B(vi))+β T
i B(vi),

li = lS
i (1−B(vi))+ lT

i B(vi).

Note that we use the blend function of the neighbor ver-
tex to reflect its desired pyramid coordinates. Figure 3
compares the result of applying our blending procedure to
linear blending and blending using Laplacian coordinates
[10].

Morphing: For local morphing, we first use the local
blending procedure above to redefine the target pyramid
coordinates. We then use the redefined coordinates to gen-
erate the intermediate 3D meshes using the regular mor-
phing procedure.

4 Deformation

Another important application of the controlled shape re-
construction procedure is model deformation. A major
difference between morphing and deformation is that in
the case of deformation the ideal pyramid coordinates for
the constructed model are not known. It is clear that once
a model is deformed, the original parameters cannot and

should not be preserved in their entirety. Therefore, we
apply the following procedure that adopts shape parame-
ters as it proceeds, based on the deformation at hand. To do
this, we define three sets of pyramid coordinates: current
(α , β and l); source (αS, β S, and lS); and target (αT , β T ,
and lT). To define the deformation, we need to define two
types of regions of influence around the control vertices:
geometric influence regions and shape influence regions.
Geometric influence regions determine whether the actual
3D position of the vertex changes. Shape influence regions
define whether the local shape, i.e. the pyramid coordi-
nates, of the vertex change. By definition, the geometric
influence region contains the shape influence region. For
most of our examples, the region sizes are identical.

The steps of the deformation algorithm are:

1. Compute the pyramid coordinates of the input model.
Set both the source and current coordinates to the
computed coordinates.

2. Compute a shape influence function I for each
vertex. Initialize I(v) to 1 at the control vertices and
0 everywhere else. Perform a number of standard
Laplacian smoothing iterations on the value of I. The
region where I(v) > 0 defines the shape influence
region. The number of smoothing iterations is based
on the region size prescribed by the user.

3. Set the geometric region of influence. Set the
influence function G(v) to 1 in the affected region
and to 0 outside it. Typically, G(v) is set to 1 if
I(v) > 0 and to 0 otherwise.

4. Given the new locations of the control vertices, ap-
ply the controlled reconstruction procedure (Sec-
tion 2.3), using the current pyramid coordinates α ,
β , and l. Do not recompute the coordinates for ver-
tices outside the geometric region of influence (with
G(v) = 0). After the reconstruction terminates, the
typical result has a well shaped mesh everywhere ex-
cept in the vicinity of the control vertices (Figure 5).

(a) (b) (c)

Figure 5: Bending the camel’s knee (Figure 4 (d)) : (b)
after one global iteration (using the original pyramid coor-
dinates); (c) after three global iterations (including coordi-
nate recomputation).

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

(a) (b) (c) (d) (e)

Figure 3: Face-off (transferring the face of (b) to head (a)): (a) & (b) Original models (dots indicates the boundary of the
two blended regions). (c) Linear blend. (d) Blend using Laplacian coordinates. Note the discontinuity around the face,
particularly noticeable on the brow and chin. (e) Blend using pyramid coordinates.

(a) (b) (c) (d) (e)

Figure 4: Deformations: (a),(b) feline; (c)-(e) camel; (d) walk; (e) ballet dance.

5. Compute the pyramid coordinates of the re-
constructed mesh and assign them to the target
parameters αT , β T , and lT .

6. Recompute the current pyramid coordinates from
the source and target coordinates based on the shape
influence function. For a vertex v and a neighbor
vertex vi, set the corresponding pyramid coordinates
of v to

αi = αS
i (1− I(vi))+αT

i I(vi),
βi = β S

i (1− I(vi))+β T
i I(vi),

li = lS
i (1− I(vi))+ lT

i I(vi).

Similarly to blending, we use the shape influence
function of the neighbor vertex to reflect its desired
pyramid coordinates.

7. Repeat the procedure starting from step 3. Typically,
2 to 3 iterations are sufficient to obtain visually
pleasing results.

The deformation procedure provides very well-shaped
and intuitive results. In the examples throughout the pa-
per, despite the large deformations performed, the pyramid
coordinates of the deformed models remain very close to

those of the inputs (Table 1). This indicates that our defor-
mation procedure preserves the local shape of the models.

5 Results

The figures throughout the paper demonstrate the results
of applying our technique for different editing operations.
To measure the level of shape preservation, we compute
the L2 distance between the pyramid coordinates (α , β , l)
of the edited mesh and the optimal pyramid coordinates
(αO, βO, lO):

Dα = ((∑(α −αO)2)/NumAl pha)1/2/2π

Dβ = ((∑(β −βO)2)/NumBeta)1/2/π

Dł = ((∑(ł− łO)2)/NumL)1/2/BBoxDiag

The scaling above is performed to normalize the distortion
values to [0,1] interval. For deformation, the original pyra-
mid coordinates are viewed as optimal. For blending and
morphing, we use the interpolated values as the optimal
coordinates. The results for some of the examples in the
paper are summarized in Table 1.

Figure 4 showcases our deformation algorithm. Both
models undergo large deformations using only a small

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

(a) (b) (c) (d)

Figure 6: Morphing comparison. (a) Pyramid coordinates. The single control vertex follows a user prescribed trajectory.
(b) Linear morphing (50%). (c) & (d) Morphing using Laplacian coordinates (50%) without (c) and with (d) trajectory
specification.

number of control vertices. The resulting models closely
preserve the shape of the original (Table 1). Figure 8
demonstrates the effect on deformation of changing the ra-
dius of the region of influence around a control vertex. As
demonstrated by these examples, our method can handle
significantly larger and more complex deformations than
most previous techniques.

(a) (b)

(c) (d)

Figure 8: Deformation of the triceratops model (a) using
one control vertex and different ROI sizes (indicated by the
dots). In all the models the control vertices positions are
identical. (b) Deformation using Laplacian coordinates.
(c) Same deformation, using pyramid coordinates. (d) De-
formation using pyramid coordinates with larger region of
influence.

Figure 6 compares our morphing procedure to linear and
Laplacian [10] morphs. Our method generates a natural

trajectory for the entire arm, including smoothly folding it
at the elbow. The shape and size of the arm are preserved
throughout the entire morphing sequence. This is achieved
using a prescribed trajectory for a single control vertex at
the thumb. As expected, linear morphing performs poorly
(Figure 6(b)). Without trajectory specification, Laplacian
morphing produces very similar results to the linear morph
((Figure 6(c)). With a specified trajectory, Laplacian mor-
phing performs somewhat better, but the arm remains dras-
tically shrunken. Laplacian coordinates are not invariant
under rotation and so they generate artifacts for rotational
morphs such as the one in our example. Figure 7 shows
a more complex morphing example where a cow is mor-
phed into a bull. The morphing uses 8 trajectories defining
the transition for the legs, tail, horns, and nose. Given the
need to rotate those components, both linear and Laplacian
morphing exhibit similar artifacts as in the female example
(Figure 6).

Figure 3 shows an example of blending using pyramid
coordinates. The result, Figure 3(e), is a seamless blend.
On the same example, linear morph performs extremely
poorly (Figure 3(c)). Laplacian coordinates blend per-
forms somewhat better, but has a visible transition discon-
tinuity between the blended parts (Figure 3(d)).

6 Conclusions

We introduce a new, robust method for mesh editing based
on a novel local representation, the pyramid coordinates.
Our representation captures the local shape properties of
the mesh and is invariant under rigid transformations. Us-
ing the pyramid coordinates, we developed mesh editing
operations which preserve the shape properties of the in-
put models. As a result, our deformation method generates
well shaped models even under extremely severe defor-
mations. Our morphing procedure generates intermediate
models which interpolate the shape properties of the input

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

Figure 7: Turning a cow into a bull. Note the preservation of local details and the smooth rotation of the head and tail.

Model Size # control Dα Dβ Dl Runtime
(#vert.) vertices (sec)

Heads blend 3816 - 0.024 0.005 0.001 6
Feline 49,864 9 0.04 0.015 0.1% 161
Walking camel 4884 10 0.054 0.08 0.3% 3
Dancing camel 4884 15 0.095 0.067 0.5% 6
Female 8074 1 0.017 0.006 0.03% –
Cow/bull 21,610 8 0.037 0.019 0.15% –
Triceratops 7998 1
(Pyramid coord.) 0.038 0.012 0.36% 0.3
(Laplacian coord.) 0.09 0.04 0.5%

Table 1: Model statistics. For the morph examples (Fig-
ures 6 and 7) the statistics measure the difference between
the 50% interpolation of the source and target pyramid co-
ordinates and the actual coordinates of the morphed model
at t = .5.
meshes. The procedure supports user prescribed control
vertex trajectories. Using those trajectories, the method
generates intuitively looking morphing sequences. All of
the proposed editing operations require minimal user inter-
action. No segmentation of the model into patches, sub-
division hierarchy construction, or any additional model
information is required. The method is fast and simple
to implement. These properties make pyramid coordinates
based editing an effective tool for geometry processing and
animation. Future research directions include speeding up
the method using multiresolution approach and the appli-
cation of pyramid coordinates to other editing operations
such as pasting or high frequency detail transfer.

References
[1] M. Alexa, “Recent advances in mesh morphing,” Computer

Graphics Forum, vol. 21, no. 2, pp. 173–196, 2002.

[2] G. H. Bendels and R. Klein, “Mesh forging: editing of
3d-meshes using implicitly defined occluders,” in Proceed-
ings of the Eurographics/ACM SIGGRAPH symposium on
Geometry processing, pp. 207–217, Eurographics Associa-
tion, 2003.

[3] D. Zorin, P. Schröder, and W. Sweldens, “Interactive mul-
tiresolution mesh editing,” Computer Graphics, vol. 31,
no. Annual Conference Series, pp. 259–268, 1997.

[4] L. Kobbelt, J. Vorsatz, and H.-P. Seidel, “Multiresolution
hierarchies on unstructured triangle meshes,” Computa-
tional Geometry, vol. 14, no. 1-3, pp. 5–24, 1999.

[5] I. Guskov, W. Sweldens, and P. Schröder, “Multires-
olution signal processing for meshes,” in Proceedings of the
26th annual conference on Computer graphics and interac-
tive techniques, pp. 325–334, ACM Press/Addison-Wesley
Publishing Co., 1999.

[6] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel, “Free-form
skeleton-driven mesh deformations,” in Proceedings of the
eighth ACM symposium on Solid modeling and applica-
tions, pp. 247–253, ACM Press, 2003.

[7] V. Surazhsky and C. Gotsman, “Morphing stick figures us-
ing optimized compatible triangulations,” in Proceedings
of the 9th Pacific Conference on Computer Graphics and
Applications, p. 40, IEEE Computer Society, 2001.

[8] M. Alexa, D. Cohen-Or, and D. Levin, “As-rigid-as-
possible shape interpolation,” in Proceedings of the 27th
annual conference on Computer graphics and interac-
tive techniques, pp. 157–164, ACM Press/Addison-Wesley
Publishing Co., 2000.

[9] A. D. Gregory, A. State, M. C. Lin, D. Manocha, and
M. A. Livingston, “Feature-based surface decomposition
for polyhedral morphing,” in Proceedings of the fifteenth
annual symposium on Computational geometry, pp. 415–
416, ACM Press, 1999.

[10] M. Alexa, “Local control for mesh morphing,” in Proceed-
ings of the International Conference on Shape Modeling &
Applications, p. 209, IEEE Computer Society, 2001.

[11] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Roessl,
and H.-P. Seidel, “Laplacian surface editing,” in Proceed-
ing of the Eurographics/ACM SIGGRAPH symposium on
geometry processing, to appear, 2004.

[12] O. Sorkine, D. Cohen-Or, and S. Toledo, “High-pass quan-
tization for mesh encoding,” in Proceedings of the Euro-
graphics/ACM SIGGRAPH symposium on Geometry pro-
cessing, pp. 42–51, Eurographics Association, 2003.

[13] M. S. Floater, “Mean value coordinates,” Comput. Aided
Geom. Des., vol. 20, no. 1, pp. 19–27, 2003.

[14] S. Yoshizawa, A. G. Belyaev, and H.-P. Seidel, “A fast
and simple stretch-minimizing mesh parameterization,” Ac-
cepted for Shape Modeling International, 2004.

Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’04)
0-7695-2223-8/04 $ 20.00 IEEE

	footer1:

