Pyramid Coordinates for Morphing and Deformation

Alla Sheffer Vladislav Kraevoy Computer Science Department University of British Columbia

Motivation – Model Editing

- Deformation
- Blending
- Morphing

Motivation – Model Editing

- Simple control mechanism
- Intuitive results

Previous Work

- Multi-resolution: Zorin et al. 97, Kobbelt et al. 99, Guskov et al. 99, Boier-Martin et al. 04, Botsch and Kobbelt 04
 - + interactive rates
 - interpolate absolute coordinates leading to visible artifacts
 - time consuming preprocessing

- Skeleton based: Yoshizawa et al. 03
 - easy to deform
 - hard to construct
 - some deformations cannot be expressed as skeleton modifications

Previous Work

Local shape representation: Alexa 01, Sorkine et al.
 04, Lipman et al. 04, Yu et al. 04

Vertex geometry representation:

- neigbour vertices $v_1...v_m$
- local coordinates $[\alpha_1..\alpha_n]$

Local implies global

Local Shape Representation

Alexa 01, Sorkine et al. 04, Lipman et al. 04, Yu et al. 04

- implicitly supports mesh operations
 - editing, blending

- existing representations not invariant under rigid transformations
 - Partial solution: transformation estimation
 [Sorkine et al. 04, Lipman et al. 04, Yu et al. 04]

New Local Shape Representation

Desired properties:

- Local shape preservation under deformation
 - implies global
- Invariant under rigid transformations
 - not invariant under shear
 - not invariant under non uniform scale

Local Coordinate Frame

- Define vertex with respect to neighbors
 - Invariant under rigid transformations
- Separate
 - 1. Tangential component
 - 2. Normal component

Euclidian to Local

Given v and $v_1...v_m$ compute:

- 1. Tangential component
 - project the v and $v_1..v_m$ to tangential plane
 - compute α , l
- 2. Normal component
 - compute β

Euclidian to Local

- a) invariant under rigid transformations
- b) redundant

Vert	Global Geometry	
v_0	<i>x</i> , <i>y</i> , <i>z</i>	
v_I	<i>x</i> , <i>y</i> , <i>z</i>	
v_2	<i>x</i> , <i>y</i> , <i>z</i>	
v_3	<i>x</i> , <i>y</i> , <i>z</i>	

	α	l	β
v_0	60°, 60°,60°	0.58, 0.58, 0.58	35.3°, 35.3°, 35.3°
v_I	•	•	•
v_2	•	•	•
v_3	•	•	•

Local to Euclidian

Given α , β , l and $v_1...v_m$ compute:

1. Tangential component

- a) project the $v_1...v_m$ to tangential plane
- b) compute v'

2. Normal component

- a) compute normal offset
- b) compute v

Tangential Component

Given α , l and $v_{l}...v_{m}$ compute v':

- 1. project the $v_1...v_m$ to tangentional plane
- 2. compute *v*' using *scaled* mean value coordinates [Floater 03]
 - Reconstruction
 - ii. Shape preservation

$$w_{i} = \frac{\tan(\alpha_{i}/2) + \tan(\alpha_{i+!}/2)}{l_{i}}$$

$$w_{i} = \frac{w_{i} || v' - v'_{i} ||}{l_{i}}$$

$$v' = \frac{1}{\sum_{i=1}^{m} w_{i}} \sum_{i=1}^{m} w_{i} v'_{i}$$

Normal Component

To compute v given v' and β :

- 1. calculate a set of offsets h_i along normal n
- 2. calculate h as an average of h_i
- 3. calculate v as an offset by h along n

Reconstruction Properties

- 1. Reconstruction
- 2. Invariance under
 - rigid transformations
 - global scaling
- 3. Shape preservation
 - local implies global

Reconstruction

Input: Positions of control vertices V_c

- 1. For each unconstrained vertex
 - a) Compute tangential plane
 - Reconstruct the vertex

2. Repeat until convergence

Morphing

- Input:
 - control vertex positions at each time step
 - pyramid coordinates of source & target
- For each time step
 - 1. Interpolate source & target pyramid coordinates
 - 2. Reconstruct using new coordinates

Deformation

- Input:
 - Control vertices
 - Region of influence
- Impacts model shape!!!

Deformation Algorithm

- 1. Compute influence function
 - 1 at controls & gradually reducing to 0 around them
- 2. For each unconstrained vertex in the region of influence
 - a) Compute tangential plane
 - **b)** Reconstruct the vertex
- 3. Repeat until convergence
- Recompute pyramid coordinates as combination of old & new using influence function
- 5. Repeat from 2.

Results

Algorithm in progress

Comparison

[Alexa,01]

[Lipman et al.,04]

Our

Results – Detail Preservation

Summary

- Novel local coord representation
 - set of editing techniques
- Advantages
 - Local shape preservation
 - implies global preservation
 - Invariant under rigid transformations
 - not invariant under shearing
 - not invariant under non uniform scale

Summary

Drawback

- Computation of tangential plane can be unstable on badly shaped meshes
 - apply smoothing as pre-processing

Future

- Global formulation
- Speedup