
Computing Polygonal Surfaces From Unions of Balls

Roger Tam
rtam@cs.ubc.ca

Wolfgang Heidrich
heidrich@cs.ubc.ca

Imager Computer Graphics Laboratory
Department of Computer Science
University of British Columbia

Abstract

We present a new algorithm for computing a polygonal
surface from a union of balls. The method computes and
connects thesingular pointsof a given union of balls in
an efficient manner to approximate the boundary. The al-
gorithm uses thedual shapeof the balls to give the result-
ing surface the correct topology. Our method is simple and
demonstrated to be robust.

1. Background and Introduction

Ball models have been used for numerous applications in
graphics and visualization, including shape matching [14],
collision detection [9, 11], animation [10], and molecular
modelling [13]. It is often useful to generate an approxi-
mating polygonal surface from a given union of balls. For
example, to display an object with typical graphics hard-
ware it is much faster to do so with polygons than balls.

In a reasonably dense union of balls, there are typically
many locations on the surface in which three or more balls
meet to form an intersection point, called asingular point.
Figure 1a shows a union of balls and some of its singu-
lar points. Our algorithm connects these points to form a
polygonal surface and incorporates a method for dealing
with undersampled areas in which the balls do not intersect.

Our algorithm uses the weighted Delaunay triangulation
of the union of balls to compute the surface. The subcom-
plex consisting of the interior Delaunay triangles has been
proven to be homotopy equivalent to the union of balls [6].
We take advantage of this property to compute surfaces that
are topologically correct.

2. Related Work

Our work is partially inspired by thepower crustalgo-
rithm [1], developed by Amentaet al., which generates a

b1

p1p2

p3

b2
b3

b4

(a)

t1t2
t3 v1

(b)

Figure 1. (a) A union of balls and some of its singular
points (b) The dual shape of the union of balls

surface of an object from a set of boundary points by first
producing two sets of balls, one inside the object and one
outside. The power crust then computes the interface be-
tween inside and outside balls to make a surface. A draw-
back of the power crust algorithm is that it produces a
large number of faces for the number of balls present. Our
method computes a surface from only one set of balls inside
the object, and the number of polygons produced is on the
same order as the number of balls.

An algorithm for theskinningof unions of balls has been
developed by Edelsbrunneret al. [7, 8]. The skins are typ-
ically composed of parts of the balls connected by hyper-
boloid and spherical patches to make the surface tangent
continuous. The skin is then adaptively triangulated to form
a polygonal surface. Kruithof and Vegter [12] extend the
method to approximateC2 surfaces. There are two primary
drawbacks to the skinning approach. First, even a small
number of balls can generate a complicated skin. Second,
there are always concave patches between the balls, some-
times resulting in a bumpy appearance. Our method is con-
siderably more lightweight, and is designed for applications
where efficiency is more important than continuity of the
surface.



3. Weighted Delaunay Triangulation

To facilitate the discussion, we first provide the defini-
tion of the primary geometric construction used in our algo-
rithm. Thepower diagram[3] is a generalized Voronoi dia-
gram that is computed on a set of weighted points. The dual
of the power diagram is theweightedor regular Delaunay
triangulation. A 2D example is shown in Figure 2a, which
illustrates the power diagram of eight disks; the weighted
Delaunay triangulation is shown with dotted lines.

(a)

s1 s2
s3 s4

(b)

Figure 2. (a) Power diagram of eight disks (b) Dual shape

The weighted Delaunay triangulation uses thepower dis-
tanceto define the adjacencies between ball centres. Given
a set ofn balls{b1, . . . , bn} with centres{x1, . . . , xn} and
radii {r1, . . . , rn}, the power distanceπ(bi, bj) between
any two ballsbi andbj is defined as

π(bi, bj) = ‖xi − xj‖2 − (ri
2 + rj

2).

Two ballsbi andbj are calledorthogonalif π(bi, bj) = 0.
Given a simplex of dimension one or greater in the trian-
gulation, theorthocentreof the simplex is the centre of the
smallest ball that is orthogonal to each ball of the simplex.

Thedual shape[6] of a union of balls can be computed
from a weighted Delaunay triangulation by discarding all
of the simplices that lie outside of the union of balls. The
dual shape of the union of disks in Figure 2a is shown in
Figure 2b. A very useful property of the dual shape is that
it has the same topology as the union of balls [6].

For computing the weighted Delaunay triangulation, we
use the CGAL library (http://www.cgal.org ), which
implements a version [5] of the randomized incremental al-
gorithm [4].

4. Algorithm Overview

Our algorithm consists of three main steps:

1. Compute the dual shape of the union of balls.

2. For all regular and singular triangles (defined in the
next section) in the dual shape, compute the singular
points, except for duplicates.

3. Compute surface polygons from the singular points us-
ing the connectivity of the dual shape.

The main idea of the method is to traverse the hull of
the dual shape in an ordered fashion, connecting the singu-
lar points on the way. Figure 3 illustrates how the method
works in 2D (i.e., computing a polyline contour from a
union of disks). In Figure 3b, thes’s are the regular and
singular simplices of the dual shape, thep’s are the singu-
lar points, and the dotted line is the resulting approximating
boundary. The idea is that as we traverse the simplices in
order along the hull (s1 → s2 → s3 → s4 → . . . ), we con-
nect the corresponding singular points (p1 to p2 to p3 to p4,
etc.).

(a)

s1
s2 s3

s4
s5

s6 s7
s8

s9

p1

s10

s11

s12s13s14s15
s16

p2 p3 p4
p5 p6

p7
p8a

p9

p10

p11

p12
p13p14p15

p16

p17

p8b

s17

(b)

Figure 3. (a) Union of disks (b) Connecting the singular
points to form a contour (dotted line)

5. Singular Point Computation

Each triangle in the dual shape can be classified as one
of three types:interior, regular, or singular. This classifi-
cation is based on the number of tetrahedra to which the tri-
angle belongs. An interior triangle is the interface between



two neighbouring tetrahedra, a regular triangle belongs to
only one tetrahedron, and a singular triangle is not part of
a tetrahedron. For most data sets, the majority of triangles
are faces of tetrahedra, and therefore are either regular or
interior. Each type of triangle produces a different number
of singular points. An interior triangle produces no singular
points, a regular triangle produces one singular point, and
a singular triangle produces two singular points. In the 2D
analog shown in Figure 2b,s1 ands2 are singular simplices,
because they do not belong to a triangle, whereass3 ands4
are regular simplices. In Figure 3b,s8 is the only singular
simplex in the dual shape. As a result,s8 is the only simplex
producing two singular points (p8a andp8b).

For a given triangle, we compute its singular point(s)
by first locating the orthocentre. We make use of the fact
that the two intersection points formed by the three balls
are collinear with the orthocentre. To see why this is true,
we note that the circle formed by two intersecting balls lies
in the plane defined by the power diagram wall between
the two balls. This plane is called thebisector plane(Fig-
ure 4a), and consists of the points that have same power

Bisector

Plane

(a)

Bisector

Planes

Singular

Point

Simplex

(b)

Figure 4. (a) Bisector plane (b) Three bisector planes
(“top” view)

distance to both balls. By construction, the three bisector
planes formed by three balls are orthogonal to the triangle
connecting the ball centres, and the intersection of the three
planes results in a line. This line consists of the points that
have the same power distance to each of the three balls, and
goes through the singular point(s) (Figure 4b). By defini-
tion, the orthocentre has the same power distance to to all
three balls, and must also lie on this line. Once we find the
orthocentre, we only need to compute the correct distance
(d in Figure 5) to find the singular point(s).

It is important to note that in order to avoid degener-
ate faces, we need to prevent duplicate singular points from
being computed. Multiple identical singular points are of-
ten produced when four or more balls intersect at the same
point, as is frequently the case when the union of balls

s

Singular

Point

Orthocentre

d

Figure 5. Computing a singular point of the simplexs

is constructed by computing the circumscribing balls of
the Delaunay triangulation of an object’s boundary points
(e.g., Amenta and Kolluri [2]). By keeping track of which
balls intersect to form which singular points, we can avoid
computing duplicate points rather than having to deal with
them numerically later on.

6. Polygon Computation

After the singular points have been computed, they must
be connected properly so that the resulting surface has the
correct topology and well-formed faces. For each vertex in
the dual shape, we traverse the incident faces on the hull
around the vertex and connect the corresponding singular
points in order. Beginning with a triangle on the hull inci-
dent to the vertex, we search the neighbouring triangles to
find one that is also on the hull and incident to the vertex.
The process then continues around the vertex until we en-
counter the first triangle. Figure 1b shows a projection of
the hull of the dual shape of the union of balls in Figure 1a.
Traversing aroundv1 (t1 → t2 → t3 → . . . ) results in con-
nectingp1 to p2 to p3, etc. in Figure 1a. The final result
of going around this vertex is the face shown by the dotted
line in Figure 1a.

An intuitive way to understand how the method works is
to think of the traversal around a vertex as being equivalent
to taking the ball centred at the vertex, and using the sur-
face arcs formed by the ball intersecting with its neighbours
as “paths” to find the appropriate sequence for the singular
points. For example, the path fromp1 to p2 in Figure 1a is
determined by the intersection between the ballsb1 andb3.
This duality is apparent if we consider the facts that the arcs
lie on the Voronoi walls of the power diagram of the balls,
and the singular points lie on the intersections between the
Voronoi walls.

While traversing the triangulation, there are two primary
issues that need to be addressed. The first is that if a triangle
has more than one neighbour on a given edge, we need a
method for determining which neighbour to use in order to
stay on the proper side of the hull. The second is that when
we encounter a singular triangle, we need to decide which
of the two singular points is the proper one to use next.



6.1. Finding the Correct Neighbour

Figure 6 illustrates a scenario in which we need to decide
which neighbour of a triangle we should proceed to next. In
this case, singular pointp1, computed from trianglet1, has
just been added to the current face. We need to determine
which of t2, t3, or t4 is the correct triangle. Making the
wrong choice (eithert3 or t4) would cause the traversal to
go right through the hull. To find the right neighbour (t2),
we form a trianglet1′ using the given edge and the current
singular point (p1). The first triangle encountered when ro-
tating in the direction fromt1 to t1′ is the correct neighbour.
The process then continues by finding the correct neighbour
of t2.

t1

t2

t3

t4

p1

t1'

Figure 6. Using the direction fromt1 to t1′ to find the
right neighbour (t2)

6.2. Finding the Correct Singular Point

When we reach a singular triangle, we need to determine
which of the two singular points is the correct one to use. By
construction, the singular points must be on opposite sides
of the triangle. Therefore, choosing the wrong one would
cause the constructed face to cut across the interior of the
object. In order to find the right singular point, we compute
a number of vectors to determine if choosing a particular
singular point would cause a flip in orientation to the other
side of the hull, relative to the singular point used for the
previous triangle.

Figure 7 illustrates the vectors used. The normal vectors
(n1, n2) for the previous (t1) and current (t2) triangles are
computed. In addition, a vector originating from the cen-
troid of the previous triangle pointing to the previous singu-
lar point (p1) is computed. Similarly, two vectors directed
toward the two singular points of the current triangle (p2a,
p2b) are derived. The sign of the dot product between the
normal vector and the singular point vector of the previous
triangle t1 gives us a reference to determine which ofp2a
or p2b should be used to preserve the current orientation. In
this casep2a is the correct one.

t1 t2

p1 p2a

p2b

n1
 n2


Figure 7. Using the normal vectors to find the right sin-
gular point

7. Undersampled Areas

In some data sets, there are areas in which the balls are
close enough for the computed Delaunay triangles to be
largely inside the shape, but the balls do not actually inter-
sect. This happens most frequently when one ball intersects
two other ones, and the other two are close to each other
but do not actually intersect. Our method of computing the
singular points using the orthocentre is beneficial in such
cases, because the orthocentre can be computed without an
intersection. This is in contrast to using, for example, great
circles for determining intersection points. To compute a
“fake” singular point to add to the surface, we simply esti-
mate an appropriate orthogonal offset from the orthocentre
by averaging the radii of the three balls connected in the
triangle.

8. Results

To demonstrate the effectiveness of our algorithm, we
show several examples of varying shape complexity, topol-
ogy and sampling density in Figures 8 to 11. All of the
unions of balls are computed using the method by Amenta
and Kolluri [2]. Table 1 shows the processing times to com-
pute the surfaces. The number of balls and faces are also
shown for each case. As mentioned in Section 2, the num-
ber of faces produced for each model is on the same order
as the number of balls. A Pentium 4 processor running at
2.0 Ghz is used for our experiments. Our implementation
makes extensive use of the CGAL and LEDA libraries.

Model Balls Time (sec.) Faces
Apple 3095 4.6 4179
Mushroom 3609 5.0 4963
Heart 3405 4.6 3900
Torus 5613 6.2 7154

Table 1. Processing times for surface reconstruction from
unions of balls



(a)

(b)

Figure 8. (a) Union of balls of an apple (3095 balls) (b)
Surface reconstructed from the union of balls of an apple
(4179 faces)

9. Summary

In this paper, we have presented an efficient method
for constructing an approximating polygonal boundary of
a union of balls. We have shown the results of applying our
algorithm to several unions of balls of varying shape com-
plexity, topology and sampling density.

(a)

(b)

Figure 9. (a) Union of balls of a mushroom (3609 balls)
(b) Surface reconstructed from the union of balls of a mush-
room (4963 faces)

10. Future Work

We intend to pursue a number of directions to enhance
our algorithm:

• While our algorithm produces surfaces that the aver-
age viewer would say are faithful reconstructions, ge-
ometrically speaking they are only approximations. A
derivation of the error bounds would be informative.
In addition, while we conjecture that the reconstructed
surface converges to the envelop of the union of balls
as the sampling density tends to infinity, this should be
rigorously proven.

• The polygons produced by our algorithm are non-
planar in general. Although a number of available soft-
ware packages can retessellate non-planar faces into



(a)

(b)

Figure 10. (a) Union of balls of a heart (3405 balls) (b)
Surface reconstructed from the union of balls of a heart
(3900 faces)

planar ones, incorporating such a conversion step into
our method would be useful.

(a)

(b)

Figure 11. (a) Union of balls of a two-holed torus (5613
balls) (b) Surface reconstructed from the union of balls of a
two-holed torus (7154 faces)

• We would like to do further work on the detection and
handling of undersampled areas, as well as investigate
the effects of such degeneracies on the topology of the
reconstructed surface.

11. Acknowledgments

We gratefully acknowledge the reviewers’ comments,
which have significantly improved this paper. We would
like to thank the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and the British
Columbia Advanced Systems Institute (ASI) for their con-
tinuing support.



References

[1] N. Amenta, S. Choi, and R. Kolluri. The power crust. In
Proceedings of the ACM Symposium on Solid Modeling and
Applications, pages 249–260, Ann Arbor, Michigan, June
2001.

[2] N. Amenta and R. Kolluri. Accurate and efficient unions of
balls. InProceedings of the ACM Symposium on Computa-
tional Geometry, pages 119–128, Hong Kong, June 2000.

[3] F. Aurenhammer. Power diagrams: properties, algorithms,
and applications.SIAM Journal on Computing, 16(1):78–
96, 1987.

[4] K. Clarkson, K. Mehlhorn, and R. Seidel. Four results on
randomized incremental constructions.Computational Ge-
ometry, 3(4):185, Sept. 1993.

[5] O. Devillers. Improved incremental randomized Delaunay
triangulation. InProc. Symposium on Computational Ge-
ometry, pages 106–115, 1998.

[6] H. Edelsbrunner. The union of balls and its dual shape. In
Proc. 9th Annual ACM Symposium on Computational Ge-
ometry, pages 218–231, 1993.

[7] H. Edelsbrunner. Deformable smooth surface design.Dis-
crete & Computational Geometry, 21:87–115, 1999.

[8] H. Edelsbrunner and A.̈Ungör. Relaxed scheduling in dy-
namic skin triangulation. InProc. Japan Conference on
Discrete and Computational Geometry, Tokyo, Japan, Dec.
2002. Springer-Verlag.

[9] N. Gagvani and D. Silver. Shape-based volumetric collision
detection. InProc. IEEE Volume Visualization and Graphics
Symposium, Salt Lake City, Utah, Oct. 2000.

[10] N. Gagvani and D. Silver. Animating volumetric models.
Graphical Models, Mar. 2002.

[11] P. Hubbard. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on
Graphics, 15(3):179–210, 1996.

[12] N. Kruithof and G. Vegter. Approximation by skin surfaces.
In Proc. International Conference on Shape Modelling and
Applications, pages 86–95, Seattle, June 2003.

[13] J. Liang, H. Edelsbrunner, P. Fu, P. Sudharkar, and S. Subra-
maniam. Analytic shape computation of macromolecules I:
molecular area and volume through alpha shape.Proteins:
Structure, Function, and Genetics, 33:1–17, 1998.

[14] V. Ranjan and A. Fournier. Volume models for volumetric
data. IEEE Computer, Special Issue on Volume Visualiza-
tion, 27(7):28–36, 1994.


